
Redesigning Kafka Message Queue System: Toward a
Decentralized Stateful Broker System

COEN241 – Cloud Computing
Professor Ming-Hwa Wang

June, 2017

Yiqiao Li, Yue Liu, Sen Zhang, Pengyu Zhu
Department of Computer Science and Engineering

Santa Clara University, CA

! 2

Introduction

Modern distributed systems are growing exponentially as far as performance and scale. The
sheer complexity and enormity of modern network made it extremely costly to manage node-to-
node communication with home-grown systems. Specialized messaging systems, or message
queue services, came into being to meet the ever increasing demand on the reliability and
performance of message delivery.

Message queue systems today have been and is still evolving from their initial versions, offering
mostly services of asynchronous, parallel and distributed capabilities. Most message queue
services are distributed themselves in order to keep up with the skyrocketing computing power of
their clients. As a system becomes distributed, the issues of inter-process communication, fault
tolerance, node organizations and data storing become the focal point of those trying to design a
better message queue.

Kafka, initially developed by LinkedIn in 2011, was designed with such performance that
shadowed most contemporary peers. It sacrificed some old message queue features such as
message ordering, to ensure high-speed message delivery. One of the most important task of
node coordination was delegated to Apache’s then highly available coordination system,
ZooKeeper. ZooKeeper was effective at its job, however, lacks the scalability as most Kafka
systems today tend to grow much bigger than its earlier clients.

We believe that ZooKeeper cannot remain an integral part of Kafka if the message queue system
were to meet it potential. Kafka needs a more scalable and faster distributed coordination system
to breakthrough its already-impressive performance. Therefore, we would like to introduce our
alternative architecture for Kafka node coordination system: Decentralized Stateful Broker
System (DSBS). We expect that DSBS will offer a scalable and reliable solution to replace
ZooKeeper while offer Kafka a boost in message delivery speed.

Theoretical bases and literature review

Some of the predecessors of Kafka was well within the radar of computer scientists. Earlier
message queue systems such as RabbitMQ, OpenMQ and ActiveMQ have been subjects of
comparison of researches. In 2015 a research named “An Experimental Comparison of
ActiveMQ and OpenMQ Brokers in Asynchronous Cloud Environment”, by Klein and
Stefanescu, conducted an experiment between ActiveMQ and OpenMQ in busy cloud
environment with high volume of traffics to compare their performances, message persistence
and scalability options. The researchers found that ActiveMQ turns out to be a faster broker in all
tested scenarios while also using less memory than OpenMQ.

! 3

A different group of researchers, in the same year, conducted experiments to compare ActiveMQ
and RabbitMQ, another popular message queue system at the time. Their results showed that
ActiveMQ is faster on message reception (the client sends the message to the broker), while
RabbitMQ is faster on producing messages (the client receiving messages from the broker).

Kafka was theoretically conceived in an open source project by LinkedIn in early 2011. The
paper first introduced how the new message system can be vastly powerful when it comes to
message queue performance. Kreps, Narkhede and Rao created Kafka originally as a tool to
handle large scale log processing. They introduced a number of unconventional system design to
make sure the new system run fast. Kafka outperformed RabbitMQ and ActiveMQ by many
times and is proven to consume less resources.

Another paper published in 2015 reexamined the performance and structure of Kafka and
proposed additional improvement despite its impressive capabilities. Researchers including
Zhenghe Wang and Wei Dai confirmed that Kafka’s superior capacity comparing to traditional
message queues, but proposed that 1) applications sharing the Kafka system should be able to
select processing priorities to reduce suboptimal resource allocations, 2) Kafka need to move
away from its heavy dependency on ZooKeeper for node management to increase reliability and
system integration, 3) authentication can be added as a feature.

As well known, Kafka currently relies on ZooKeeper, a distributed node coordination managing
system, to organize its client and broker information. ZooKeeper is an open source system
developed by Apache. Kafka research team used it out of convenience and its good performance.
ZooKeeper was first introduced in a research paper, ZooKeeper: Wait-free coordination for
Internet-scale systems, by Hunt, Konar, Junqueira and Reed in 2010. It incorporates elements
from group messaging, shared registers, and distributed lock services in a replicated, centralized
services. ZooKeeper interfaces has the wait-free aspects of shared registers with an event-driven
mechanism similar to cache invalidations of distributed files systems.

In 2013, another group of researchers, Skeirik, Bobba and Meseguer, utilized ZooKeeper in a
Security-as-a-Service (SecaaS) system. They developed a group key management system and
studied its rewriting logic model of a ZooKeeper based group key management service specified
in Maude. They focused on the system’s fault tolerance and its performance as it scales to service
larger grouping using the PVeStA statistical model checking tool.

Despite Kafka and other traditional counterparts, researchers also aimed to study other
possibilities when it comes to message queue architectures. In a paper by, Patel, Khasib,
Sadooghi and Raicu, they introduced a new message queue system called Hierarchical
Distributed Message Queue (HDMQ). The HDMQ system uses a hierarchical structure to
organize storages nodes and a round robin algorithm to store and retrieve incoming messages to
preserve message ordering, which has been a missing feature in many parallel high-speed

! 4

message queues. They compared HDMQ across Amazon Simple Queue Service, Windows Azure
and IronMQ and discovered that HDMQ outperforms all of them in many aspects.

When evaluating cloud-based message queueing systems (CMQSs), numerous approaches to
measure system performance are available, there is no modeling approach for estimating and
analyzing performance of CMQSs. In a paper by Li, Cui and Ma, in 2015, they developed a
visibility-based modeling approach (VMA) for simulation model using colored Petri nets. Their
results reveal considerable insights into resource scheduling and system configuration for service
providers to estimate and gain performance optimization.

Hypothesis

1. Decentralized	Stateful	Broker	System	with	Ka;a	will	result	in	higher	throughput	than	
that	using	ZooKeeper	style	system	

Methodology

Our research will focus on a skeleton implementation of the Kafka message queue system. The
primary system will be built using Java. The programs will be running and tested on Linux
machines. The distributed communication between end nodes within the system will be
implemented using sockets with TCP connections.

Kafka message queue system requires three primary entities: Producers, Brokers and Consumers.

Producers: primary data contributors that produce messages and push them into the message
queue so data consumers can later retrieve them. Producers directly communicate with one of the
brokers in the queuing system and obtain information about message partitioning and split
outgoing data and store them to corresponding nodes within the queueing cloud. When storing
data, a topic must be established first and the consumers retrieve all data within that topic.

! 5

Brokers: primary storage nodes that consists the entire queueing network. They receive data sent
from data producers, store them then dispatch them when consumers make requests. In a
traditional Kafka broker system, a cluster of machines running ZooKeeper system will maintain
the coordination, data partitioning and consumer offset info processing and fault tolerance for all
broker nodes.
Consumers: usually request data as consumer groups. Consumers subscribe to a certain topic
and retrieve all available messages stored under that topic. Each consumer from a consumer
group will receive data from one or more brokers that store messages on the requested topic. The
number of consumers cannot be more than the number of partitions granted to that topic.

ZooKeeper Architecture: ZooKeeper acts merely as a node-data information table that dictates
1) which brokers messages under a certain topic are stored, 2) what are the current available
brokers, 3) if replica is on, which brokers are leaders and which are backups, 4) at what progress
(offsets) have consumers already gone through on each broker.

Decentralized Stateful Broker System: This is our proposed architecture to replace ZooKeeper
while increasing Kafka performance. Our design is to keep node coordination information copies
in each broker nodes instead of a centralized system such as ZooKeeper. This might increase the
time required to update those info as nodes enter and leave the system, but will spread out the
workload of a single centralized hub system, thereby reducing the amount of communication
necessary to accomplish the tasks.

Here is a comparison between the ZooKeeper paradigm and our stateful broker paradigm:

ZooKeeper Broker Information Table (independent of broker network):

Topic1 Partition1 Broker1 Consumer1.offset
Consumer2.offset

Partition2 Broker2 Consumer1.offset
Consumer2.offset

Partition3 Broker3 Consumer1.offset
Consumer2.offset

! 6

DSBS Information Tables (on broker1):

ZooKeeper collectively store all information about each consumer and their partition offsets on
each machine, which requires constant update from each broker nodes. When the system
simultaneously serves large number of consumer actions on thousands of broker nodes, the
influx of information can put heavy burden on the ZooKeeper system in service. On the other
hand, our stateful broker model keeps consumer offset information on each individual brokers,
without having to communicate with other system, thereby devoting all available bandwidth to
data storage from producer and data dispatching to consumers.

Experiment and Testing: we will use one Linux machine as a producer and one additional
Linux machine as consumer. Both machines will use multi-thread programing to simulate a
producer/consumer group in action instead of using multiple machines to achieve the similar
effect. A group of 3-5 broker nodes will be used as the central Kafka storage cluster. The
experiment will be divided into two group: test and control group. Test group system will be
running our proposed DSBS. All 3-5 broker nodes will be set up to individually have a copy of
network information. On the other hand, the control group system will be equipped with a
traditional Kafka style structure, with the 3-5 brokers acting only as storage and data senders,
while an independent machine act as a ZooKeeper node to manage all node and data
administrative information. Once both groups are correctly set up, we will use the producer
machine to send the same set of messages, with granularity of size from 1KB to 128KB, to test
the sending performance and receiving performance as the messages pass through the test group
brokers and the control group brokers then finally reach the consumer machine. The data we will
focus on will be throughput and latency. One data is collected, we will conduct statistical
analysis and compare the results between two systems.

Implementation

Our implementation consists of four major pieces of Java code: Producer, ZooKeeper Brokers,
DSBS Brokers and Consumers. When running data through each set of experiment, we keep the
Producers and the Consumers the same and ignorant of the broker system they are dealing with.

Our experiment also has two different scenarios: isolated production/consumption and streaming.
When doing isolated P/C, we have the Producer push data to the broker system without a
Consumer subscribing at the same time, record production performance, then start the Consumer

Topic1 Partition1 Broker1

Partition2 Broker2

Partition3 Broker3

Consumer1 Offset

Consumer2 Offset

Consumer3 Offset

! 7

process, then record its performance. Here is a workflow of our experiment when production/
consumption is separate:

!
When doing streaming experiment, we slightly change the order of events:

!
Our Producer and Consumer are able to customize the batch size of messages (the number of
messages/record transmitted in a single communication package). The Producer can also
customize the message size (1KB to 128 KB). The Consumer must specify the number of
records/messages consumed as the end of each testing session. All our testing session is set at
30,000 messages, regardless of message size.

Data Analysis and Discussion

Our experiment is divided into two distinct testing condition: isolated production/consumption
testing and streaming testing. When conducting the first scenario, we test data production and
consumption independently of one and the other, while the streaming scenario have production
and consumption process run at the same time, simulating a real life Kafka use case. We also
collected data in terms of both the number of records (messages) processed and by Kbps.

Start	up	
Broker	system

Producer	
produce	data

Record	
Producer	

performance

Consumer	
consume	data	
already	in	

Record	
Consumer	

performance

Start	up	Broker	
system

Consumer	
subscribe	to	an	
empty	topic	
and	wait

Producer	
produce	data	

while	consumer	
consumes	at	
the	same	time

Record	
Producer	

performance

Record	
Consumer	

performance

! 8

Production Throughput Results:

In terms of number of records processed, these are the test results:

! !
Figure 1 Figure 2

As we can observe, in both separated P/C (Production/Consumption) and Streaming scenarios, in
all message granularities, DSBS has higher per record production throughput than Kafka with
ZooKeeper. On the other hand, as data granularity increase, the per record production throughput
generally remain relatively stable.

In terms of Kbps:

! !
 Figure 3 Figure 4

The same trend between DSBS and ZooKeeper remains, while here we see that as message
granularity increase, the overall Kbps throughput also increases accordingly.

! 9

Consumption Throughput Results:

! !
Figure 5 Figure 6

Consumption per record results shows generally similar patterns: better performance with DSBS
as well as a stable per record throughput across message granularity.

! !
Figure 7 Figure 8

Consumption throughput by Kbps is also similar to production results: higher throughput with
DSBS and increasing performance with higher message size.

Here we see the basic trend, on both the production and consumption end, DSBS is out
performing ZooKeeper by roughly 2X to 3X as much throughput on both a separated P/C and
streaming scenario. Interestingly, we can also observe that message granularity does not seem to
affect the per record throughput of either system. No matter how big the message packages are
containing, our systems are simply delivering them indifferently at similar speed.

! 10

Performance with Varying Batch Size

In addition to what we have above, we also collected result when we keep the message size
constant (at 32 byte) while changing the processing batch size (the number of messages/record
transmitted in a single communication package).

Production:

! !

Figure 9 Figure 10

With batch size of 1 record, DSBS and Broker w/ ZooKeeper has similar performance. With
increasing batch size, DSBS is delivering higher throughput than Broker w/ZooKeeper on both
separate and stream scenarios. In addition, with higher batch size, throughput increases for both
systems on separate and stream scenarios.

Consumption:

! !

Figure 11 Figure 12

We can observe similar trend here when it comes to consumption performance. But on the
separated scenario, the difference of consumption throughput between DSBS and Broker w/
ZooKeeper is not obvious.

! 11

Conclusion and Discussion

The Decentralized Stateful Broker System manages to make improvements upon the existing
Kafka system with ZooKeeper support. Our hypothesis of DSBS having higher message
processing throughput is confirmed across all message granularities that we included in our
experiment. By holding both node management and offset information inside each broker instead
of storing them in a centralized ZooKeeper, we are able to minimize network traffic necessary to
provide fast and large scale distributed message queuing services. At a message batch size of 20,
we are able to improve overall throughput by roughly 2X to 3X.

Our experiment illustrates that higher batch size helps to deliver high throughput for both
systems. Our observation also confirms the result from the original Kafka paper, which is that a
batch delivery can significantly increase the throughput of a message queue. However, the
physical hardware limitation may come into play when the batch size reaching some certain
number.

In all our test cases, streaming throughput drops 30%~50% from its peak value (test separately
for production and consumption). The explanation can be that while handling streaming requests,
the possibility of synchronizations between different threads in the message queue significantly
increases when producing and consuming happens at the same time. Object lock is placed on the
partition which hinders multithread concurrency thus causes a longer latency.

Furthermore, our experiment, due to time and resource constraint, does not fully implement the
fault tolerance side of Kafka system. A decentralized node management system will have a
rougher time when the system scales up and start to fail from time to time during data
transmission. With full degree of replication and possibility of failure, the performance of DSBS
might not be as good as what we have in our experiment.

! 12

Bibliography

1. Patrick Hunt, Mahadev Konar, Flavio P. Junqueira and Menjamin Reed, ZooKeeper:
Wait-free coordination for Internet-scale systems, USENIX Annual Technical
Conference, 2010

2. Andrei F. Klein, Mihai Stefanescu, Alan Saied, Kurt Swkhoven, An Experimental
Comparison of ActiveMQ and OpenMQ Brokers in Asynchronous Cloud Environment,
Digital Information Processing and Communications (ICDIPC), Fifth International
Conference, Oct 2015

3. Stephen Skeirik, Rakesh B. Bobba, Jose Meseguer, Formal Analysis of Fault-tolerant
Group Key Management Using ZooKeeper, 13th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, 2013

4. Dharmit Patel, Faraj Khasib, Iman Sadooghi and Ioan Raicu, Toward In-Order and
Exactly-Once Delivery using Hierarchical Distributed Message Queues, Cluster, Cloud
and Grid Computing (CCGrid), 2014 14th IEEE/ACM International Symposium on,
Chicago, IL, 26-29 May 2014

5. Jay Kreps, Neha Narkhede, Jun Rao, Kafka: A Distributed Messaging System for Log
Processing, NetDB workshop, 2011

6. Zhenghe Wang, Wei Dai, Feng Wang, Hui Deng, Shoulin Wei, Xiaoli Zhang, Bo Liang,
Kafka and its Using in High-throughput and Reliable Message Distribution, Intelligent
Networks and Intelligent Systems (ICINIS), 8th International Conference, 2015

7. Jing Li, Yidong Cui and Yan Ma, Modeling Message Queueing Services with Reliability
Guarantee in Cloud Computing Environment Using Colored Petri Nets, Mathematical
Problems in Engineering, Volume 2015, Hindawi Publishing Corporation, pp. 20.

8. Valeriu Manuel Ionescu, The Analysis of the Performance of RabbitMQ and ActiveMQ,
RoEduNet International Conference – Networking in Education and Research, 2015

! 13

Appendices

UML: Kafka with ZooKeeper

!

! 14

UML: DSBS

!

! 15

ZooKeeper Performance Data:

!

!

DSBS Performance Data:

!

!

Varying Batch Size Data:

!

