Redesigning Kafka Message Queue System: Toward a
Decentralized Stateful Broker System

COEN241 — Cloud Computing
Professor Ming-Hwa Wang
June, 2017

Yiqiao Li, Yue Liu, Sen Zhang, Pengyu Zhu
Department of Computer Science and Engineering
Santa Clara University, CA

Introduction

Modern distributed systems are growing exponentially as far as performance and scale. The
sheer complexity and enormity of modern network made it extremely costly to manage node-to-
node communication with home-grown systems. Specialized messaging systems, or message
queue services, came into being to meet the ever increasing demand on the reliability and
performance of message delivery.

Message queue systems today have been and is still evolving from their initial versions, offering
mostly services of asynchronous, parallel and distributed capabilities. Most message queue
services are distributed themselves in order to keep up with the skyrocketing computing power of
their clients. As a system becomes distributed, the issues of inter-process communication, fault
tolerance, node organizations and data storing become the focal point of those trying to design a
better message queue.

Kafka, initially developed by LinkedIn in 2011, was designed with such performance that
shadowed most contemporary peers. It sacrificed some old message queue features such as
message ordering, to ensure high-speed message delivery. One of the most important task of
node coordination was delegated to Apache’s then highly available coordination system,
ZooKeeper. ZooKeeper was effective at its job, however, lacks the scalability as most Katka
systems today tend to grow much bigger than its earlier clients.

We believe that ZooKeeper cannot remain an integral part of Kafka if the message queue system
were to meet it potential. Kafka needs a more scalable and faster distributed coordination system
to breakthrough its already-impressive performance. Therefore, we would like to introduce our
alternative architecture for Kafka node coordination system: Decentralized Stateful Broker
System (DSBS). We expect that DSBS will offer a scalable and reliable solution to replace
ZooKeeper while offer Katka a boost in message delivery speed.

Theoretical bases and literature review

Some of the predecessors of Kafka was well within the radar of computer scientists. Earlier
message queue systems such as RabbitMQ, OpenMQ and ActiveMQ have been subjects of
comparison of researches. In 2015 a research named “An Experimental Comparison of
ActiveMQ and OpenMQ Brokers in Asynchronous Cloud Environment”, by Klein and
Stefanescu, conducted an experiment between ActiveMQ and OpenMQ in busy cloud
environment with high volume of traffics to compare their performances, message persistence
and scalability options. The researchers found that ActiveMQ turns out to be a faster broker in all
tested scenarios while also using less memory than OpenMQ.

A different group of researchers, in the same year, conducted experiments to compare ActiveMQ
and RabbitMQ, another popular message queue system at the time. Their results showed that
ActiveMQ is faster on message reception (the client sends the message to the broker), while
RabbitMQ is faster on producing messages (the client receiving messages from the broker).

Kafka was theoretically conceived in an open source project by LinkedIn in early 2011. The
paper first introduced how the new message system can be vastly powerful when it comes to
message queue performance. Kreps, Narkhede and Rao created Kafka originally as a tool to
handle large scale log processing. They introduced a number of unconventional system design to
make sure the new system run fast. Kafka outperformed RabbitMQ and ActiveMQ by many
times and is proven to consume less resources.

Another paper published in 2015 reexamined the performance and structure of Kafka and
proposed additional improvement despite its impressive capabilities. Researchers including
Zhenghe Wang and Wei Dai confirmed that Kafka’s superior capacity comparing to traditional
message queues, but proposed that 1) applications sharing the Kafka system should be able to
select processing priorities to reduce suboptimal resource allocations, 2) Kafka need to move
away from its heavy dependency on ZooKeeper for node management to increase reliability and
system integration, 3) authentication can be added as a feature.

As well known, Kafka currently relies on ZooKeeper, a distributed node coordination managing
system, to organize its client and broker information. ZooKeeper is an open source system
developed by Apache. Kafka research team used it out of convenience and its good performance.
ZooKeeper was first introduced in a research paper, ZooKeeper: Wait-free coordination for
Internet-scale systems, by Hunt, Konar, Junqueira and Reed in 2010. It incorporates elements
from group messaging, shared registers, and distributed lock services in a replicated, centralized
services. ZooKeeper interfaces has the wait-free aspects of shared registers with an event-driven
mechanism similar to cache invalidations of distributed files systems.

In 2013, another group of researchers, Skeirik, Bobba and Meseguer, utilized ZooKeeper in a
Security-as-a-Service (SecaaS) system. They developed a group key management system and
studied its rewriting logic model of a ZooKeeper based group key management service specified
in Maude. They focused on the system’s fault tolerance and its performance as it scales to service
larger grouping using the PVeStA statistical model checking tool.

Despite Kaftka and other traditional counterparts, researchers also aimed to study other
possibilities when it comes to message queue architectures. In a paper by, Patel, Khasib,
Sadooghi and Raicu, they introduced a new message queue system called Hierarchical
Distributed Message Queue (HDMQ). The HDMQ system uses a hierarchical structure to
organize storages nodes and a round robin algorithm to store and retrieve incoming messages to
preserve message ordering, which has been a missing feature in many parallel high-speed

message queues. They compared HDMQ across Amazon Simple Queue Service, Windows Azure
and I[ronMQ and discovered that HDMQ outperforms all of them in many aspects.

When evaluating cloud-based message queueing systems (CMQSs), numerous approaches to
measure system performance are available, there is no modeling approach for estimating and
analyzing performance of CMQSs. In a paper by Li, Cui and Ma, in 2015, they developed a
visibility-based modeling approach (VMA) for simulation model using colored Petri nets. Their
results reveal considerable insights into resource scheduling and system configuration for service
providers to estimate and gain performance optimization.

Hypothesis

1. Decentralized Stateful Broker System with Kafka will result in higher throughput than
that using ZooKeeper style system

Methodology

Our research will focus on a skeleton implementation of the Kafka message queue system. The
primary system will be built using Java. The programs will be running and tested on Linux
machines. The distributed communication between end nodes within the system will be
implemented using sockets with TCP connections.

Kafka message queue system requires three primary entities: Producers, Brokers and Consumers.

pr?du\c;c\r__ 7 /B_ryodu{:fr
“(pe K/ TT—p \\\Q
| BROKER 1 BROKER 2 BROKER 3
topicl/partl topicl/partl topic1/partl
/part2 /part2 /part2
topic2/partl topic2/partl topic2/partl
X A Vo
\ p p y 7
/ /

consumer

consumer

Producers: primary data contributors that produce messages and push them into the message
queue so data consumers can later retrieve them. Producers directly communicate with one of the
brokers in the queuing system and obtain information about message partitioning and split
outgoing data and store them to corresponding nodes within the queueing cloud. When storing
data, a topic must be established first and the consumers retrieve all data within that topic.

Brokers: primary storage nodes that consists the entire queueing network. They receive data sent
from data producers, store them then dispatch them when consumers make requests. In a
traditional Kafka broker system, a cluster of machines running ZooKeeper system will maintain
the coordination, data partitioning and consumer offset info processing and fault tolerance for all
broker nodes.

Consumers: usually request data as consumer groups. Consumers subscribe to a certain topic
and retrieve all available messages stored under that topic. Each consumer from a consumer
group will receive data from one or more brokers that store messages on the requested topic. The
number of consumers cannot be more than the number of partitions granted to that topic.

ZooKeeper Architecture: ZooKeeper acts merely as a node-data information table that dictates
1) which brokers messages under a certain topic are stored, 2) what are the current available
brokers, 3) if replica is on, which brokers are leaders and which are backups, 4) at what progress
(offsets) have consumers already gone through on each broker.

Decentralized Stateful Broker System: This is our proposed architecture to replace ZooKeeper
while increasing Kafka performance. Our design is to keep node coordination information copies
in each broker nodes instead of a centralized system such as ZooKeeper. This might increase the
time required to update those info as nodes enter and leave the system, but will spread out the
workload of a single centralized hub system, thereby reducing the amount of communication
necessary to accomplish the tasks.

Here is a comparison between the ZooKeeper paradigm and our stateful broker paradigm:

ZooKeeper Broker Information Table (independent of broker network):

Topicl | Partition]l | Brokerl | Consumerl.offset
Consumer?2.offset

Partition2 | Broker2 | Consumerl.offset
Consumer?.offset

Partition3 | Broker3 | Consumerl.offset
Consumer?.offset

DSBS Information Tables (on broker1):

Consumerl | Offset Topicl | Partitionl | Brokerl
Consumer?2 Offset Partition2 | Broker2
Consumer3 Offset Partition3 | Broker3

ZooKeeper collectively store all information about each consumer and their partition offsets on
each machine, which requires constant update from each broker nodes. When the system
simultaneously serves large number of consumer actions on thousands of broker nodes, the
influx of information can put heavy burden on the ZooKeeper system in service. On the other
hand, our stateful broker model keeps consumer offset information on each individual brokers,
without having to communicate with other system, thereby devoting all available bandwidth to
data storage from producer and data dispatching to consumers.

Experiment and Testing: we will use one Linux machine as a producer and one additional
Linux machine as consumer. Both machines will use multi-thread programing to simulate a
producer/consumer group in action instead of using multiple machines to achieve the similar
effect. A group of 3-5 broker nodes will be used as the central Kafka storage cluster. The
experiment will be divided into two group: test and control group. Test group system will be
running our proposed DSBS. All 3-5 broker nodes will be set up to individually have a copy of
network information. On the other hand, the control group system will be equipped with a
traditional Kafka style structure, with the 3-5 brokers acting only as storage and data senders,
while an independent machine act as a ZooKeeper node to manage all node and data
administrative information. Once both groups are correctly set up, we will use the producer
machine to send the same set of messages, with granularity of size from 1KB to 128KB, to test
the sending performance and receiving performance as the messages pass through the test group
brokers and the control group brokers then finally reach the consumer machine. The data we will
focus on will be throughput and latency. One data is collected, we will conduct statistical
analysis and compare the results between two systems.

Implementation

Our implementation consists of four major pieces of Java code: Producer, ZooKeeper Brokers,
DSBS Brokers and Consumers. When running data through each set of experiment, we keep the
Producers and the Consumers the same and ignorant of the broker system they are dealing with.

Our experiment also has two different scenarios: isolated production/consumption and streaming.
When doing isolated P/C, we have the Producer push data to the broker system without a
Consumer subscribing at the same time, record production performance, then start the Consumer

process, then record its performance. Here is a workflow of our experiment when production/
consumption is separate:

Consumer
consume data
already in

Record
Consumer
performance

Record
Producer
performance

Start up Producer
Broker system produce data y

Producer
produce data Record Record
while consumer Producer Consumer
consumes at performance performance
the same time

Consumer
Start up Broker subscribe to an
system empty topic y
and wait

Our Producer and Consumer are able to customize the batch size of messages (the number of
messages/record transmitted in a single communication package). The Producer can also
customize the message size (1KB to 128 KB). The Consumer must specify the number of
records/messages consumed as the end of each testing session. All our testing session is set at
30,000 messages, regardless of message size.

Data Analysis and Discussion

Our experiment is divided into two distinct testing condition: isolated production/consumption
testing and streaming testing. When conducting the first scenario, we test data production and
consumption independently of one and the other, while the streaming scenario have production
and consumption process run at the same time, simulating a real life Kafka use case. We also
collected data in terms of both the number of records (messages) processed and by Kbps.

Production Throughput Results:

In terms of number of records processed, these are the test results:

250,000

200,000

150,000

100,000

PRODUCTION BY RECORD (SEPARATE P/C)

BZooKeeper WDSES

213,536
— 205,402

191,205
178,361

8 16 32
Message Granularity

Figure 1

192,396

140,000

120,000

100,000

PRODUCTION BY RECORD (STREAM)

B ZooKeeper DSBS

115820
108,331

91678

—

E =
8 16 32 64
Message Granularity

Figure 2

126,280

_

128

As we can observe, in both separated P/C (Production/Consumption) and Streaming scenarios, in
all message granularities, DSBS has higher per record production throughput than Kafka with

ZooKeeper. On the other hand, as data granularity increase, the per record production throughput
generally remain relatively stable.

In terms of Kbps:

30,000

25,000

20,000

15,000

10,000

1427 1460 ==
R =
= ==

PRODUCTION BY KBPS (SEPARATE P/C)

®ZooKeeper B DSBS

13,146

6833

3,059

[

1

2 64
Message Granularity

Figure 3

=

24,627

18,000

16,000

14,000

12,000

10,000

8,000

6,000

4,000

2,000

PRODUCTION BY KBPS(STREAM)

B ZooKeeper BDSBS

1318
e B

16 32 64
Message Granularity

Figure 4

16,164

The same trend between DSBS and ZooKeeper remains, while here we see that as message
granularity increase, the overall Kbps throughput also increases accordingly.

Consumption Throughput Results:

CONSUMPTION BY RECORD/S (SEPARATE P/C)

250,000

211,804

192,758 193202

200,000

150,000

100,000

Message Granularity

Figure 5

90,000

80,000

70,000

60,000

50,000

40,000

30,000

20,000

10,000

CONSUMPTION BY RECORD/S (STREAM)

B ZooKeeper B DSBS

85203

72918

67,016
62,124

32
Message Granularity

Figure 6

Consumption per record results shows generally similar patterns: better performance with DSBS
as well as a stable per record throughput across message granularity.

CONSUMPTION BY KBPS (SEPARATE P/C)
BZooKeeper B DSBS

30,000

20000

15,000

12,365

10,000

529

2
Message Granularity

Figure 7

12,000

10,000

8,000

4,000

CONSUMPTION BY KBPS(STREAM)

HZooKeeper B DSBS

10906

4,289

2440

16 32 64 128
Message Granularity

Figure 8

Consumption throughput by Kbps is also similar to production results: higher throughput with
DSBS and increasing performance with higher message size.

Here we see the basic trend, on both the production and consumption end, DSBS is out
performing ZooKeeper by roughly 2X to 3X as much throughput on both a separated P/C and
streaming scenario. Interestingly, we can also observe that message granularity does not seem to
affect the per record throughput of either system. No matter how big the message packages are
containing, our systems are simply delivering them indifferently at similar speed.

10

Performance with Varying Batch Size
In addition to what we have above, we also collected result when we keep the message size
constant (at 32 byte) while changing the processing batch size (the number of messages/record

transmitted in a single communication package).

Production:

PRODUCTION BY RECORD/S PRODUCTION BY KBPS

HZooKeeper P/C MDSBSP/C M ZooKeeper Stream M DSBS Stream mZooKeeper P/C DSBS P/C mZooKeeper Stream = DSBS Stream

350000 12000

307,349

300000

9,835

10000

250000
8000
200000 184,901
5917
6000

150000

115,820
2000 3,706

100000

2000
50000

0

Figure 9 Figure 10

With batch size of 1 record, DSBS and Broker w/ ZooKeeper has similar performance. With
increasing batch size, DSBS is delivering higher throughput than Broker w/ZooKeeper on both
separate and stream scenarios. In addition, with higher batch size, throughput increases for both
systems on separate and stream scenarios.

Consumption:

CONSUMPTION BY RECORD/S CONSUMPTION BY KBPS
mZooKeeper P/C WDSBSP/C mZooKeeper Stream DSBS Stream
mZooKeeper P/C DSBSP/C MZooKeeper Stream DSBS Stream

4000
120000

106,197 104,572

3500 3,398 3346
100000

86,741
79,900

3000 2,776

80000 2,440

2500

60000 2000

1500
40000
1000
20000

11,027 11,461

8177 8467 500 33367 55 o

1 20

Message Batch Size Message Batch Size

Figure 11 Figure 12

We can observe similar trend here when it comes to consumption performance. But on the
separated scenario, the difference of consumption throughput between DSBS and Broker w/
ZooKeeper is not obvious.

11

Conclusion and Discussion

The Decentralized Stateful Broker System manages to make improvements upon the existing
Kafka system with ZooKeeper support. Our hypothesis of DSBS having higher message
processing throughput is confirmed across all message granularities that we included in our
experiment. By holding both node management and offset information inside each broker instead
of storing them in a centralized ZooKeeper, we are able to minimize network traffic necessary to
provide fast and large scale distributed message queuing services. At a message batch size of 20,
we are able to improve overall throughput by roughly 2X to 3X.

Our experiment illustrates that higher batch size helps to deliver high throughput for both
systems. Our observation also confirms the result from the original Kafka paper, which is that a
batch delivery can significantly increase the throughput of a message queue. However, the
physical hardware limitation may come into play when the batch size reaching some certain
number.

In all our test cases, streaming throughput drops 30%~50% from its peak value (test separately
for production and consumption). The explanation can be that while handling streaming requests,
the possibility of synchronizations between different threads in the message queue significantly
increases when producing and consuming happens at the same time. Object lock is placed on the
partition which hinders multithread concurrency thus causes a longer latency.

Furthermore, our experiment, due to time and resource constraint, does not fully implement the
fault tolerance side of Kafka system. A decentralized node management system will have a
rougher time when the system scales up and start to fail from time to time during data
transmission. With full degree of replication and possibility of failure, the performance of DSBS
might not be as good as what we have in our experiment.

12

Bibliography

1.

Patrick Hunt, Mahadev Konar, Flavio P. Junqueira and Menjamin Reed, ZooKeeper:
Wait-free coordination for Internet-scale systems, USENIX Annual Technical
Conference, 2010

Andrei F. Klein, Mihai Stefanescu, Alan Saied, Kurt Swkhoven, An Experimental
Comparison of ActiveMQ and OpenMQ Brokers in Asynchronous Cloud Environment,
Digital Information Processing and Communications (ICDIPC), Fifth International
Conference, Oct 2015

Stephen Skeirik, Rakesh B. Bobba, Jose Meseguer, Formal Analysis of Fault-tolerant
Group Key Management Using ZooKeeper, 13" IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, 2013

Dharmit Patel, Faraj Khasib, Iman Sadooghi and loan Raicu, Toward In-Order and
Exactly-Once Delivery using Hierarchical Distributed Message Queues, Cluster, Cloud
and Grid Computing (CCGrid), 2014 14th IEEE/ACM International Symposium on,
Chicago, IL, 26-29 May 2014

Jay Kreps, Neha Narkhede, Jun Rao, Kafka: A Distributed Messaging System for Log
Processing, NetDB workshop, 2011

Zhenghe Wang, Wei Dai, Feng Wang, Hui Deng, Shoulin Wei, Xiaoli Zhang, Bo Liang,
Kafka and its Using in High-throughput and Reliable Message Distribution, Intelligent
Networks and Intelligent Systems (ICINIS), 8t International Conference, 2015

Jing L1, Yidong Cui and Yan Ma, Modeling Message Queueing Services with Reliability
Guarantee in Cloud Computing Environment Using Colored Petri Nets, Mathematical
Problems in Engineering, Volume 2015, Hindawi Publishing Corporation, pp. 20.
Valeriu Manuel Ionescu, The Analysis of the Performance of RabbitMQ and ActiveMQ,
RoEduNet International Conference — Networking in Education and Research, 2015

13

Producer ZooKeeper
- bufferSize : int - ip : String Zookeeperworker,
- batchSize : int - port : int - sock : Socket
- topic : String TopicClient - brokerList : List<String[]> - in: ObjectinputStream

- topicTable : TopicTable

- out : ObjectOutputStream

- destList : List<String[]>

- recordSize : int + up() : void - srvSock : ServerSocket 0 : void
- workerList : List<ProducerWorker> - < (Y E Tl S
+ add(: void + assignTopic() : void
+ config() : void + up() : void + getPartition() : PartitionEntry
+ connectBroker() : void + getPartitions() : List<String[]>
+ produce() : void
ProducerWorker TopicTable PartitionEntry
- queue : ConcurrentLinkedQueue i - brokerldx : int Consumer
- sock : Socket - <m_:.m : _.._MnAvw: onEntry> - offsetMap : HashMap <int,int> .
ionN - - key : String - partitionNum : int = grouplD : int
- partitionNum : int p: _ batchSize : int
+ send() : void - startTimes : Long[]
- endTimes : Long[]
+ findStartTime() : void
+ findEndTime() : void
Broker
ZK2BAdd — Package —ip : String
- zKIp : String - ack : boolean Record - port:int
— ZkPort : int - type : enum ecor - srvSock : ServerSocket
- topic : String - topicMap : ConcurrentHashMap <String,ConcurrentHashMap<Integer,List<Record >>> ConsumerWorker

- value : String - zkip : String
- zkPort : int - record_cnt_limit
2 - thread : Thread
+ run(: void - threadName : String
E - topic : String
— - grouplD : int
— batchSize : int

- pack : P2BData printDataBatch() : void

zK2BTopic /[/ - 1D : int
|
m P! / / C2BUp + run(: voi
- topic : String _ Sroup\D : int + start() : void
onEntry : _uw:KVQM‘_S\ _ 4 _u_nn tring + join() : void
- offsetLidt : List<String[]> BrokerWorker BrokerP2BDataProcessor w
- sock : Socket H
|\

+ processC2BData() : void

P2BUp \ / C2BData + run() : void + run() : void
: String - dala : List<Record>
- partitionList : Lift< String[]> - togic : String
\\ - offset : int
- groyplD : int
P2BData - batchSize : int

- data : List<Record>
- topic : String /
- partitionNum : int

B2ZKOffset

- groupld : int

- topic : String

- partitionNum : int
- offset : int

Appendices

Kafka with ZooKeeper

UML

14

: DSBS

UML

Producer

- bufferSize : int

- batchSize : int

String

- destList : List<String[]>
recordSize : int

workList : List<ProducerWorker>

up() : void

config() : void

setDestList() : void

produce() : void

createWorker(batchSize : int, ip : String, port : int) : void

++ 4+ +

ProducerWorker

- queue : ConcurrentLinkedQueue
- sock : Socket
- partitionNum : int

+ send() : void

InfoMap PartitionEntry

- brokerldx : int
- offsetMap : HashMap <int,int>
- partitionNum : int

- value : List<PartitionEntry>
- key : String

B2BAdd
- brokerList : List<String>
Package
- ip : String Record
- port : int —] - topic : String
- ack : boolean - value : St
- type : enum
B2BInfo EOS
- infoMap : Map
P2BUp \ c28Up
- topic : String - group int
- partitionList : List<Strifig[]> - topic : §tring
- offsetl : List<String[]>
P2BD \
ata C2BData
- momﬁm R o - data : List<Record>
pic : String - topic : Strin
- partitionNum : int _ Bl 9 int

- grouplD
- batchSize : int

TopicClient
+ up() : void
DSBS Consumer
- grouplD t
- _uo.:. it - batchSize : int
- dataMap : ConcurrentHashMap <String,ConcurrentHashMap<Integer,List<Record>>> H Mm%ﬂ.__.ﬁmmmm.”_._wﬂﬂmm_:
- brokerlList : List<String[]> =
- infoMap : ConcurrentHashMap<Integer,List<Record>> + w_:amﬁm:d..:mc : void
+ createlnfoMap() : void gafindEndTimeOFivoid
+ createWorker(sock : Socket) : void
+ add() : void
ConsumerWorker
- record_cnt_limit : int
DSBSServer DSBSClient - thread : Thread
- ip : String - threadName : String
- port : int + setup() : void - topic : String
- grouplD : int
- batchSize
— - ID : int
DSBSServerWorker DSBSP2BDataWorker DSBSUtility + run0) - void
ientSocket : Socket + run0 : void + parse() : void H m.m&o.” <on__g
+ run(: void + isValidParenthesis() : void b _nﬂ”wciﬁoﬁ_v - void
+ DSBSC2BDataHandler() : void + printPartitioninfo() : void
+ printDataBatch() : void

DSBSParserEntry

- cmdName : String
- listOfIP : List<String>

- listOfPort : List<String>

ZooKeeper Performance Data:

15

Message Size 8 Byte 16 Byte
try try1 try 2 try3 try 4 avg tryl try 2 try 3 try 4 avg
production P 67,391 86,592 95,384 85,635 83,751 107,266 66,523 94,224 96,875 91,222
Split P/C kbps 539 693 763 685 670 1,716 1,064 1,508 1,550 1,460
Consumption rps 54,844 59,405 75,000 75,187 66,109 84,745 69,284 82,644 77,319 78,498
kbps 439 475 600 601 529 1,356 1,109 1,322 1,237 1,256
production S 30,571 35,591 40,522 30,907 34,398 27,145 33,548 38,895 32,224 32,953
Streaming kbps 245 285 324 247 275 434 537 622 516 527
Consumption rps 32,258 33,039 47,923 34,443 36,916 33,745 39,893 36,945 35,087 36,418
kbps 258 264 383 276 295 540 638 591 561 583
32 Byte 64 Byte 128 Byte
try 1 try 2 try 3 try 4 avg try 1 try 2 try 3 try 4 avg try 1 try 2 try 3 try 4 avg
56,057 66,954 61,630 69,819 63,615 97,484 104,729 69,351 107,266 94,708 94,224 97,484 100,000 96,573 97,070
1,794 2,143 1,972 2,234 2,036 6,239 6,703 4,438 6,865 6,061 12,061 12,478 12,800 12,361 12,425
74,441 77,922 85,714 81,521 79,900 81,521 81,081 78,534 80,862 80,500 74,257 81,081 74,812 69,284 74,859
2,382 2,494 2,743 2,609 2,557 5,217 5,189 5,026 5,175 5,152 9,505 10,378 9,576 8,868 9,582
26,701 33,405 29,495 25,493 28,774 33,049 38,271 33,333 39,440 36,023 31,762 29,779 32,597 32,494 31,658
854 1,069 944 816 921 2,115 2,449 2,133 2,524 2,305 4,066 3,812 4,172 4,159 4,052
30,120 38,461 33,898 27,472 32,488 34,246 39,577 36,809 42,735 38,342 36,719 33,898 34,562 39,577 36,189
964 1,231 1,085 879 1,040 2,192 2,533 2,356 2,735 2,454 4,700 4,339 4,424 5,066 4,632
DSBS Performance Data:
Message Size 8 Byte 16 Byte
try try 1 try 2 try 3 try 4 avg try 1 try 2 try 3 try 4 avg
Production rps 212,328 142,201 127,572 231,343 178,361 181,286 223,021 170,329 190,184 191,205
Split P/C kbps 1,699 1,138 1,021 1,851 1,427 2,901 3,568 2,725 3,043 3,059
Consumption rps 214,285 236,220 208,333 204,081 215,730 192,307 201,342 198,675 209,790 200,529
kbps 1,714 1,890 1,667 1,633 1,726 3,077 3,221 3,179 3,357 3,208
Production ps 135,371 78,085 110,714 109,154 108,331 45,454 50,324 104,026 128,630 82,109
Streaming kbps 1,083 625 886 873 867 727 805 1,664 2,058 1,314
Consumption rps 65,502 70,257 83,798 72,115 72,918 45,871 47,694 75,566 79,365 62,124
kbps 524 562 670 577 583 734 763 1,209 1,270 994
32 Byte 64 Byte 128 Byte
try 1 try 2 try 3 try 4 avg try 1 try 2 try 3 try 4 avg try 1 try 2 try 3 try 4 avg
208,053 260,504 200,000 185,628 213,546 221,428 196,202 190,184 213,793 205,402 180,232 201,298 171,270 216,783 192,396
6,658 8,336 6,400 5,940 6,833 14,171 12,557 12,172 13,683 13,146 23,070 25,766 21,923 27,748 24,627
178,571 198,675 191,082 202,702 192,758 185,185 192,307 184,049 211,267 193,202 230,769 215,827 186,335 214,285 211,804
5,714 6,358 6,115 6,486 6,168 11,852 12,308 11,779 13,521 12,365 29,538 27,626 23,851 27,428 27,111
111,913 105,084 110,320 135,964 115,820 135,371 28,518 120,155 82,666 91,678 140,909 128,099 125,000 111,111 126,280
3,581 3,363 3,530 4,351 3,706 8,664 1,825 7,690 5,291 5,867 18,036 16,397 16,000 14,222 16,164
73,170 78,534 68,493 84,745 76,236 82,417 29,013 82,191 74,441 67,016 82,417 73,170 108,695 76,530 85,203
2,341 2,513 2,192 2,712 2,440 5,275 1,857 5,260 4,764 4,289 10,549 9,366 13,913 9,796 10,906
Varying Batch Size Data:
1 L
| !
i
|
Batch Size | 1 20 ! 50
try 1 try 2 }try 3 try4 avg try 1 try2 try3 try 4 lavg try 1 try2 try3 try4 avg
split | Production ™S 17,613 0221) 20000 19,795 19,407| 208,053 260,504 200,000 185,628 213,546 326315 303,921 303,921 295238 307,349
kbp: 564 647, 640 6337 621 6,658 8,336 6,400 s0a0f 6833 10,442 9,725 9,725 9,448 9,835
DSBS Fonsumatior PS 10,522 11,355, 11,503 12,463 11,461 80,357 89,404 85987 91,216/ 86741 130,434 99,337 80,213 108,303 104,572
kbps 337 3631 368 399" 367 2,571 2,861 2,752 29197 2,776 4,174 3,179 2,567 3,466 3,346
production TP 10,143 12,762 11,405 12,355 11,666 111,913 105084 110,320 135964' 115820 250,000 158,974 198717 131,914 184,901
Streaming kbps 325 408/ 365 395" 373 3,581 3,363 3,530 43517 3,706 8,000 5,087 6,359 4,221 5,917
Fonsumatior PS 7,579 9,025/ 8,408 8,854 8467| 73170 78,534 68,493 84,745, 76236| 91463 110,294 86207 86538 93,625
kbps 243 289, 269 283" 271 2,341 2,513 2,192 2,712 2,440 2,927 3,529 2,759 2,769 2,996
Batch Size 1 20) 50
tryl try2 \'try 3 try4 avg tryl try2 try3 try4 : avg tryl try2 try3 try4 avg
split | Production ™S 17,867 18822) 20502 20,394 19,396| 56,057 66954 61,630 69,8191 63,615 250,505 255670 263,830 255670 256,418|
kbps 572 6021 656 653" 621 1,794 2,143 1,972 22347 2,036 8,016 8,181 8,443 8,181 8,205
Broker Fonsumptior 5 10067 10377, 11,677 11,985 11,027| 74,441 77,922 85714 815211 79,900| 98985 104,839 110,795 110,169 106,197
kbps 322 332 374 384 353 2,382 2,494 2,743 2,609/ 2,557 3,168 335 3545 3525 3,398
production TP 12,081 10,336/ 12,365 12,606 11,847 26,701 33405 29,495 25493 28,774 125888 211,966 125252 163,158 156,566
Streaming kbps 387 331, 396 403" 379 854 1,069 944 816 921 4,028 6,783 4,008 5,221 5,010
Fonsumptior 5 8,513 7,087 8,571 8,537 8177| 30120 38461 33898 27,472] 32488 70532 106,132 82,418 79225 84,577
kbps 272 227, 274 213" 262 964 1,231 1,085 879”7 1,040 2,257 3,396 2,637 2,535 2,706
i

