

Best Practices and Tradeoffs in
Microservice Design

Andy Cheong, Christopher Teubert

Team 1

COEN 241: Introduction to Cloud Computing

Term Project, Spring 2018

Santa Clara University

Preface
This document serves as the official project deliverable for COEN 241 Team 1’s
term-project. This document described the scope, intentions, work, and results for Team
1’s term project for the intended audience, Professor Ming-Hwa Wang. The authors
hope that, upon reviewing this document, Professor Wang will have a detailed
understanding of the conducted work.

2

Acknowledgements
The authors of this proposal thank Professor Ming-Hwa Wang for his guidance and
support during the formation of this project. They further thank him for his flexibility in
allowing one of the authors to present his portion of the proposal remotely. Without this
flexibility, he would not be able to complete his studies while working full-time.

3

Table of Contents
Preface 2

Acknowledgements 3

Table of Contents 4

Table of Tables 7

Table of Figures 8

1. Introduction 9
1.1. Objective 9
1.2. Problem 9
1.3. Relevance 9
1.4. Shortcomings of Previous Solutions 10
1.5. Strengths of Approach 10
1.6. Problem Statement 10
1.7. Investigation Scope 11

2. Theoretical Basis 12
2.1. Problem Definition 12
2.2. Theoretical Background 16
2.3. Related Research 16

Bogner Model 17
Wen Model 17
McCall Model 19
Boehm Model 20
Dromey Model 21
ISO 25010 Model 22

2.4. Advantages and Disadvantages 24
2.5. Solution Definition 26
2.6. Solution Unique Elements 28
2.7. Solution Strengths 28

3. Hypothesis 29

4. Methodology 30
4.1. Generating and Collecting Input Data 30

4

Knowledge Survey Activity 31
Microservice Design and Development Activity 31

4.2. How to solve the problem 31
Algorithm Design 32
Language Used 34
Tools Used 34

4.3. How to Generate Output 34
4.4. How to Test Against Hypothesis 35

5. Implementation 36
5.1. Quality Model 36

Reusability 38
Flexibility 39
Maintainability 39
Estimating Quality 41

5.2 Software Design 41
Goals 41
Design 42
Estimate Generator 44
Work Recorder 45
Task Report Generator 48

6. Data Analysis and Discussion 51
6.1. Output Generation 51

Developer Observations 51
Quality Assessment of Example Services 52

6.2. Output Analysis 58
6.3. Compare Output against Hypothesis 58
6.4. Discussion 59

7. Conclusions and Recommendations 60
7.1. Summary and Conclusions 60
7.2. Recommendations for Future Studies 60

Bibliography 61

Appendix A: Glossary of Terms 63

Appendix B: ReadMe 65
Test-Microservices 65

5

Getting Started 65
Starting the microservices 65

Appendix C: Project Source Code 66
setup_env.sh 66
requirements.txt 66
startup.sh 66

Appendix D: Estimate Generator 67
__init__.py 67
cocomo.py 68
org_factor_generator.py 70

Appendix E: Work Recorder 73
__init__.py 73
database.py 75

Appendix F: Work Report Generator Source Code 78
__init__.py 78

Appendix G: Models 79
user.py 79
task.py 80
task_report.py 82

6

Table of Tables
Table 2.3.1: Summary of Past Research 16
Table 2.4.1: Advantages and Disadvantages of Past Research 24
Table 2.4.2: Comparison of Basic Models (Miguel, 2014) 26
Table 5.1.1: Microservice Quality Metrics 37
Table 5.2.1: Microservice Port assignment 43
Table 5.2.2: Estimate Generator REST API Specification 45
Table 5.2.3: Work Recorder REST API Specification 47
Table 5.2.4: Work Report Generator REST API Specification 49
Table 6.1.1: Quality Assessment for Estimate Generator 52
Table 6.1.2: Quality Assessment for Work Recorder 53
Table 6.1.3: Quality Assessment for Work Report Generator 54

7

Table of Figures
Figure 2.1.1: General Microservice Architecture (Wasson, Celarier, 2017) 12
Figure 2.1.2: Container Example (Kshirsagar, 2016) 14
Figure 2.1.3: RESTful API Architecture (Kryvtsov, 2016) 15
Figure 2.3.1: Maintainability Model for Services (Bogner, 2017) 17
Figure 2.3.2: Evaluating Model of SaaS Service (Wen, 2013) 18
Figure 2.3.3: Quality Model of SaaS Service (Wen, 2013) 19
Figure 2.3.4: McCall Quality Model (Miguel, 2014) 20
Figure 2.3.5: Boehm Model (Dubey, 2012) 21
Figure 2.3.6: Dromey Model (Miguel, 2014) 22
Figure 2.3.7: Product Quality - ISO/IEC 25010 (Universidade de São Paulo, 2011) 23
Figure 2.3.8: Use Quality - ISO/IEC 25010 (Universidade de São Paulo, 2011) 24
Figure 2.5.1: Quality Model Layers 27
Figure 4.1: Team Gantt Chart 30
Figure 4.2.1: Impact Tracking Service Context 33
Figure 4.2.2: Time Tracking Service Context 34
Figure 5.1.1: Microservice Quality Model 36
Figure 5.2.1: Overall Use Case Diagram 42
Figure 5.2.2: Time Tracking and Task Estimation Service Design 42
Figure 5.2.3: Estimate Generator Use Case Diagram 44
Figure 5.2.4: Estimate Generator Context Diagram 44
Figure 5.2.5: Work Recorder Use Case Diagram 45
Figure 5.2.6: Work Recorder Context Diagram 46
Figure 5.2.7: Work Recorder Design 48
Figure 5.2.8: Use Case Diagram 48
Figure 5.2.9: Context Diagram for Task Report Generator 49
Figure 5.2.10: Work Report Generator Design 50

8

1. Introduction
This chapter describes the introduction for the project. It starts with the project objective
in Section 1.1. Section 1.2 defines the problem that microservices have. Then in Section
1.3, it describes how this topic has relevance to cloud computing. Section 1.4 describes
the shortcomings of previous solutions and helps transition to Section 1.5 which defines
the strengths of the approach of this paper. The problem statement states the issue that
needs to be addressed and it defined in Section 1.6 and in Section 1.7 the paper will
describe the area or scope of investigation that will solve the problem statement.

1.1. Objective
The objective of this paper is to design a quality model in microservices that achieves
service reusability, flexibility, and maintainability. The design will provide a standard that
others will be able to follow when designing microservices so that it can provide the best
quality in use.

1. Service Reusability
a. Improves productivity

2. Service Flexibility
a. Tool independent

3. Maintainability
a. Performance, availability, reliability

1.2. Problem
This project is about designing a quality model standard for microservices. Currently
there is no universal standard for quality in microservices when it comes to designing
them. This issue allows anyone to design a microservice to their own discretion without
abading to any quality standards so each microservice differ in quality. This mean that
their service reusability, flexibility, and maintainability could be compromised. A quality
model standard will allow all microservices to have the same quality.

1.3. Relevance
The emergence of cloud computing and its surrounding technology has dictated the
business models of many organization to adopt the technology to survive in the cloud
era. Microservices allows organizations to quickly deploy products into the market
through continuous delivery and internal development environments for employers to

9

deliver projects. It is important for microservices to be designed correctly so it can
achieve its use.

1.4. Shortcomings of Previous Solutions
The reason the team is creating a quality model standard for microservices is because
currently there aren’t any. Through rigorous research to find an acceptable quality
model, we have found several quality models but we have determined that they do not
meet the standard for quality assurance.The shortcomings of other solutions are that
they only cover a certain aspect of quality or they are not targeted towards
microservices.

Previous solutions in quality model

● Bogner Maintainability Quality Model
● Wen Model
● McCall Model
● Boehm Model
● Dromey Model
● ISO 25010 Model

Section 2.3 will describe in more depth the above solutions and show their advantages
and disadvantages.

1.5. Strengths of Approach
This paper will target different microservices in production and experimental and
determine the best practices based on their implementation. The strength of this
approach is the ability to look at how other teams have used microservices and
determine where they have exceeded or failed in providing a quality model. By looking
at different microservices it will create trends in quality and will help create a set of best
practices.

1.6. Problem Statement
In today's world almost everyone has been impacted by cloud computing either by using
it as data storage, instant access of data from anywhere and the use of applications.
This has been made possible with the growth in technology and internet access
including microservices. This high impact that cloud computing has made on the world,
it is important that all microservices provides high quality service to its users.

10

There are so many microservices out in production that quality has been compromised
in at least one product. As people continue to design and develop more microservices
quality will keep diminishing and affect the integrity of the products.

1.7. Investigation Scope
This paper will be looking into different microservices that are currently in production
and determine where each microservice fails or exceeds in providing quality in service
reusability, flexibility, and maintainability.

In conclusion, this chapter described the objective of the paper and the problem that
microservices has. It also described the relevance it has to cloud computing. Then this
chapter described the shortcomings of previous solutions, defined the strengths of the
new approach and stated the issue this paper is addressing through the problem
statement. Lastly, it described the area or scope of investigation that will solve the issue
in the problem statement. The next chapter describes in depth the problem and
background of the topic, and the proposed solution.

11

2. Theoretical Basis
This chapter describes the theoretical basis for the project. It starts with a definition of
the problem (Section 2.1). Section 2.2 defines the theoretical background for the work.
Related Research and the advantages and disadvantages of each work are described
in Sections 2.3 and 2.4, respectively. The following sections describe the author’s
solution, what makes it unique, and its strengths.

2.1. Problem Definition
Microservices is a type of service oriented architecture in which the application is
composed of loosely coupled services. Based on its definition a microservice needs to
be small, independent processes that communicate with each other using
language-agnostic APIs. This approach lets microservices to be modular, reusable and
flexible.

The figure below, Figure 2.1.1, shows a general microservice architecture.

Figure 2.1.1: General Microservice Architecture (Wasson, Celarier, 2017)

The basic patterns in microservices that created modularity, reusability, and flexibility
are:

Location independence pattern

12

● Other components can discover it within a directory and leverage it through the
late binding process

● Dynamic Discovery

Communications independence pattern

● All components can talk to each other, no matter how they communicate at the
interface or protocol levels

Security independence pattern

● Trust the security of each component

Instance independence patterns

● Support component-to-component communications using both a synchronous
and an asynchronous model

● Not require that the other component be in any particular state before receiving
the request or message

There are many use cases for microservices and this section will describe two of the
main uses. The first use case of microservices is inside an organization and the second
use case is in a client-server model.

In the first use case, microservices is be used to assist DevOps in organization,
increase productivity for developers in product development and quality for customers.

DevOps can use microservices can be used to quickly deploy systems and
development environment for teams in agile development. This use of microservices is
done through container technology and it minimizes environment issues as all the
development environments would be identical and contains the correct versions of tools
and software. A typical container would be a virtual machine with an operating system
installed, development IDE, tools and languages that can be deployed for an employer
when needed for development.

The figure below, figure 2.1.2, shows a container example of what it contains for a
development environment that DevOps can deploy quickly.

13

Figure 2.1.2: Container Example (Kshirsagar, 2016)

The second use of microservices is in a client-server model where the user can access
information based on the application that they are using. The client would be a user
interface that mainly displays information in a user friendly manner and the server would
be doing all the computational work to provide the requested information from the client.
This can be achieved through an RESTful API (Representational State Transfer) where
the client sends requests to a server, the server does the work requested by the client
and sends back the results to the client. To create these type of products, developers
create application programming interface (API) which then they can develop the product
with it or even provide the API to the public to allow external developers to use the API
and develop their own products.

The figure below, figure 2.1.3, shows an architectural example on how a RESTful API is
designed to follow the client-server model for users

14

Figure 2.1.3: RESTful API Architecture (Kryvtsov, 2016)

It is important for microservices to be designed correctly the use cases affects both
organizations and users. Microservices in a cloud environment allows the client to be
lightweight since the server is doing all the computational work. An organization can
have a broader customer base with a microservice product as this allows the customers
initial investment to be minimal since all they would need is a device with a screen and
has access to the internet. Customers want to be able to access data and use the
product instantaneously so it is important the the microservice is implemented correctly.

For developers microservices allows a product to be modular and allows continuous
delivery since microservices should be independent components.

Key factors in microservice design

● Driven by business need or capability
○ The business need will determine the functionality of the microservice.

● Size of application
○ Determines the scalability of the microservice.

● Size of development team
○ Determines the feasibility of completing the product.

● Database design
○ Determines the optimization and quality of the microservice.

● Reuse
○ Create productivity and efficiency in development.

15

2.2. Theoretical Background
IEEE’s Draft Standard for Software Quality Assurance Processes defines software
quality as “the degree to which a software product meets established requirements;
however, quality depends upon the degree to which those established requirements
accurately represent stakeholder needs, wants, and expectations” (IEEE, 2012) and the
IEEE Glossary of Terms defined quality as “the degree to which a system, component,
or process meets the specified requirements” (IEEE Standards Coordinating
Committee, 1999). This definition of quality is highly personal to the application for
which the software is developed.

There are, however, a set of non-functional requirements (NFR’s) that is common
between most software. There is a larger and more personalized set of NFR’s that are
common between microservices. These NFR’s often cannot be directly tested (unlike
most functional requirements), so, in its place, a set of metrics must be established that
assess the degree to which that NFR is met to a reasonable degree. These common
NFR’s and metrics define a quality model.

2.3. Related Research
There have been a number of other efforts to define quality models for software in
general and some limited efforts to define quality models for services. Some of this
related research is summarized in Table 2.3.1. Some key points of these papers are
highlighted in greater detail below the table.

Table 2.3.1: Related Research
Related Research Summary

Bogner
Maintainability
Quality Model
(Bogner, 2017)

A service software quality model towards the non-functional
requirement of maintainability. The authors present a layered
logical-decomposition based model with quantifiable metrics.

Wen Quality Model
(Wen, 2013),
(Banerjee, 2014)

A general software quality model for Software As-A-Service (SaaS)
applications. The author’s software quality model provides multiple
discrete levels of quality, and relates it back to the classification of the
SaaS

McCall Model
(McCall, 1977)

A general software quality model, decomposed from three
perspectives, into features and metrics. Quality is assessed through
answering yes/no questions.

16

Boehm Model
(Boehm, 1978)

Highly-cited software quality model where high-level factors are
decomposed from the concept of quality.

Dromey Model
(Dromey, 1995)

A theoretical perspective-based general multi-layer software quality
model

ISO 25011 Model
(ISO, 2011)

This standard describes the product quality “characteristics” (i.e.,
NFRs). These characteristics are divided into “sub-characteristics”.

Bogner Model
Bogner, et al. (Bogner, 2017) present a service software quality model towards the
non-functional requirement of maintainability. The authors present a layered
logical-decomposition based model with quantifiable metrics. Their quality model is
based on past research and professional experience. The final quality model is included
below in Figure 2.3.1.

Figure 2.3.1: Maintainability Model for Services (Bogner, 2017)

Wen Model
Wen, et al. (Wen, 2013) present a general software quality model for Software
As-A-Service (SaaS) applications. The author’s software quality model divides SaaS
services into four discrete levels: Basic SaaS, Standard SaaS, Optimized SaaS, and
Integrated SaaS. Each of these SaaS level has a set of quality metrics that it must
meet. This model is shown in Figure 2.3.2.

17

Figure 2.3.2: Evaluating Model of SaaS Service (Wen, 2013)

This model decomposes quality into a number of metrics. These metrics fall under a the
following factors:

1. Security: ​Security is considered a primary concern for the customer, and is
therefore included by the author of this work as a high-level category. They
decompose security further into five categories: Customer Security, Application
Security, Network Security, Data Security, and Management Security. Each of
these categories are further decomposed into metrics.

2. Quality of Service (QoS): ​The authors divide QoS into three categories: Quality
of Platform (QoP), Quality of Application (QoA), and Quality of Experience (QoE).
Each of these categories are further decomposed into metrics.

18

3. Software Quality Metrics: ​The final quality, software quality metrics, refers to
the general quality of the software. Here the authors use the model specified in
ISO/IEC 25010:2011, reviewed later in this section.

Each of these metrics decomposed from the factor apply to a specific component level
(SaaS Platform, Application, or Customer). The metric mapping is illustrated in Figure
2.3.3.

Figure 2.3.3: Quality Model of SaaS Service (Wen, 2013)

Miguel, et al. provide a summary of popular software quality models. These models are
described below.

McCall Model
The McCall model, also known as the General Electric (GE) Model also used logical
decomposition to define software features and metrics. The authors see software quality
as being with respect to the perspective of a stakeholder, so they chose to decompose
from three perspectives: Product Operation, Product Review, and Product Transition.
These were then decomposed into features, which were decomposed into metrics. This
decomposition can be seen in Figure 2.3.4, below.

19

Figure 2.3.4: McCall Quality Model (Miguel, 2014)

Each metric from this model has a yes/no question associated with it. Answering these
yes/no questions provides an estimate of software quality.

Boehm Model
The Boehm Model is a highly-cited software quality model based on logical
decomposition from the general concept of quality. Quality is decomposed into three
high-level factors: Portability, Utility, and Maintainability. These are decomposed into
features where are decomposed into metrics. Figure 2.3.5 shows this model.

20

Figure 2.3.5: Boehm Model (Dubey, 2012)

Dromey Model
Like the McCall Model, the Dromey Model asserts that quality is a function of
perspective. As such it begins logical decomposition with the concept of
implementation​. Implementation is decomposed into three characteristics, which are
decomposed into sub-characteristics. These sub characteristics are never decomposed
to a level where it can be used in practice, but this model serves the basis of others.
The model is included below in Figure 2.3.6.

21

Figure 2.3.6: Dromey Model (Miguel, 2014)

ISO 25010 Model
In 2011, the International Organization for Standardization (ISO) released an updated
Standard on System and software quality models (ISO, 2011). This was an update of
the ISO 9126 Model, which was based on the Dromey and Boehm Models (Miguel,
2014). This standard divides quality into product (See Figure 2.3.7) and use (See Figure
2.3.8) quality categories, each further decomposed into characteristics and
sub-characteristics.

22

Figure 2.3.7: Product Quality - ISO/IEC 25010 (Universidade de São Paulo, 2011)

Product Quality (Figure 2.3.7, above) is divided into eight “characteristics” these
characteristics closely map to what are being called NFR’s in this document (See Figure
2.5.1). These “characteristics are further divided into 31 sub-characteristics which map
to what is called properties in this document.

Similarly, Use quality is divided into five characteristics, and 11 sub-characteristics.
Each of these are defined in Figure 2.3.8.

23

Figure 2.3.8: Use Quality - ISO/IEC 25010 (Universidade de São Paulo, 2011)

Each of these related research products provide their own interpretation of software
quality. The advantages and disadvantages of these are explored in Section 2.4. This
will serve the basis of our initial quality model, as described in Chapter 4.

2.4. Advantages and Disadvantages
The advantages and disadvantages of the Software Quality Models summarized in
Section 2.3 are explored in Table 2.4.1.

Table 2.4.1: Advantages and Disadvantages of Past Research
Related Research Advantages Disadvantages

Bogner
Maintainability
Quality Model
(Bogner, 2017)

- Define a software quality model for
services and microservices
- Used a logical decomposition,
layered approach
- Defined meaningful quantifiable
metrics
- Detailed approach

- Only consider maintainability
- No experimental analysis, only
based on literature survey and
intuition of authors
- Missing testability metrics, which
is considered an important part of
maintainability

Wen Model (Wen,
2013), (Banerjee,
2014)

- Explicitly targeting services
- Includes full cross-section of quality
metrics

- Metrics are not quantifiable
- Does not go into great detail on
the “software quality” metric,
which is of most interest to us.

24

McCall Model
(McCall, 1977)

- Considers relationships between
quality characteristics and metrics
(Miguel, 2014)
- Includes full cross-section of quality
metrics

- Binary- based on answers of
yes/no. No resolution of quality
- Does not consider functionality
- Not targeted towards services or
microservices

Boehm Model
(Boehm, 1978)

- Includes full cross-section of quality
metrics
- Additional layers to decomposition

- Not targeted towards services or
microservices

Dromey Model
(Dromey, 1995)

- Based in concept of perspective - Not targeted towards services or
microservices
- Theoretical model- no
discussion of application

ISO 25010 Model
(ISO, 2011)

- Includes full cross-section of quality
metrics
- Thorough and complete
- Built on the knowledge of
practitioners

- Not targeted towards services or
microservices

Miguel, et al. provide a summary of the characteristic (NFR) covered by each of the
models they summarized. These are included in Table 2.4.2, below

25

Table 2.4.2: Comparison of Basic Models (Miguel, 2014)

2.5. Solution Definition
The solution in this effort will consist of a quality model for microservices and a
microservice demonstration. This quality model will be developed from combined
published observations of software engineers and through the author’s own
investigation and intuition. The solution development process is described further in
Chapter 4.

26

We propose using a logical decomposition approach like those used in (Bogner, 2017).
The top layer of the decomposition tree is the common non-functional requirements
most important to microservice developers: Reusability, Flexibility, and Maintainability.
The second layer is a set of properties that fulfill those NFRs. The final layer is a set of
metrics. Each metric is unique and quantifiable.

Figure 2.5.1: Quality Model Layers

Assessing the quality of a solution is done by combining the metric scores. Each metric
for a property is combined and divided by the number of properties to get a property
score. This is repeated for each NFR, and finally for the final quality score, as seen in
the below pseudocode:

Quality_Score = 0

for each NFR:

NFR_Score = 0

Property_Count = 0

for each property in NFR:

Property_Score = 0

Metric_Count = 0

For each metric in property:

Property_Score += Metric_Score

Metric_Count++

Property_Score /= Metric_Count

NFR_Score += Property_Score

Property_Count++

NFR_Score /= Propert_Count

Quality_Score += NFR_Score

27

2.6. Solution Unique Elements
The team’s quality model is unique in two ways:

1. It is targeted specifically to microservices.
2. They will iterate, improve, and adapt historical quality models based on our their

experience form implementing a test/demonstration microservices.

2.7. Solution Strengths
This team’s quality model is strong in two ways:

1. It is targeted specifically to microservices.
2. It is based on both experience of past engineers, but also experimental

observations.

In conclusion, this chapter defined the problem, described the different use cases and
why a solution is needed. Then the team looked at related research and determined
their advantages and disadvantages in creating a quality model. Based on the related
research the team proposed the solution definition, how the solution is unique and the
strength this solution has compared to other research.

28

3. Hypothesis
As described in the preceding sections, there are a number of general software quality
models in existence. There is, however, no comprehensive quality model targeted
specifically towards the microservice architecture.

The authors’ hypothesis is the following:

Existing general software quality models are incomplete for assessing
microservice quality and can be improved

In order to test this hypothesis, the goals of this project are the following:

1. Define a quality model for Microservices
2. Identify best practices for microservice design that meet the
3. Demonstrate these best practices with example quality microservices

The methodology the team will use to meet these goals is defined in the following
chapter.

29

4. Methodology
To meet the goals enumerated in Chapter 3, the following steps will be followed:

1) Generating and Collecting Input Data,
2) “Solving the Problem”,
3) Generating Output, and
4) Testing our Output.

Each of these are described in detail in the following sections. The project will culminate
in a software demonstration of quality microservice design and inter-microservice
communication.

The team’s schedule can be seen in Gantt Chart form in Figure 4.1. Each of these
activities are described in greater detail in the following sections.

Figure 4.1: Team Gantt Chart

4.1. Generating and Collecting Input Data
For this effort, there are three sources of input data that will be drawn from:

1) The experience and lessons learned of skilled practitioners, scientists, and
engineers.
2) Our own professional engineering intuition.
3) Experimental observations.

From these sources, the team will derive an understanding of what makes a quality
microservice. This effort is divided into two activities: knowledge survey and

30

microservice design and development. These activities are summarized in the following
subsections.

Knowledge Survey Activity
The goal of this activity is to collect the experience and lessons learned of skilled
practitioners (Source 1 from the above list). The team will collect this information from
sources such as publications in professional journals, books, and conference
proceedings from professional societies (e.g., IEEE, ACM); discussions with technical
experts; videos tutorials and lectures; and online sources (e.g., websites from trusted
sources). Information will also be collected by investigating the design of open-source
microservices from inline repositories and content management sources such as Github
or Gitlab. Extra attention will be given to services known to be of high-quality and those
created by respected institutions.

The results of this activity will be collected, organized, and documented in the final
presentation. The results of this activity will also be used to create an initial “quality
model” that will be iterated upon in the microservice design and development activity.

This activity began upon team assignment on May 9th, 2018. The results of the team’s
initial efforts in this activity are summarized in Chapters 1 and 2.

Microservice Design and Development Activity
The goal of activity is to improve our understanding of quality design of microservices
through experimental observation. The team will design and develop simple example
microservices. The design of these microservices is described in Section 4.2. The
quality of these microservices will be evaluated using our existing quality model (as
described in Sections 4.3,4.4), and the quality model will be updated based on the
team’s observations. The results of this activity will also be documented in the final
project paper.

4.2. How to solve the problem
As described in Section 4.1. A number of simple microservices will be designed and
develop to mature the quality model created from the knowledge survey activity. The
following subsections describe this in greater detail. The ​Algorithm Design ​Subsection
describes the types of microservice examples to be developed and their requirements.
The ​Language Used​ and ​Tools Used ​Subsections describes the choice of language and
the tools or modules used to create these microservices, respectively.

31

Algorithm Design
The team identified the following properties that we desire of our example microservices
in order for this activity to be effective:

1) Function Variety: ​That the services represent a cross section of the functions
appropriate for microservices.

2) Interface Variety: ​That the services represent a cross section of the interface
architectures appropriate for microservices

3) Interdependence: ​That some of the microservices use each other. This is
necessary to ensure consideration of inter-microservice interactions is included in
the quality model

Based on these criteria, the following microservices were selected to represent our
example microservice set​. ​One​ of these microservices will be selected to be
implemented.

1. Carbon footprint estimation and tracking service(s)

The purpose of this service(s) is to provide an estimate of a person’s carbon footprint
based on their behavior. In reality, t​here are many factors that contribute to an
individual’s impact (Berkeley Student Environmental Resource Center, 2014).
Understanding an individual’s impact helps those individuals identify how they can
reduce their footprint. The idea for this service comes from the SCU Mobile Application
Development Course Project​ Impact Estimator ​(Impact Estimator Github Repository,
2018)

This service was chosen because it is a stateless service (the server does not retain
any information) and because it is a complex service that will need to be broken down to
interdependent microservices (fulfilling criteria 3).

The informal requirement for this service are identified to be the following:
The service shall produce an estimate of an individual's carbon footprint for each of the
following categories: Travel, Food, Household, Utilities, Products, Services.

This is, of course, not a complete formal requirement set (and in itself is a compound
requirement), but this level of rigor is considered appropriate for this exercise. The
context of this service can be seen in the below figure.

32

Figure 4.2.1: Impact Tracking Service Context

The actual design of this service/these services will depend on the results of the initial
service model identification activity.

2. Time tracking and task estimation service

The second service identified is a time tracking and task estimation. The purpose of this
service is twofold:

1. Tracking time that individuals spend on tasks (e.g., 30 minutes to create a
function to do x…)

2. Estimating time required for a task. A combined architecture like this will allow
managers to estimate effort required for a required task, based on real historical
trends for similar tasks.

This service was chosen because it is 1) a complex service with multiple discrete
functions that will likely have to be broken into sub-tasks (microservices), and 2) it is a
stateful task (it requires the service to maintain certain information).

The informal requirements for this service are identified to be the following:
1. The service shall accept details about a task performed and the time taken to

perform that task from individual users
2. The service shall produce a summary of work conducted by an individual on

request
3. The service shall produce an estimate of the time required to complete a given

task based on the received task details (see requirement 1) on request.

33

This is, of course, not a complete formal requirement set, but this level of rigor is once
again considered appropriate for this exercise. The context of this service can be seen
in the below figure.

Figure 4.2.2: Time Tracking Service Context

The actual design of this service/these services will depend on the results of the initial
service model identification activity.

Language Used
The team chose ​Python​ for the programming language for this project. Python was
chosen because it is is a very high-level language with several modules supporting web
interfaces. Python is a strong language for short-turnaround prototyping projects where
speed is not critical, like this one.

Tools Used
The team expects to heavily utilize the ​Flask ​python module (Pocoo, 2018) and many of
its extension modules. ​Flask​ is a BSD licensed python framework for web-services.
Flask is used by many popular websites, like LinkedIn (Sanders, 2014) and Pinterest
(Cohen, 2015).

4.3. How to Generate Output
Output from the Microservice Design and Development Activity, outlined in Section 4.2,
will come in two forms: 1) team observations and thoughts and 2) quality model metrics.

The first form of output, team observation and thoughts, is the more qualitative of the
two. The team will record their thoughts and observations about the strengths and
weaknesses of particular design choices and methodologies during development and

34

following the completion of the microservices. Special care will be taken to record
thoughts about the degree to which the non-functional requirements (NFRs) in the
quality model are met.

The second form of output, quality model metrics, is evaluated upon completion of the
microservice. The microservice will be scored by the metrics in the initial quality model.
The results of this scoring will be recorded and used again in Section 4.4.

4.4. How to Test Against Hypothesis
The purpose of this phase of the effort is to evaluate the effectiveness of the quality
model and revise, as-needed. The scores and observations from Section 4.3 will be
reviewed. From this review, the team will make an evaluation of the completeness and
appropriateness of the identified quality model, revising where appropriate. The results
of this activity will be recorded in the final paper and presentation.

In conclusion, this chapter has described the methodology that the team will use in
solving the problem with quality in microservices. It also describes how input data is
collect and how output data is generate. to prove that the solution is valid this section
also describes how testing will be conducted against the hypothesis.

35

5. Implementation
This chapter describes how the solution was implemented based on the findings
described in Chapter 4. Section 5.1 defines the quality model that will solve the
problem. Section 5.2 describes how the quality model is evaluated and corrected
through the development of the ‘Time Tracking and Task Estimation Service’.

5.1. Quality Model
The first step was the building of an initial quality model. This model was produced
based on the investigation of existing software quality models, and the application of the
intuition of the developers.

As described in Chapter 4, the authors are using a layered quality model, where quality
is decomposed into NFRs of interest to microservices. These NFRs are further
decomposed into attributes, which are decomposed into specific metrics. This structure
is illustrated in Figure 1.1.1.

Figure 5.1.1: Microservice Quality Model

The metrics for each attribute are introduced in Table 5.1.1, below, and further
described in the following sections.

36

Table 5.1.1: Microservice Quality Metrics
 NFR Attribute Metrics

Q
U
A
L
I
T
Y

Reusability Modularity Functional dependency

Comm
Commonality

Total communication protocols

Data
Commonality

Total data type conversions

Loosely Coupled Requirement documentation

Self-
Descriptiveness

Comment Ratio

Flexibility

Maintainability

Flexibility Generality Number of module reference by other
modules/total modules

Maintainability Simplicity &
Conciseness

Total Response of Service (TRS)
(Bogner, 2017)

Halstead's Measure (Halstead, 1977)

Coupling Absolute Importance of the Service (AIS)
(Bogner, 2017)

Absolute Dependence of the Service (ADS)
(Bogner, 2017)

Services Interdependence in the System
(SIY)
(Bogner, 2017)

Code-
Maturation

Comment Ratio (CR)
(Bogner, 2017)

Clone Coverage (CC)
(Bogner, 2017)

Test Coverage (TC)
(Bogner, 2017)

37

Reusability
The ability to reuse code for development. Reusability increases the consistency
efficiency on development by reusing code, be able to run existing tests. The benefits
come from avoiding cost and duplication of work.

● Modularity: ​Modularizing microservices to be in the component level. When
used in large systems microservices are easier to implement, and problem
determination.

○ Potential function modularization ratio (Potential Ratio)
■ R [Potential Modularization of Function/[Total Modules]P =

○ Modules dependent on others
■ List the modules
■ Determine if dependency can be removed

○ Ratio of dependent modules
■ M [Number of Dependent Modules] / [Total Modules]D =

● Communication Commonality: ​The communication protocol that is used by the
microservice through the network. Communication commonality simplifies
problem determination errors caused by the network. It also allows the module to
be reusable as the communication protocol will be common.

○ Communication protocol documented and used.
■ Yes/No

○ Number of communication protocol used.
● Data Commonality: ​The input and output data from the microservice is the

same type. This allows microservices to be reusable as anyone using the
microservice knows what data type is required thus avoiding data format
conversion which adds another level of complexity.

○ Documentation describing data format used
■ Yes/No

○ Is there more than one data format used for input and output
■ Yes/No

○ Ratio of data format type conversion to the total modules that allows input
and output

■ C [Number of Data Format Conversion] / [Total Input and Output Modules]D =
● “Loosely Coupled”?: ​The capability of the microservice to be accessed from

any device without little to no manual steps required by the user. Allows the
microservice to not be dependent on hardware or software requirements.

○ Documentation describing what requirements are needed
■ Yes/No

38

○ Are there hardware restrictions?
■ Yes/No

○ Are there dependencies on third party libraries?
■ Yes/No

● Self-Descriptiveness: ​Each module should be self descriptive through the
modules name, and comments should be precise with describing the modules
inputs, outputs and function so that the user can understand how reusable the
module is.

○ Variable names that are acronyms or shortened.
■ List them
■ Change to readable name when possible

○ Comments describing what a module does.
■ C [Number of Comments per Module] / [Total Lines of Code per Module]N =

Flexibility
The ability to be able to switch technology without disrupting other parts/components of
a system. This give developers or users the ability to choose their development
language as long as the microservice’s input and outputs use a common data source.

● Generality: ​The generalization of modules where it is stripped from uniqueness
so that anyone is able to use the module for their needs.

○ Number of module reference by other modules/total modules
○ Can all modules be called independently

● Self-Descriptiveness: ​Each module should be self descriptive through the
modules name, and comments should be precise with describing the modules
inputs, outputs and function so that the user can understand how flexible the
module is.

○ Variable names that are acronyms or shortened.
■ List them
■ Change to readable name when possible

○ Comments describing what a module does.
■ C [Number of Comments per Module] / [Total Lines of Code per Module]N =

Maintainability
Boehm, et al. describes maintainability as the “Effort required to locate and fix an error
in an operational program” (Boehm).

Below is a list of the maintainability attributes and metrics chosen for this Quality Model:

39

● Simplicity & Conciseness: ​“Those attributes... that provide for implementation

of the functions in the most understandable manner. (Usually avoidance of
practices which increase complexity)” and “implementation of a function with a
minimum amount of code” (Boehm)

○ Total Response of Service (TRS): “For each operation- weighted sum of
operations/local methods called” (Bogner, 2017)

○ Halstead's Measure (Halstead, 1977)
N 0 = N 1 + N 2

Where total number of operatorsN 1 =
and total number of operandsN 2 =

log (n) log (n)NC = n1 2 1 + n2 2 2

Where total number of unique operatorsn1 =
and total number of unique operands 2 =

The Halstead metric is defined by

1 − N0

|N −N |C 0
● Coupling: ​““The degree or indication of the strength of interdependencies and

interconnections of a service with other services.” (Bogner, 2017)
○ Absolute Importance of the Service (AIS) (Bogner, 2017): “The [fraction] of

clients that invoke one operation from the service”
○ Absolute Dependence of the Service (ADS) (Bogner, 2017): “The [fraction]

of services that service S depends on”
○ Services Interdependence in the System (SIY) (Bogner, 2017): “The

[fraction] of services that are bi-directionally dependent on each other”
● Code-Maturation: ​“The degree of technical proficiency and consistency of the

code base of [a service]” (Bogner, 2017)
○ Comment Ratio (CR) (Bogner, 2017): Determines how much description is

added for each module.
R 1 Lines of Quality Comments] / [Total Lines]C = − [

○ Clone Coverage (CC) (Bogner, 2017): Amount of duplicated code
C Duplicated Lines of Code] / [Total Lines]C = [

○ Test Coverage (TC) (Bogner, 2017): Shows how thorough the
microservice was tested.

C 1 [Lines Executed in Tests] / [Total Lines]T = −
● Self-Descriptiveness: ​Each module should be self descriptive through the

modules name, and comments should be precise with describing the modules

40

inputs, outputs and function so that the user can understand how flexible the
module is.

○ Variable names that are acronyms or shortened.
■ List them
■ Change to readable name when possible

○ Comments describing what a module does.
■ C [Number of Comments per Module] / [Total Lines of Code per Module]N =

Estimating Quality
Overall microservice quality is assessed using the following algorithm:

Quality_Score = 0

for each NFR:

NFR_Score = 0

Property_Count = 0

for each property in NFR:

Property_Score = 0

Metric_Count = 0

For each metric in property:

Property_Score += Metric_Score

Metric_Count++

Property_Score /= Metric_Count

NFR_Score += Property_Score

Property_Count++

NFR_Score /= Propert_Count

Quality_Score += NFR_Score

5.2 Software Design
In order to evaluate and improve upon the teams quality model, the team chose an
example microservice to build (as described in Section 4.2). The team chose the
second example, the ​Time Tracking and Task Estimation Service. ​The design of this
microservice is described in this section.

Goals
The goals of this software are the following:

1. Provide reports of work done by a user
2. Provide estimates for new tasks

41

Design
To meet these two goals, the team undertook a design activity. A use case diagram for
this software can be found below, in Figure 5.2.1. Here there are two users modeled:
the developer who logs time, and the manager who generates reports of work done,
and uses the data to estimate the time required to complete new tasks.

Figure 5.2.1: Overall Use Case Diagram

To accomplish the actions described in the use case diagram, the following design was
used. This design divides the service into a number of microservices, each
accomplishing a portion of the complete task. This design is illustrated in Figure 5.2.2.
This design allows developers to create new services reusing the microservices below.
For example, a developer who wants to create auditing, or timesheet software might
reuse the work recorder microservice.

Figure 5.2.2: Time Tracking and Task Estimation Service Design

42

To implement this, the team created a package for each microservice. First a private
github repository was created to store the software. Two scripts were created to run the
services. The first, ​setup_env.sh​ sets up the python environment using virtualenv, and
installs the required package (described in ​requirements.txt​). This only has to be run
once when the user first clones the repository. The second script ​startup.sh​ starts each
of the four microservices in its own terminal window (using xterm) and with its own port
number. See Appendix C for the source code. The file structure can be seen below:

 setup_env.sh -- Script to setup python environment

 run_demo.py -- Python script to run demo

 requirements.txt -- Python requirements

 startup.sh -- Script to start microservices

 work_report_generator/ -- Work Report Generator Package

 estimate_generator/ -- Estimate Generator Package

 work_recorder/ -- Work Recorder Package

 README.md -- Readme file (Markdown)

The assigned port numbers for each microservice are described in Table 5.2.1, below:

Table 5.2.1: Microservice Port assignment

Microservice Port Number

Estimate Generator 12001

Work Report Generator 12004

Work Recorder 12003

The setup for each package can be seen below. Each package (microservice) has a file
called​ __init__.py​. This file is run by Flask when the microservice is startup. ​__init__.py
describes the API for the microservice. Each microservice also includes a subpackage
for models used by the microservice. Other files might be included to accomplish
specific functions of that microservice

 __init__.py -- Module API

 model/ -- Any models used by the module

The code for each microservice can be found in Appendix D-G. The design of the
individual packages are described in the following subsections.

43

Estimate Generator
The estimate generator will provide an estimated time to develop(TDEV) based on the
assumed single line of code in thousands (KSLOC), complexity factor both provided
through the request by a user and the historical data factor obtained through the work
recorder service.

The historical data factor is important in estimating the TDEV because it adds the
organizations adjustment factor based on historical data. The work recorder keeps a
record of actual TDEV so it will also have the KSLOC and complexity factor. When a
request is sent to the estimate generator service, it will then send a request to the work
recorder service. The work recorder service then obtains the actual KSLOC and
complexity factor on historical data and compute the historical data factor through the
internal COCOMO class.

The figure below show a use case for the estimate generator.

Figure 5.2.3: Estimate Generator Use Case Diagram

Figure 5.2.4: Estimate Generator Context Diagram

The API URIs for this package are described in Table 5.2.2

44

Table 5.2.2: Estimate Generator REST API Specification
URIs GET POST PUT DELETE

/api/ API Description

< 200 (OK)
{“versions”:”v1”}

/api/v1/ Version 1 Description

< 200 (OK)
{"status":"OK","m

essage":"Work

Recorder API

version

1.0.0","response"

:null}"

/api/v1/TDEV

Get estimated time to
develop with historical
factor

> 200 (OK)
{"TDEV" : {

"ksloc" : 100,

"scalefactor" :{

"PREC" : ["sf"],

"FLEX" : ["sf"],

"RESL" : ["sf"],

"TEAM" : ["sf"],

"PMAT" : ["sf"]"

}}}

< 200 (OK)
{“TDEV”:null}

Work Recorder
The work recorder is tasked with maintaining a record of performed work to be used by
other microservices. A use case diagram and context diagram for the work recorder can
be found below in Figure 5.2.5 and 5.2.6, respectively.

Figure 5.2.5: Work Recorder Use Case Diagram

45

Figure 5.2.6: Work Recorder Context Diagram

Per the context diagram, the Task Recorder will receive records of tasks performed by a
user, and receive requests for recorded information. The Task Recorder, on receipt of a
request, will release information about performed tasks.

The API URIs for this package are described in Table 5.2.3.

46

Table 5.2.3: Work Recorder REST API Specification
URIs GET POST PUT DELETE

/api/ API Description

< 200 (OK)
{“versions”:”v1”}

/api/v1/ Version 1 Description

< 200 (OK)
{"status":"OK","m

essage":"Work

Recorder API

version

1.0.0","response"

:null}"

/api/v1/users Get list of users

< 200 (OK)
[[username],...]

/api/v1/users
/
 [uname]

Get summary for user

< 200 (OK)
{"username":[unam

e],"num_tasks":#,

"first_task":[dat

e],”average_tasks

_per_day":#,"task

s":[#,#,#,#]}

/api/v1/users
/
 [uname]/
 tasks

Get all tasks for user

< 200 (OK)
[{"task_id":[task

id],"date":[date]

,"SLOC":[SLOC],"T

DEV",[TDEV]},...]

Add a new task for
user

>
{"SLOC":[SLOC],

"TDEV":[TDEV]}

< 201 (CREATED)
[taskid]

/api/v1/users
/
 [uname]/
 tasks/
 [taskid]

Get task specified by
[taskid]

< 200 (OK)
{"date":[date],"S

LOC":[SLOC],"TDEV

",[TDEV]}

 Update task record

>
{"date":[date],"

SLOC":[SLOC],"TD

EV",[TDEV]}

< 200 (OK)
[jobid]

Remove task
specified by taskid
from record

< 204 (NO
CONTENT)

The design of the python package implementing the API described in Table 5.2.3 is
illustrated in Figure 5.2.7. There are two models used by the API to accomplish a task-

47

a ​user​ model and a ​task​. The work records and users are managed by the database
class (​database.py​). The API is implemented in __init__.py which gets used by Flask to
implement the REST API.

Figure 5.2.7: Work Recorder Design

Task Report Generator
The Task Report Generator is tasked with generating report of work performed for
managers or other users. A use case diagram and context diagram for the work
recorder can be found below in Figure 5.2.8 and 5.2.9, respectively.

Figure 5.2.8: Use Case Diagram

48

Figure 5.2.9: Context Diagram for Task Report Generator

Per the context diagram, the Task Report Generator will receive requests for reports.
The Task Report Generator, on receipt of a request, will generate and return the
requested report.

The API URIs for this package are described in Table 5.2.4.

Table 5.2.4: Work Report Generator REST API Specification
URIs GET POST PUT DELETE

/api/ API Description

< 200 (OK)
{“versions”:”v1”}

/api/v1/ Version 1 Description

< 200 (OK)
{"status":"OK","message

":"Work Recorder API

version

1.0.0","response":null}

"

/api/v1/report?
 start=[date]&
 end=[date]

Get report for all users for
dates between start and end

HTML Report

/api/v1/report/user
 /[userid]?
 start=[date]&
 end=[date]

Get report for specified user
(userid) for dates between
start and end

HTML Report

49

The design of the python package implementing the API described in Table 5.2.4 is
illustrated in Figure 5.2.10. There are three models used by the API to accomplish a
task- a ​user​ model, a ​work_record​, and the ​report​. The API is implemented in
__init__.py which gets used by Flask to implement the REST API.

Figure 5.2.10: Work Report Generator Design

This chapter described the Quality Model and the metrics that will be used to measure
Reusability, Flexibility and Maintainability to determine if each of the measures meets
the standards of the Quality Model. Then the design of the Task Estimation
microservice was described with the Quality Model standard applied to it. In the next
chapter the outcome of the solution will be described.

50

6. Data Analysis and Discussion
This chapter is going to describe the data analysis of the solution and then discuss on
improvements for the future. In Section 6.1, the authors will describe their observations
on the experience when developing the microservice while using the Quality Model
standard. Section 6.2 will analyze the metrics from the Quality Assessment and how it
compares to the Quality Model Standard. Section 6.3 will describe the the metrics in
comparison to the hypothesis. Lastly in Section 6.4, the authors will discuss on what
can be done in the future to improve the Quality Model.

6.1. Output Generation

Developer Observations
The primary output for this effort was the recorded observations of the primary
developers. These observations were made during the assessment of existing models,
the creation of a hybrid model, and the creation and evaluation of the example services
described in Chapter 5.

These raw, unfiltered observations were collected below:

● Comments by itself is not a meaningful metric. Some comments have more
significance or quality than others. Unnecessary comments can reduce the
quality of a software

● Creating meaningful variable or function names must be done be understanding
the audience that will use the microservice. Some of the names can cause
confusion to the average user.

● Agreeing on data commonality early in the design of the microservice helped
developers understand what type of data each microservice needed.

● Modularity of functions occurred naturally. When the design is finished early then
the developers have a greater understanding on what needs to be developed
and know how to modularize the functions.

● Communication between developers is important to keep each other in check on
the Quality Model

● Expandability should be an important characteristic- Is missing from quality
model

● Some metrics are duplicated, can be combined

51

Quality Assessment of Example Services

Table 6.1.1: Quality Assessment for Estimate Generator
 Metrics Results

Q
U
A
L
I
T
Y

Potential function modularization ratio (Potential Ratio)
R [Potential Modularization of Function/[Total Modules] P =

No, modularized

Modules dependent on others
● List the modules
● Determine if dependency can be removed

Dependent on
organizations scale
factor from
Work_Recorder
Cannot remove

Ratio of dependent modules
M [Number of Dependent Modules] / [Total Modules] D =

1/13

Communication protocol documented and used? Yes

Number of communication protocol used. 1 (REST)

Documentation describing data format used? Yes

Is there more than one data format used for input and output? No

Ratio of data format type conversion to the total modules that
allows input and output
C [Number of Data Format Conversion] / [Total Input and Output MD =

0

Documentation describing what requirements are needed? Yes

Are there hardware restrictions? No

Are there dependencies on third party libraries? Yes(Flask, request)

Variable names that are acronyms or shortened.
● List them
● Change to readable name when possible

r = request
e = error
TDEV = time to
develop
Ksloc = thousand
single line of code
SE = scaled effort

Comment Ratio (CR) (Bogner, 2017)
R 1 Lines of Quality Comments] / [Total Lines] C = − [

34/184

Number of module reference by other modules/total modules 1/4

Can all modules be called independently No

52

Total Response of Service (TRS) (Bogner, 2017)
For each operation- weighted sum of operations/local methods
called

N/A

Halstead's Measure (Halstead, 1977) N/A

Absolute Importance of the Service (AIS) (Bogner, 2017)
The [fraction] of clients that invoke one operation from the service

2/12

Absolute Dependence of the Service (ADS) (Bogner, 2017)
The [fraction] of services that service S depends on

2/12

Services Interdependence in the System (SIY) (Bogner, 2017)
The [fraction] of services that are bi-directionally dependent on
each other

0

Clone Coverage (CC) (Bogner, 2017)
C Duplicated Lines of Code] / [Total Lines] C = [

0

Test Coverage (TC) (Bogner, 2017)
C 1 [Lines Executed in Tests] / [Total Lines] T = −

1

53

Table 6.1.2: Quality Assessment for Work Recorder
 Metrics Results

Q
U
A
L
I
T
Y

Potential function modularization ratio (Potential Ratio)
R [Potential Modularization of Function/[Total Modules] P =

No, modularized

Modules dependent on others
● List the modules
● Determine if dependency can be removed

__init__ is dependent
on the models and
database, and the
database on the
models

Ratio of dependent modules
M [Number of Dependent Modules] / [Total Modules] D =

2/4

Communication protocol documented and used? Yes

Number of communication protocol used. 1 (REST)

Documentation describing data format used? Yes

Is there more than one data format used for input and output? No

Ratio of data format type conversion to the total modules that
allows input and output
C [Number of Data Format Conversion] / [Total Input and Output MD =

0

Documentation describing what requirements are needed? Yes

Are there hardware restrictions? No

Are there dependencies on third party libraries? Yes (Flask)

Variable names that are acronyms or shortened.
● List them
● Change to readable name when possible

No

Comment Ratio (CR) (Bogner, 2017)
R 1 Lines of Quality Comments] / [Total Lines] C = − [

9/252

Number of module reference by other modules/total modules 5/16

Can all modules be called independently No

Total Response of Service (TRS) (Bogner, 2017)
For each operation- weighted sum of operations/local methods
called

N/A

Halstead's Measure (Halstead, 1977) N/A

Absolute Importance of the Service (AIS) (Bogner, 2017)
The [fraction] of clients that invoke one operation from the service

5/16

54

Absolute Dependence of the Service (ADS) (Bogner, 2017)
The [fraction] of services that service S depends on

5/16

Services Interdependence in the System (SIY) (Bogner, 2017)
The [fraction] of services that are bi-directionally dependent on
each other

0

Clone Coverage (CC) (Bogner, 2017)
C Duplicated Lines of Code] / [Total Lines] C = [

0

Test Coverage (TC) (Bogner, 2017)
C 1 [Lines Executed in Tests] / [Total Lines] T = −

1

55

Table 6.1.3: Quality Assessment for Work Report Generator
 Metrics Results

Q
U
A
L
I
T
Y

Potential function modularization ratio (Potential Ratio)
R [Potential Modularization of Function]/[Total Modules] P =

No, modularized

Modules dependent on others
● List the modules
● Determine if dependency can be removed

__init__ is dependent
on the three models.
This cannot be
removed

Ratio of dependent modules
M [Number of Dependent Modules] / [Total Modules] D =

1/4

Communication protocol documented and used? Yes

Number of communication protocol used. 1 (REST)

Documentation describing data format used? Yes

Is there more than one data format used for input and output? No

Ratio of data format type conversion to the total modules that
allows input and output
C [Number of Data Format Conversion] / [Total Input and Output MD =

0

Documentation describing what requirements are needed? No

Are there hardware restrictions? No

Are there dependencies on third party libraries? Yes (Flask, request)

Variable names that are acronyms or shortened.
● List them
● Change to readable name when possible

r = request
Sloc = software lines
of code
Tdev = time to
develop

Comment Ratio (CR) (Bogner, 2017)
R 1 Lines of Quality Comments] / [Total Lines] C = − [

1/139

Number of module reference by other modules/total modules 3/12

Can all modules be called independently No

Total Response of Service (TRS) (Bogner, 2017)
For each operation- weighted sum of operations/local methods
called

N/A

Halstead's Measure (Halstead, 1977) N/A

Absolute Importance of the Service (AIS) (Bogner, 2017)
The [fraction] of clients that invoke one operation from the service

3/12

56

Absolute Dependence of the Service (ADS) (Bogner, 2017)
The [fraction] of services that service S depends on

3/12

Services Interdependence in the System (SIY) (Bogner, 2017)
The [fraction] of services that are bi-directionally dependent on
each other

0

Clone Coverage (CC) (Bogner, 2017)
C Duplicated Lines of Code] / [Total Lines] C = [

0

Test Coverage (TC) (Bogner, 2017)
C 1 [Lines Executed in Tests] / [Total Lines] T = −

1

57

6.2. Output Analysis
The evaluation of the quality model identified some strengths and weaknesses of our
example service. The identified strengths include the independence and consistency.
The identified weaknesses include the comments and tests. For the most part the
authors agree with the results of the analysis. The software could certainly be improved
with the addition of tests (which the authors ran out of time to develop), and some
comments. But they feel that there are some of the quality metrics are incomplete,
missing (e.g., expandability), or redundant. For example, adding comments by itself is
not a meaningful metric. Some comments have more significance or quality than others.
Unnecessary comments can reduce the quality of a software.

There are certainly metrics that are more important for microservices than they are for
the average software project. That by itself demonstrates the value of a
microservice-targeted quality model.

6.3. Compare Output against Hypothesis
As described in Chapter 3, the author’s hypothesis is the following:

Existing general software quality models are incomplete for assessing microservice
quality and can be improved

The authors investigated general software quality models and the published works of
expert engineers on microservice design and best practices. They used this to develop
their own microservice quality model. They developed example microservices, recording
their observations as they did so, and partially evaluated the software according to the
model.

Through their own engineering judgement and observations, the authors were able to
evaluate their model, and evaluate the completeness of general software quality
models. They found that there are critical software attributes specific to microservices
that are missing from general software models. From this evaluation they have
evaluated their hypothesis as confirmed.

58

6.4. Discussion
After creating the quality model standard and implementing an example microservice
with those standards included the authors discussed their observations. Then a quality
assessment was done on the example services to determine how it compared to the
quality model. The output of the quality assessment was analyzed and then compared it
to the hypothesis. Lastly the authors discussed where improvements could have been
made.

The authors do not present their software quality model as a complete or correct
software quality model for microservices, instead they present it as an iteration on
generic software quality models as applied to microservices, complete enough to
confirm the hypothesis that general software quality models can be improved upon for
microservices.

59

7. Conclusions and Recommendations
In this chapter the authors will summarize their research and findings. From that they
have determined recommendations that future developers can do for this study.

7.1. Summary and Conclusions
For this project, the authors explored the best practices and tradeoffs in microservice
design. They first conducted a literature survey, collecting the thoughts and practices of
experts. The authors adapted these to create their own microservice quality model.

The authors then produced their own example microservices based on the specified,
recording their impressions and thoughts (Section 6.1) as they did. They evaluated their
microservices based on their quality model (also Section 6.1) and analyzed the results
to adjust their quality model.

Through their own engineering judgement and observations, the authors were able to
evaluate their model, and evaluate the completeness of general software quality
models. They found that, though generic software quality models have their use, there
are critical software attributes specific to microservices that are missing. For this reason
it is important that developers and managers consider architecture-specific,
language-specific, and tool-specific attributes when evaluating the quality of a software
product.

7.2. Recommendations for Future Studies
A quality model is most effective when it is objective and quantifiable. The authors
recommend that future developers continue to iterate on the work done in this project to
improve the objectivity and quantifiability of the identified metrics. This could include
resolving the comments mentioned in Chapter 6. Additionally, evaluation of the quality
model at a service-level could bring additional insights.

There are certainly metrics that are more important for microservices than they are for
the average software project. This could be represented in future work through a
weighting factor on the NFRs. Currently, each NFR is considered equally.

60

Bibliography
Alvaro, A., Almeida, E. S., & Meira, S. R. L. (2005). Towards a software component quality

model. In Submitted to the 5th International Conference on Quality Software. Chicago

Banerjee, S., & Jain, S. (2014). A survey on Software as a service (SaaS) using quality model in
cloud computing. International Journal of Engineering and Computer Science, 3(01),
3598-3602.

Berkeley Student Environmental Resource Center.​ ​(2014, March 4). Prioritize Your
Environmental Impact: A Guide You’ve Never Seen Before. Retrieved May 19, 2018.
serc.berkeley.edu/prioritize-your-environmental-impact-a-guide-youve-never-seen-before

Boehm, B. W., Brown, J. R., & Kaspar, H. (1978). Characteristics of software quality. Chicago

Bogner, J., Wagner, S., & Zimmermann, A. (2017, September). Towards a practical
maintainability quality model for service-and microservice-based systems. In Proceedings of
the 11th European Conference on Software Architecture: Companion Proceedings (pp.
195-198). ACM.

Bourque, P, & Fairley, R.E., eds. (2014). Guide to the Software Engineering Body of
Knowledge, Version 3.0. IEEE Computer Society. www.swebok.org.

Cloud Academy. (2015, Nov 2015). Microservices architecture: advantages and drawbacks.
Retrieved May 19 2018 from
https://cloudacademy.com/blog/microservices-architecture-challenge-advantage-drawback/

Cohen, Steve. (2015, Jan 7). What challenges has Pinterest encountered with Flask?
https://www.quora.com/What-challenges-has-Pinterest-encountered-with-Flask/answer/Stev
e-Cohen?srid=hXZd

Dharmendra Shadija, Mo Rezai, Richard Hill (2017). Microservices: Granularity vs.
Performance. Retrieved May 20, 2018 from ​https://arxiv.org/abs/1709.09242

Dromey, R. G. (1995). A model for software product quality. IEEE Transactions on software
engineering, 21(2), 146-162.

Dubey, S.K & Soumi Ghosh & Ajay Rana. (2012). “Comparison of Software Quality Models: An
Analytical Approach,” International Journal of Emerging Technology and Advanced
Engineering, Volume 2, Issue 2, pp 111-119

Halstead, M. (1977), Elements of Software Science, Elsevier Computer Science Library, N.Y.,

IEEE. (2012). P730TM/D8 Draft Standard for Software Quality Assurance Processes, IEEE.

IEEE Standards Coordinating Committee. (1990). IEEE Standard Glossary of Software
Engineering Terminology (IEEE Std 610.12-1990). Los Alamitos. CA: IEEE Computer
Society, 169. Chicago

61

https://serc.berkeley.edu/prioritize-your-environmental-impact-a-guide-youve-never-seen-before/
https://cloudacademy.com/blog/microservices-architecture-challenge-advantage-drawback/
https://www.quora.com/What-challenges-has-Pinterest-encountered-with-Flask/answer/Steve-Cohen?srid=hXZd&share=1
https://www.quora.com/What-challenges-has-Pinterest-encountered-with-Flask/answer/Steve-Cohen?srid=hXZd&share=1
https://arxiv.org/abs/1709.09242

Impact Estimator Github Repository. (2018). Retrieved May 19, 2018, from
https://github.com/teubert/impact-estimator

ISO/IEC. (2001). ISO/IEC 9126-1. Software engineering -- Product quality -- Part 1: Quality
model.

ISO. (2011). ISO/IEC 25010:2011. Systems and software engineering -- Systems and software
Quality Requirements and Evaluation (SQuaRE) -- System and software quality models.

Kryvtsov, Aleksey (2016, March 19). Service approach for development Rest API in Symfony2
.​https://www.slideshare.net/savchenko1/symfony2-rest-api-59772368

Kshirsagar, Mahesh M. (2016, November 13) Containers in Enterprise, Part 2 : DevOps.
https://blogs.msdn.microsoft.com/maheshkshirsagar/2016/11/13/containers-in-enterprise-par
t-2-devops/

Lee, J. Y., Lee, J. W., & Kim, S. D. (2009, December). A quality model for evaluating
software-as-a-service in cloud computing. In Software Engineering Research, Management
and Applications, 2009. SERA'09. 7th ACIS International Conference on (pp. 261-266).
IEEE. Chicago

Massachusetts Institute of Technology. (2008, April 29). Carbon Footprint Of Best Conserving
Americans Is Still Double Global Average. ​ScienceDaily​. Retrieved May 19, 2018 from
www.sciencedaily.com/releases/2008/04/080428120658.htm

McCall, J. A., Richards, P. K., & Walters, G. F. (1977). Factors in software quality. volume i.
concepts and definitions of software quality. GENERAL ELECTRIC CO SUNNYVALE CA.

Miguel, J. P., Mauricio, D., & Rodríguez, G. (2014). A review of software quality models for the
evaluation of software products. arXiv preprint arXiv:1412.2977.

Pocoo. (2018). Flask. Retrieved May 19, 2018, from ​http://flask.pocoo.org

Sanders, Rachel (2014). Developing Flask Extensions. ​PyCon​. Retrieved May 19, 2018, from
https://www.youtube.com/watch?v=OXN3wuHUBP0#t=46

Universidade de São Paulo (USP). (2011). Product Quality - ISO/IEC 25010. Retrieved May 20,
2018, from
edisciplinas.usp.br/pluginfile.php/294901/mod_resource/content/1/ISO%2025010%20-%20
Quality%20Model.pdf

Wasson, M., Celarier, S. (2017, November 28) Microservices architecture style.
https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices

Wen, P. X., & Dong, L. (2013, September). Quality model for evaluating SaaS service. In
Emerging Intelligent Data and Web Technologies (EIDWT), 2013 Fourth International
Conference on (pp. 83-87). IEEE.

62

https://github.com/teubert/impact-estimator
https://www.slideshare.net/savchenko1/symfony2-rest-api-59772368
http://www.sciencedaily.com/releases/2008/04/080428120658.htm
http://flask.pocoo.org/
https://www.youtube.com/watch?v=OXN3wuHUBP0#t=46

Appendix A: Glossary of Terms
API “Application programming interface”

Configurability “The ability of the component to configurable.” (Alvaro, 2005)

DevOps “Development Operations”

Extendability The ease of adding additional capabilities to a software

Flask A Python Module for web-services

Flexibility The ease of adapting a software to perform a different task

Interoperability “Attributes of software that bear on its ability to interact with specified
systems.” (ISO, 2011)

Maintainability “The degree to which the software product can be modified.
Modifications may include corrections, improvements or adaptation of
the software to changes in environment, and in requirements and
functional specifications” (ISO, 2011) , (ISO/IEC, 2001)

Microservice A small service with light interface that performs small task.
Microservices are combined to perform larger, more complicated tasks.

Modularity “The degree to which a system or computer program is composed of
discrete components such that a change to one component has
minimal impact on other components.” (ISO, 2011)

Non Functional
Requirements
(NFR)

Requirements that do not relate to a function of the product. Also called
-ilities​ based on their common use of the ​-ility​ suffix

Reliability “The degree to which the software product can maintain a specified
level of performance when used under specified conditions.” (ISO,
2011) , (ISO/IEC, 2001)

REST “Representational State Transfer”

Reusability “The degree to which an asset can be used in more than one software
system, or in building other assets” (ISO, 2011)

Robustness “The degree to which an executable work product continues to function
properly under abnormal conditions or circumstances.” (ISO, 2011)
(Dromey, 1995)

Quality Model "The set of characteristics, and the relationships between them that
provides the basis for specifying quality requirements and evaluation”
(ISO/IEC, 2001)

Quality of Service
(QoS)

The ability of a software service such as a SaaS to meet demands on
the system

63

Scalability “The ease with which an application or component can be modified to
expand its existing capabilities. It includes the ability to accommodate
major volumes of data.” (Dromey, 1995) (Alvaro, 2005)

Security “The protection of system items from accidental or malicious access,
use, modification, destruction, or disclosure” (ISO, 2011)

Software
As-A-Service
(SaaS)

Software architecture where software functionality is provided to users
through a web api or browser

Testability “The degree to which the software product enables modified software to
be validated” (ISO, 2011)

Usability The ease with which the software can be used

64

Appendix B: ReadMe

Test-Microservices

These are a set of microservices for the SCU Cloud Computing Class

Getting Started

To setup your environment run the script ​setup_env.sh

Starting the microservices

To startup the microservices run the script ​startup.sh​. NOTE: This script uses xterm, so
make sure you have xterm forwarding enabled by adding the ​-X​ flag to your ssh
command when connecting.

65

Appendix C: Project Source Code

setup_env.sh
/opt/python-3.4/linux/bin/python3 -m virtualenv env

source env/bin/activate

pip install -r requirements.txt

requirements.txt
click==6.7

Flask==1.0.2

itsdangerous==0.24

Jinja2==2.10

MarkupSafe==1.0

Werkzeug==0.14.1

startup.sh
export FLASK_ENV=development

source env/bin/activate

export FLASK_DEBUG=1

export FLASK_APP=estimate_generator

xterm -T 'Estimate Generator' -e flask run --port 12001 &

export FLASK_APP=estimate_report_generator

xterm -T 'Estimate Report Generator' -e flask run --port 12002

&

export FLASK_APP=work_recorder

xterm -T 'Work Recorder' -e flask run --port 12003 &

export FLASK_APP=work_report_generator

xterm -T 'Work Report Generator' -e flask run --port 12004 &

66

Appendix D: Estimate Generator

__init__.py
from ​flask​ import Flask, abort, request
from ​estimate_generator.cocomo​ import Cocomo
from ​estimate_generator.org_factor_generator​ import OrgFactorGenerator

Meta Data

__name__ = ​'Estimate Generator'
__version__ = ​'1.0.0'
__summary__ = ​'A microservice for calculating time to develop in months'

app = Flask(__name__)

cocomo = Cocomo()

estimate_record = OrgFactorGenerator()

@app.route​(​'/api'​, methods=[​'GET'​])
def​ versions():
 ​'''Get supported api versions'''
 ​return​ ​"{\"versions\":[\"v1\"]}"

@app.route​(​'/api/v1'​, methods=[​'GET'​])
def​ v1():
 ​'''Get details of version 1'''
 ​return​ ​"{\"status\":\"OK\",\"message\":\"Estimate Generator API version
1.0.0\",\"response\":null}"

@app.route​(​'/api/v1/TDEV'​, methods=[​'POST'​])
def​ generate_TDEV():
 ​''' Obtain time to develop based on anticipated single lines of code in
thousands and complexity factor'''

 app.logger.debug(request.args)

 req_json = request.get_json()

 ​if​ ​'TDEV'​ ​in​ req_json:
 data = req_json[​'TDEV'​]
 ksloc = data[​'ksloc'​]
 scalefactor = data[​'scalefactor'​]
 TDEV = cocomo.getTDEV(ksloc, scalefactor)

 org_factor = estimate_record.get_org_factor()

 org_TDEV = ​round​((TDEV*org_factor),3)
 ​return​ ​"{\"status\":\"OK\",\"message\":\"Obtained time to
develop\",\"response\":"​ + ​str​(org_TDEV) + ​"}"

67

cocomo.py
import ​json
import ​math

class​ Cocomo:
 ​'''Comomo ii equations used to determine estimated TDEV(time to
develop).

 User provides the complexity factors and single lines of code in

thousands

 A, B, C, D -- Calibration variables based off COCOMO II.2000.

 nominalEAF -- Nominal Effor Adjustment factor.

 scale_factor_json -- Scale factor values based off COCOMO

II.2000.'''

 ​def​ __init__(​self​):
 ​''' Initializing Cocomo.'''
 ​self​.A = 2.94
 ​self​.B = 0.91
 ​self​.C = 3.67
 ​self​.D = 0.28
 ​self​.nominalEAF = 1.0
 ​self​.scale_factor = json.loads(​"""{"PREC": {"verylow": 6.2,"low":
4.96,"nominal": 3.72,"high": 2.48,"veryhigh": 1.24,"extrahigh": 0},

 "FLEX": {"verylow": 5.07,"low": 4.05,"nominal": 3.04,"high":

2.03,"veryhigh": 1.01,"extrahigh": 0},

 "RESL": {"verylow": 7.07,"low": 5.65,"nominal": 4.24,"high":

2.83,"veryhigh": 1.41,"extrahigh": 0},

 "TEAM": {"verylow": 5.48,"low": 4.38,"nominal": 3.29,"high":

2.19,"veryhigh": 1.1,"extrahigh": 0},

 "PMAT": {"verylow": 7.8,"low": 6.24,"nominal": 4.68,"high":

3.12,"veryhigh": 1.56,"extrahigh": 0}}""")

 ​# currently using nominal EAF for simplicity
 ​def​ getEffortPM(​self​, ksloc, E):
 ​'''Calculates the effort measured in person-month
 Returns value on effort '''

 effort = ​self​.A * ​self​.nominalEAF * math.pow(ksloc, E)
 ​return​ effort

 ​def​ getTDEV(​self​, ksloc, complexity_factor):
 ​'''Calculates time to develop based on ksloc and complexity
factor'''

 overrall_scale_factor = 0.0

 ​for​ key,value ​in​ complexity_factor.items():
 overrall_scale_factor += ​self​.scale_factor[key][value]

 E = ​self​.B + 0.01 * overrall_scale_factor

 effort = ​self​.getEffortPM(ksloc, E)
 SE = ​self​.D + 0.2 * (E - ​self​.B)
 TDEV = ​self​.C * math.pow(effort, SE)

68

 TDEV = ​round​(TDEV,3)
 ​return​ TDEV

69

org_factor_generator.py
import ​requests
from ​enum​ import Enum
import ​ast
work_recorder = ​'http://127.0.0.1:12003/api/v1'

class​ Levels(Enum):
 ​'''Levels enumeration'''
 VERY_LOW = 0

 LOW = 1

 NOMINAL = 2

 HIGH = 3

 VERY_HIGH = 4

 EXTRA_HIGH = 5

class​ OrgFactorGenerator:
 ​'''Organizational Factor Generator class
 used to generate an estimate of the organization adjustment factor

 based on historical data. The work_recorder service is queried for

 historical data. The historical data is compared with estimates to

 generate the org adjustment factor.

 Instance variables:

 tasks -- Records of what tasks from the historical record are

 included in the calculation

 estimate_record

 -- Record of estimates by scaling factor'''

 ​class​ EstimateRecord:
 ​'''The estimate record
 Instance variables

 estimates -- A 5-dimensional list of estimates, each dimension

 is a scaling factor. Scaling factors are recorded

 in the following order:

 PREC: Precedentness (similarity to previous jobs)

 FLEX: Development Flexibility

 RESL: Architecture/Risk Resolution

 (including thoroughness of risk management)

 TEAM: Team Cohesion

 PMAT: Process Maturity'''

 ​class​ Estimate:
 ​'''Estimate for a single set of possible scaling factors

 Instance variables:

 sum -- sum of all estimates for those scaling

factors

 num_estimates-- Total number of estimates'''

 ​def​ __init__(​self​):
 ​'''Initialize estimate'''
 ​self​.sum = 0
 ​self​.num_estimates = 0

 ​def​ add_estimate(​self​, estimate):
 ​'''Add a single estimate'''

70

 ​self​.sum = ​self​.sum + estimate
 ​self​.num_estimates = ​self​.num_estimates + 1

 ​def​ get_estimate(​self​):
 ​'''Get estimate'''
 ​if​ ​self​.num_estimates ​is​ 0:
 ​return​ 1 ​# default
 ​else​:
 ​return​ ​self​.sum/​self​.num_estimates

 ​def​ __init__(​self​):
 ​'''Initialize Estimate Record'''
 ​self​.estimates = []
 ​for​ i ​in​ ​range​(6):
 ​self​.estimates.append([])
 ​for​ j ​in​ ​range​(6):
 ​self​.estimates[i].append([])
 ​for​ k ​in​ ​range​(6):
 ​self​.estimates[i][j].append([])
 ​for​ l ​in​ ​range​(6):
 ​self​.estimates[i][j][k].append([])
 ​for​ m ​in​ ​range​(6):
 ​Self​.estimates[i][j][k][l].
 append(​self​.Estimate())

 ​def​ get_estimate(​self​, PREC=Levels.NOMINAL, FLEX=Levels.NOMINAL,
RESL=Levels.NOMINAL, TEAM=Levels.NOMINAL, PMAT=Levels.NOMINAL):

 ​'''Return an estimate for specific scaling factor values'''
 ​return
self​.estimates[PREC.value][FLEX.value][RESL.value][TEAM.value][PMAT.value].get
_estimate()

 ​def​ add_estimate(​self​, estimate, PREC=Levels.NOMINAL,
FLEX=Levels.NOMINAL, RESL=Levels.NOMINAL, TEAM=Levels.NOMINAL,

PMAT=Levels.NOMINAL):

 ​'''Add an estimate to the record'''
 ​self​.estimates[PREC.value][FLEX.value]

[RESL.value][TEAM.value][PMAT.value].add_estimate(estimate)

 ​def​ __init__(​self​):
 ​'''Initialize new OrgFactorGenerator'''
 ​self​.tasks = ​set​()
 ​self​.estimate_record = ​self​.EstimateRecord()

 ​def​ get_org_factor(​self​, factors = {}):
 ​'''Generate estimate of given factors'''
 ​try​: ​# Check for updates
 r = requests.get(​'{}/users'​.format(work_recorder))
 ​for​ username ​in​ ast.literal_eval(r.text):
 r = requests.get(​'{}/users/{}'​.format(work_recorder, username))
 user_tasks = ast.literal_eval(r.text)[​'tasks'​]
 ​for​ task_id ​in​ user_tasks:
 ​if​ task_id ​not​ ​in​ ​self​.tasks:
 r = requests.get(​'{}/users/{}/tasks/{}'​.

format(work_recorder, username, task_id))

71

 task = ast.literal_eval(r.text)

 ​if​ task ​is​ ​not​ ​None​:
 ​# TODO(CT): Get estimate
 estimate = task[​'SLOC'​]/2.5
 ​for​ factor ​in​ task[​'Factors'​]:
 task[​'Factors'​][factor] =

Levels(​int​(task[​'Factors'​][factor]))
 ​self​.estimate_record.add_estimate(

task[​'TDEV'​]/estimate, **task[​'Factors'​])
 ​self​.tasks.add(task_id)

 ​# Generate estimate
 ​return​ ​self​.estimate_record.get_estimate(**factors)
 ​except​:
 ​# On exception - don’t use historical data
 ​return​ 1

72

Appendix E: Work Recorder
__init__.py
from ​flask​ import Flask, abort, request
from ​work_recorder​ import database
from ​work_recorder.models.task​ import Task

Meta Data

__name__ = ​'Work Recorder'
__version__ = ​'1.0.0'
__summary__ = ​'A microservice for maintaining a record of tasks completed'

app = Flask(__name__)

database = database.Database()

@app.route​(​'/api'​, methods=[​'GET'​])
def​ versions():
 ​'''Get supported api versions'''
 ​return​ ​"{\"versions\":[\"v1\"]}"

@app.route​(​'/api/v1'​, methods=[​'GET'​])
def​ v1():
 ​'''Get details of version 1'''
 ​return​ ​"{\"status\":\"OK\",\"message\":\"Work Recorder API version
1.0.0\",\"response\":null}"

@app.route​(​'/api/v1/users'​, methods=[​'GET'​])
def​ get_users():
 ​'''Get all users'''
 ​return​ ​str​(database.get_users())

@app.route​(​'/api/v1/users/<username>'​, methods=[​'GET'​])
def​ user_summary(username):
 ​'''Get summary of specified user'''
 ​return​ ​str​(database.get_user(username))

@app.route​(​'/api/v1/users/<username>/tasks'​, methods=[​'GET'​,​'POST'​])
def​ all_tasks_summary(username):
 ​'''Get: get all tasks for specified user
 Post: add new task

 '''

 ​if​ request.method == ​'POST'​:
 app.logger.debug(request.args)

 req_json = request.get_json()

 sloc = req_json[​'sloc'​]
 tdev = req_json[​'tdev'​]
 app.logger.debug(​'u:{}, loc:{}, t:{}'​.format(username, sloc, tdev))
 new_task = Task(username, sloc, tdev)

 ​for​ factor ​in​ new_task.factors.keys():
if​ factor ​in​ req_json:
 new_task.factors[factor] = ScaleFactor(​int​(req_json[factor]))

73

 ​return​ ​str​(database.add_task(new_task))
 ​else​: ​# Get all tasks
 return_message = ​'['
 tasks = database.get_tasks(username=username)

 ​for​ task ​in​ tasks:
 return_message = return_message + ​str​(task) + ​','
 ​return​ return_message[:-1] + ​']'

@app.route​(​'/api/v1/users/<username>/tasks/<task_id>'​, methods=[​'GET'​,​'PUT'​,
'DELETE'​])
def​ task_summary(username, task_id):
 ​'''get -- Get details of specified task
 put -- Update task

 delete -- Delete task

 '''

 ​if​ request.method == ​'PUT'​:
 app.logger.debug(request.args)

 req_json = request.get_json()

 sloc = req_json[​'sloc'​]
 tdev = req_json[​'tdev'​]
 new_task = Task(username, sloc, tdev, ​int​(task_id)
 ​for​ factor ​in​ new_task.factors.keys():

if​ factor ​in​ req_json:
 new_task.factors[factor] = ScaleFactor(​int​(req_json[factor]))

 database.update_task(new_task))

 ​return​ task_id
 ​elif​ request.method == ​'DELETE'​:
 ​if​ database.delete_task(​int​(task_id)):
 ​return​ (​''​, 204)
 ​else​:
 ​return​ (​''​, 404)
 ​else​: ​# Get all tasks
 ​return​ ​str​(database.get_task(​int​(task_id)))

74

database.py
from ​work_recorder.models.user​ import User
from ​work_recorder.models.task​ import Task

class​ Database:
 ​'''Database Manager Class

 Manages a database of recorded tasks and users.

 Instance variables:

 tasks -- All recorded tasks

 users -- Any user who has submitted a task (map of

username:user)'''

 ​def​ __init__(​self​):
 ​'''Initialize database manager'''
 ​self​.tasks = {} ​# task_id:task
 ​self​.users = {} ​# username:user
 ​self​._next_id = 0 ​# Private counter

 ​def​ assign_task_id(​self​):
 ​'''Assign a new task id and iterate counter
 Returns assigned task_id'''

 task_id = ​self​._next_id
 ​self​._next_id = ​self​._next_id + 1
 ​return​ task_id

 ​def​ add_task(​self​, task):
 ​'''Add a new task to the database

 Arguments:

 task -- Task to be added to database

 Returns task_id'''

 ​# Add Task
 task.task_id = ​self​.assign_task_id()
 ​self​.tasks[task.task_id] = task

 ​# Manage User
 ​if​ task.username ​not​ ​in​ ​self​.users:
 ​# New User
 ​self​.users[task.username] = User(task.username)
 ​self​.users[task.username].tasks.append(task.task_id)

 ​# Return Task_id
 ​return​ task.task_id

 ​def​ update_task(​self​, updated_task):
 ​'''Update existing task with updated_task. Replaces
 existing task of same task_id

 arguments:

 updated_task -- Task object to replace existing

 returns True if replace was successful'''

 ​if​ updated_task.task_id ​in​ ​self​.tasks:

75

 ​self​.tasks[updated_task.task_id] = updated_task
 ​return​ ​True
 ​else​:
 ​# Task doesn't exist
 ​return​ ​False

 ​def​ delete_task(​self​, task_id):
 ​''' Delete an existing task

 arguments:

 task_id -- Id of task to be deleted

 returns True if delete was successful'''

 ​if​ task_id ​in​ ​self​.tasks:
 ​del​ ​self​.tasks[task_id]
 ​return​ ​True
 ​else​:
 ​# Task doesn't exist
 ​return

 ​def​ get_task(​self​, task_id):
 ​'''Get a task by task_id

 arguments:

 task_id -- Id of task to be returned

 returns task with id task_id, otherwise returns none'''

 ​return​ ​self​.tasks.get(task_id)

 ​def​ get_user(​self​, username):
 ​'''Get a user by username

 arguments:

 username -- Username for user to be returned

 returns user with specified username'''

 ​return​ ​self​.users[username]

 ​def​ get_users(​self​):
 ​'''Get all users
 returns list of users'''

 ​return​ [user ​for​ user ​in​ ​self​.users]

 ​def​ get_tasks(​self​, username=​None​):
 ​'''Get tasks

 arguments:

 username -- Name of user to get tasks for.

 If none, returns all tasks

 returns task for user or all tasks'''

 ​if​ username ​is​ ​None​:
 ​# Return all tasks
 ​return​ ​self​.tasks
 ​else​:
 ​# Return tasks for user

76

 ​return​ [​self​.get_task(task_id) ​for​ task_id ​in
self​.get_user(username).tasks]

77

Appendix F: Work Report Generator Source Code
__init__.py
from ​flask​ import Flask, request
import ​requests
import ​ast
from ​work_report_generator.models.task_report​ import TaskReport

Meta

__name__ = ​'Work Report Generator'
__version__ = ​'1.0.0'

app = Flask(__name__)

work_recorder = ​'http://127.0.0.1:12003/api/v1'

@app.route​(​'/api'​, methods=[​'GET'​])
def​ versions():
 ​'''Return versions for api'''
 ​return​ ​"{\"versions\":[\"v1\"]}"

@app.route​(​'/api/v1'​, methods=[​'GET'​])
def​ v1():
 ​'''Return status of version 1'''
 ​return​ ​"{\"status\":\"OK\",\"message\":\"Work Report Generator API
version {}\",\"response\":null}"​.format(__version__)

def​ _add_user_to_report(report, username):
 ​'''Add information for user to existing report'''
 r = requests.get(​'{}/users/{}/tasks'​.format(work_recorder, username))
 ​for​ task ​in​ ast.literal_eval(r.text):
 report.add_task(task)

 r = requests.get(​'{}/users/{}'​.format(work_recorder, username))
 report.add_user(ast.literal_eval(r.text))

@app.route​(​'/api/v1/report'​, methods=[​'GET'​])
def​ generate_report_for_all_users():
 ​'''Return html report of tasks for all users'''
 start = request.args[​'start'​]
 end = request.args[​'end'​]
 report = TaskReport(start, end)

 r = requests.get(​'{}/users'​.format(work_recorder))
 ​for​ username ​in​ ast.literal_eval(r.text):
 _add_user_to_report(report, username)

 ​return​ ​str​(report)

@app.route​(​'/api/v1/report/user/<username>'​, methods=[​'GET'​])
def​ generate_report_for_user(username):
 ​'''Return html report of tasks for single user'''
 start = request.args[​'start'​]
 end = request.args[​'end'​]
 report = TaskReport(start, end)

 _add_user_to_report(report, username)

 ​return​ ​str​(report)

78

Appendix G: Models

user.py
from ​datetime​ import date ​# Used for today

class​ User:
 ​'''Model class for user

 Instance attributes:

 tasks -- list of tasks belonging to user

 username -- name of user

 first_task -- date of first task'''

 ​def​ __init__(​self​, username):
 ​'''Constructor for user model
 username-- name of user'''

 ​self​.tasks = []
 ​self​.username = username
 ​self​.first_task = date.today()

 ​def​ __str__(​self​):
 ​'''Return string dict representation of user'''
 ​return​ ​'{{\'username\': \'{}\', \'num_tasks\': {}, \'first_task\':
\'{}\', \'average_tasks_per_day\': {}, \'tasks\': {}}}'​.format(​self​.username,
self​.num_tasks(), ​self​.first_task, ​self​.tasks_per_day(), ​str​(​self​.tasks))

 ​def​ __eq__(​self​, other):
 ​'''Returns if users have same username'''
 ​return​ ​self​.username == other.username

 ​def​ __ne__(​self​, other):
 ​'''Returns if users do not have the same username'''
 ​return​ ​self​.username != other.username

 ​def​ add_task(​self​, task_id):
 ​'''Add a new task for user'''
 tasks.append(task_id)

 ​def​ num_tasks(​self​):
 ​'''Returns the number of tasks for user'''
 ​return​ ​len​(​self​.tasks)

 ​def​ tasks_per_day(​self​):
 ​'''Return the average tasks per day for user'''
 ​return​ ​self​.num_tasks()/((date.today() - ​self​.first_task).days + 1)

79

task.py
from ​datetime​ import date ​# Used for today
from ​enum​ import Enum

class​ ScaleFactor:
 ​'''A scaling factor to describe job

 level -- level of scaling factor (from Levels Enum)'''

 ​class​ Levels(Enum):
 ​'''Levels enumeration'''
 VERY_LOW = 0

 LOW = 1

 NOMINAL = 2

 HIGH = 3

 VERY_HIGH = 4

 EXTRA_HIGH = 5

 ​def​ __init__(​self​, level = Levels.NOMINAL):
 ​'''Initialize Scaling Factor
 level -- level of factor (default nominal)

 can be passed in as Levels object or integer (0-5)'''

 ​if​ ​type​(level) ​is​ ​int​:
 ​self​.level = ScaleFactor.Levels(level)
 ​elif​ ​type​(level) ​is​ ScaleFactor.Levels:
 ​self​.level = level

 ​def​ __str__(​self​):
 ​'''Return value (integer 0-5) as string'''
 ​return​ ​str​(​self​.level.value)

class​ Task:
 ​'''Model class for task

 username -- name of user owning task

 date -- date of task

 SLOC -- Lines of code

 TDEV -- Time to develop (minutes)

 Factors -- Scaling factors to describe job, each factor is

 given a a level (see Levels Enum) or a corresponding

 integer (0-5, where 5 is positive). The scaling

 factors are stored as a dict. Each value is described

 below:

 PREC: Precedentness (similarity to previous jobs)

 FLEX: Development Flexibility

 RESL: Architecture/Risk Resolution

 (including thoroughness of risk management)

 TEAM: Team Cohesion

 PMAT: Process Maturity'''

 ​def​ __init__(​self​, username, SLOC, TDEV, task_id = -1):
 ​'''Constructor for task

80

 username -- name of user owning task

 SLOC -- Lines of Code

 TDEV -- Time to develop (minutes)'''

 ​self​.task_id = task_id
 ​self​.username = username
 ​self​.date = date.today()
 ​self​.SLOC = SLOC
 ​self​.TDEV = TDEV ​# Minutes
 ​self​.factors = {​'PREC'​:ScaleFactor(), ​'FLEX'​:ScaleFactor(),
 ​'RESL'​:ScaleFactor(), ​'TEAM'​:ScaleFactor(), ​'PMAT'​:ScaleFactor()}

 ​def​ __str__(​self​):
 ​'''Return str dict representation of task'''
 text =

'{{\"task_id\":{},\"date\":\"{}\",\"SLOC\":{},\"TDEV\":{},\"Factors\":{{'​.fo
rmat(​self​.task_id, ​self​.date, ​self​.SLOC, ​self​.TDEV)
 ​for​ factor ​in​ ​self​.factors:
 text = text + ​'\"{}\":{},'​.format(factor,
str​(​self​.factors[factor]))
 ​return​ text + ​'}}'

81

task_report.py
from ​datetime​ import date

class​ TaskReport:
 ​'''TaskReport Class
 users -- Users in report

 tasks -- Tasks in report

 start -- Start date of report

 end -- End date of report'''

 usr_template = ​"<h3>{}</h3>{}

{}
<hr>"
 usr_summary_template = ​"Total SLOC: {}
 Average SLOC/day: {}"
 usr_tbl_head_template = ​"<table><tr><th>Date</th><th>SLOC</th><th>Time
(min)</th></tr>"

 usr_tbl_row_template = ​"<tr><td>{}</td><td>{}</td><td>{}</td></tr>"

 ​def​ __init__(​self​, start, end):
 ​'''Initialize Task Report
 start -- Start date for report

 end -- Ending date for report'''

 ​self​.users = {}
 ​self​.tasks = {}
 ​self​.start = start
 ​self​.end = end

 ​def​ add_user(​self​, user):
 ​'''Add user to report'''
 ​self​.users[user[​'username'​]] = user

 ​def​ add_task(​self​, task):
 ​'''Add task to report'''
 ​self​.tasks[task[​'task_id'​]] = task

 ​def​ __str__(​self​):
 ​'''Return html report'''
 page = ​"<html><head><title>{} - {} Task
Report</title></head><body><h1>Work Report</h1>
Generated: {}
Dates: {} - {}
Users: {}

"​.format(​self​.start, ​self​.end,
date.today(), ​self​.start, ​self​.end, ​list​(​self​.users.keys()))
 ​for​ user_id ​in​ ​self​.users:
 user = ​self​.users[user_id]
 sloc = 0

 usr_tbl = TaskReport.usr_tbl_head_template

 ​for​ task_id ​in​ user[​'tasks'​]:
 task = ​self​.tasks[task_id]
 sloc = sloc + task[​'SLOC'​]
 user_tbl

=usr_tbl+TaskReport.usr_tbl_row_template.format(task[​'date'​], task[​'SLOC'​],
task[​'TDEV'​])
 usr_tbl + ​'</table>'

 usr_summary = TaskReport.usr_summary_template.format(sloc,

(sloc/user[​'num_tasks'​])*user[​'average_tasks_per_day'​])
 page = page + TaskReport.usr_template.format(user[​'username'​],
usr_summary, usr_tbl)

 ​return​ page + ​"</body></html>"

82

