

Distributed Quiz
Hassan Hayat
Pinkal Patel
Andrés Salgado

Preface

This project comes as a result of wanting to explore the topic of clock

synchronization and real-time systems and the application of these topics. Online

games are amongst the most pervasive applications of the theory of distributed

systems and have very stringent latency requirements. Online games, especially

real-time multiplayer games, have extremely strict latency requirements as the slightest

perception of latency can ruin the experience for players.

By implementing a distributed real-time quiz, we have chosen a relatively simple

game that nevertheless encompasses most of the main challenges faced by real-time

online multiplayer games. Furthermore, this project represents an opportunity to

explore the multitude of techniques and algorithms that span the field of clock

synchronization and distributed computing.

 2

Acknowledgements

We would like to take this opportunity to express our sincere gratitude to

everyone who has helped us make this project successful. We also would like to thank

the frustrating lag, or bursts of latency, that plague many online multiplayer games for

frustrating us to become inspired to make this project.

We are also very thankful to all of the researchers and journals who have laid the

theoretical foundations for this project. Without their contributions, we would not have

a functioning internet or a functioning cloud computing system that has enable the

creation of this project.

Last, but not least, we are deeply grateful to our project instructor and advisor,

Prof. Ming-Hwa Wang, for his continued support and encouragement.

 3

Abstract

Clock synchronization is an issue in real-time distributed systems as each

independent process tends to keep its own time. This, in turn, implies that most

processes eventually go out-of sync. Online multiplayer quizzes are usually played on a

turn-based basis. This has the unfortunate consequence of not being very fun. The

challenge in quizzes usually comes from strict time requirements. This paper explores

the application of clock synchronization to online multiplayer quizzes in order to

produce a real-time online multiplayer quiz. The goal is to produce a fun and engaging

multiplayer game.

 4

Table of Contents

Introduction 6

Theoretical Basis and Literature Review 7

Hypothesis 14

Methodology 15

Implementation 16

Conclusions and Recommendations 17

Bibliography 19

Appendix A : Game Logic Workflow and Specifics 21

Appendix B: Source Code 26

 5

Introduction

The objective of this project is to explore the topic of Clock Synchronization and

demonstrate its utility with a fun and practical application, a quiz game. This project will

consider the Berkeley and Cristian algorithms and their usefulness in the context of

clock synchronization.

The goal of this game is to reproduce a quiz show in a distributed fashion. The

rules of the quiz are as follows: Multiple players connect to a server. The server asks a

question to the players and a buzzer appears on each player’s display. The first player

to press on the buzzer gets to answer the question in a multiple choice fashion. The

player earn 10 points per correct response and loses 5 points per incorrect response,

in order to discourage players from mindlessly pressing the buzzer.

This project is partly based on the paper “QuizFun: Mobile based quiz game for

learning” by Isuru et al. In that paper, the authors implemented a multiplayer quiz in

order to “increase students’ interactive participation in learning”. The goal of this

project is to produce a real-time version of their implementation.

 6

Theoretical Basis and Literature Review

The main problem we are trying to solve boils down to the problem of clock

synchronization. The quiz is played in real-time and the first player who presses the

buzzer gets to answer the question. As such, it is imperative to determine which player

pressed the buzzer first. In order for the game to be as fair as possible, this

determination has to be made regardless of which client response managed to reach

the server. This cannot be relied up as the amount of time it takes for a packet to travel

across the internet is not fixed and cannot be predetermined. Therefore, we need to

consider the theory behind clock synchronization and the ordering of events across

independent processes.

CLOCK SYNCHRONIZATION

Clock synchronization deals with understanding the temporal ordering of events

produced by concurrent processes. It is useful for synchronizing senders and receivers

of messages, monitoring simultaneous activity, and controlling concurrent access to

shared objects. The main goal is to have multiple independent processes somehow be

in agreement as to the order of events.

How do we determine if event a happened before event b? Most people would

say that event a happened first if it happened at an earlier time than event b. The

problem with this definition is that it depends on the existence of a physical clock.

Nevertheless, it is very useful to have a time-value that is associated with each event

and to be able to compare the values. As such, we consider the concept of

“happened-before” without using physical clocks.

 7

HAPPENED BEFORE

We define the relation “→” (happened-before) on the set of events of a system is

the smallest relation satisfying the following conditions:

1. If a and b are events in the same process and a comes before b, then a → b.

2. If a is the sending of a message by one process and b is the receipt of the same

message by another process, then a → b.

3. If a → b and b → c, then a → c.

Furthermore, we say that events a and b are concurrent if: a � b and b � a

LOGICAL CLOCK

We further define the concept of a logical clock. A logical clock is a way of

assigning a number to an event, where the number is thought of as the time at which

the event occurred. The concept of a logical clock is very useful as we cannot rely on a

single physical clock to synchronize multiple independent processes, each of which

may have different clock state at each given time. With logical clocks, we can define

the Clock Condition.

CLOCK CONDITION

For any events a, b: if a → b then C(a) < C(b), where C(x) is the clock value

associated with event x. Note that we cannot expect the converse to be true or else

that would imply that any two concurrent events must occur at the same time, which is

not true. The Clock Condition is satisfied if the following two conditions are satisfied:

1. If a and b are events in process Pi, and a comes before b, then Ci(a) < Ci(b)

2. If a is the act of sending a message by process Pi and b is the act of receiving

that message by process Pj, then Ci(a) < Cj(b)

 8

We consider the concept of the Clock Condition because we can place a total

ordering on the events in a system of clocks satisfying the Clock Condition. To break

ties, we can use any arbitrary ordering of the processes.

ORDERED BEFORE

In order to perform an ordering of events, we define the relation “⇒”

(ordered-before) as follows. If a is an event in process Pi and b is an event in process

Pj, then a ⇒ b if and only if either.

1. Ci(a) < Cj(b)

2. Ci(a) = Cj(b) and Pi ≺ Pj

Note that the ordering ⇒ on a system of clocks because the ordering ≺ of processes

can be arbitrary and is left to the discretion of the implementation.

of Lamport timestamps. This algorithm forces a resequencing of timestamps to

ensure that the relation “→” is properly preserved throughout a system of MN

1. Each process has a clock, which can be a simple counter that is incremented for

each event.

2. When a process sends a message, it includes the counter value with the

message

3. When a process receives a message, this recipient process updates its counter,

if necessary, to the greater of its current counter value and the timestamp in the

received message. The counter is then incremented by 1 before the message is

considered received.

 9

This algorithm has the main advantage of being very simple to implement and to

understand, but it has a flaw. While we know that if a → b then C(a) < C(b), we cannot

tell that a → b given C(a) < C(b). Unfortunately, looking at Lamport timestamps, we

cannot conclude which pairs of events are causally related and which are not. One

proposed solution is the concept of vector clocks.

LAMPORT TIMESTAMPS

A very simple implementation of this concept is with the use of Lamport

timestamps. This algorithm forces a resequencing of timestamps to ensure that the

relation “→” is properly preserved throughout a system of processes.

1. Each process has a clock, which can be a simple counter that is incremented for

each event.

2. When a process sends a message, it includes the counter value with the

message

3. When a process receives a message, this recipient process updates its counter,

if necessary, to the greater of its current counter value and the timestamp in the

received message. The counter is then incremented by 1 before the message is

considered received.

This algorithm has the main advantage of being very simple to implement and to

understand, but it has a flaw. While we know that if a → b then C(a) < C(b), we cannot

tell that a → b given C(a) < C(b). Unfortunately, looking at Lamport timestamps, we

cannot conclude which pairs of events are causally related and which are not. One

proposed solution is the concept of vector clocks.

 10

VECTOR CLOCKS

A vector clock in a system of N processes is a vector of N integers. Each

process maintains its own vector clock (Vi for a process Pi) to timestamp local events.

Like Lamport timestamps, vector clocks are sent with each message. The rules for

using vector clocks are as follows:

1. The vector is initialized to 0 for all processes: Vi(j) = 0 for all i, j

2. Before a process Pi timestamps an event, it increments its element of the vector

in its local vector: Vi(i) = Vi(i) + 1

3. A message is sent from process Pi with Vi attached to the message

4. When a process Pj receives a vector timestamp t, it compares the two vectors

element by element, setting its local vector clock to the higher of the two values:

Vj(i) = max(Vj(i), t(i)) for all i

The disadvantage with vector clocks is the greater storage and message payload size,

since we have to include an entire vector with each message. An alternative to using

vector clocks is to decide on a single source for time and have each process call this

time server to obtain the time. Cristian’s Algorithm is an algorithm that achieves clock

synchronization using a time server.

CRISTIAN’S ALGORITHM

The easiest way to set the time would be to simply issue a remote procedure

call to a time server and obtain the time. The problem is that the time return does not

factor in the network and processing delays. To compensate for this, we simply

measure the local system time at which the request is sent, let’s call it T0. We also

measure the local system time at which the response in received, let’s call it T1. If we

 11

assume that it takes the same amount of time for a request to go to the server and

return from the server, then we can set our new time to be: T = Tserver + (T1 - T0) / 2

The main issue with Cristian’s algorithm is that the time server may fail and thus

clock synchronization may be unavailable. An alternative would be to have the

processes agree on a common time without having to resort to a time server. The

Berkeley Algorithm is an algorithm that achieves this goal.

BERKELEY ALGORITHM

The Berkeley algorithm makes no assumptions on the accuracy of each clock

and does not require a remote time server. The goal of the algorithm is to achieve

synchronization by getting all processes to set their clocks to the average of all the

clocks in the system. This is done by selecting a master process that coordinates the

entire synchronization process while the remaining process are all slave processes.

The algorithm works as follows:

1. A master process is chosen via an election process (such as Chang and Roberts

algorithm)

2. The master polls the slaves who reply with their time

3. The master observes the Round-Trip Time of the messages and estimates the

time of each slave and its own (the estimation can be done via Cristian’s

algorithm)

4. The master then averages the clock times, ignoring any outlier values

5. The master then sends out the amount (positive or negative) that each slave

must adjust its clock.

 12

REVIEW

We review all the above algorithms for use in the research. We dismiss Lamport

Timestamps and Vector Clocks because of the property of Ordered Before where,

while we know that if a → b then C(a) < C(b), we cannot tell that a → b given C(a) <

C(b). This means that we cannot decide on which client has buzzed first just from

timestamps. Timestamps require an imposed ordering, such as the index or id of the

client. The problem is we want to rely on actual physical time, which cannot be inferred

from the timestamps as described above. Therefore, we are compelled to rely on

frequent ad-hoc clock synchronization, as per the Berkeley algorithm.

 13

Hypothesis

In this research, we implement the Berkeley’s algorithm, enhanced with

Cristian’s algorithm, in order to keep multiple quiz clients in sync. As such, we

hypothesize that the Berkeley’s algorithm will allow to reduce the error to such an

extent that it seems as if the order in which the players buzz perceived by the server is

the same as the actual physical order of the events.

This proposal aims to provide a general audience with evidence and

experimentation sufficient to prove that such a distributed quiz game system may exist

under the conditions mentioned above.

Online games have proven time and again that people are engaged when they

know that they are competing against other individuals, rather than against artificial

intelligence. By developing a game that is played in real time, engagement is only

enhanced, therefore increasing the appeal perceived by the potential audience.

 14

Methodology

For this research, we have opted to use the Berkeley algorithm in order to

perform clock synchronization. Unfortunately, we cannot use Lamport logic because

timestamps do not tell us which events physically happened in what order. Lamport

logic imposes a logical ordering and as such describes which events logically

happened before another. The problem with this is that logical ordering is imposed via

id’s or indices and has nothing to do from physical time. Therefore, we are compelled

to approximate physical time by constantly synchronizing multiple clients via the

Berkeley algorithm.

In this research, the server is considered the master and the clients are all the

slaves. The server queries the time from each client, using Cristian’s algorithm. Then,

the server averages out all the times from the clients and itself and then sends the

appropriate corrections to each client and itself. This process is done every 3 seconds

or so in order to account for the different speeds at which time flows on each client.

A quiz game requires a design that is highly available, and easy to deploy. We

are using Node.js which is a JavaScript runtime, for the logical foundation of the game,

values are stored in volatile memory in the client and server side. The front end will tie

everything together with HTML, CSS and JavaScript. We have deployed the

application on Heroku and is available at: http://distributed-quiz.herokuapp.com/

 15

http://distributed-quiz.herokuapp.com/

Implementation

It was important to determine the interaction between the users and the game

before the implementation phase took place. We came to the conclusion that it was

necessary to provide a platform that would be controlled by a perpetual admin. The

code took into consideration this premise, and we implemented a blocking mechanism

that allowed the administrator to basically trigger a switch when the game was starting

in order to allow for the quiz experience to commence. After this statement it could

sound counter intuitive, but all the code used during the development of this game is

based on Node.js, which is a non-blocking coding standard.

Another key aspect of the implementation was the algorithmic code that

constantly analyzes the time discrepancies between clients and server. This algorithm

was coded to correct time based on the values received from the clients. First, the

server queries the times from each client using Cristian’s algorithm. Then, the server

calculates the time discrepancies, averages the values and sends a correction to each

client and itself, based on each client’s unique reported times.

The UI, or frontend, is implemented in HTML, CSS, and JS and relies on the

Polymer library for simple HTML components. The UI is very simple and relies on

websockets to establish a bi-directional communication scheme with the server. The

server often pushes updates to the client, such as the next question or the result of

who buzzed. Furthermore, in the waiting room, as soon as a new client joins the game,

all clients are notified and these updates are reflected in real-time.

 16

Conclusions and Recommendations

After researching the different algorithms presented on our preliminary

presentation, the group established that the best suited algorithms for our application

were Christian’s and Berkeley’s algorithms. We came to that conclusion based on the

evidence that these algorithms allow for calculating remote discrepancies in time,

based upon a control value given by a server. Berkeley’s algorithm was used to

achieve a distributed experience, in which any device can join the game regardless of

its location and time zone. Because the game had to be driven via a centralized server,

we chose to run the game from a perpetual master process, and skipped the election

process mentioned earlier in the theoretical basis and literature review of the proposal.

GENERAL IMPROVEMENTS AND FUTURE WORK

The following are elements that have been considered into future versions of the

application:

● Provide a backend mechanism that will synchronize the display of the questions

or options regardless of when they arrive to the client. Clients with poor

connections could suffer if there wasn’t a mechanism to homogenize the a

consistent visualization and synchronized timing of when questions are show.

We could implement a mechanism that would block the display of the questions

until a round of verification that every client confirms the reception of questions

is through.

● Implement a mechanism that allows a user to rejoin the game after losing a

socket connection.

 17

● Implement a mechanism that automatically pauses the game if the admin is to

lose socket connection.

● Provide a front-end debugging interface that allows for troubleshooting on

situations where poor connectivity is part of the game experience.

● If a client were to enter an incorrect answer, the question should go to the client

who buzzed second and so on, until the question is answered correctly.

 18

Bibliography

Baillieul, John, and Panos J. Antsaklis. “Control and Communication Challenges in Networked

Real-Time Systems.” Proceedings of the IEEE , vol. 95, no. 1, 2007, pp. 9–28.

Bharambe, Ashwin R et al. “A Distributed Architecture for Interactive Multiplayer Games.”

Carnegie Mellon School of Computer Science, Jan. 2005.

Claypool, Mark, and Kajal Claypool. “Latency and Player Actions in Online Games.”

Communications of the ACM , vol. 49, no. 11, 2006, p. 40.

Cristian, Flaviu. “Probabilistic Clock Synchronization.” Distributed Computing , vol. 3, no. 3,

1989, pp. 146–158.

Fidge, C. “Logical Time in Distributed Computing Systems.” Computer , vol. 24, no. 8, 1991, pp.

28–33.

Fidge, Colin J. “Timestamps in Message-Passing Systems That Preserve the Partial Ordering.”

zoo.cs.yale.edu/classes/cs426/2012/lab/bib/fidge88timestamps.pdf.

Gusella, R., and S. Zatti. “The Accuracy of the Clock Synchronization Achieved by TEMPO in

Berkeley UNIX 4.3BSD.” IEEE Transactions on Software Engineering , vol. 15, no. 7,
1989, pp. 847–853.

Hashimoto, Yousuke, and Yutaka Ishibashi. “Influences of Network Latency on Interactivity in

Networked Rock-Paper-Scissors.” Proceedings of 5th ACM SIGCOMM Workshop on
Network and System Support for Games - NetGames '06 , 2006.

Knutsson, Björn et al. “Peer-to-Peer Support for Massively Multiplayer Games.” Ieee Infocom

2004 .

Lamport, Leslie. “Time, Clocks, and the Ordering of Events in a Distributed System.”

Communications of the ACM , vol. 21, no. 7, 1978, pp. 558–565.

Lee, Kyungmin et al. “Outatime: Using Speculation to Enable Low-Latency Continuous

Interaction for Mobile Cloud Gaming.” Proceedings of the 13th Annual International
Conference on Mobile Systems, Applications, and Services - MobiSys '15 , 2015.

 19

Li, Qun, and Daniela Rus. “Global Clock Synchronization in Sensor Networks.” IEEE

INFOCOM, 2004, ieeexplore.ieee.org/document/1566581/.

Lokuge, Kulari et al. “QuizFun: Mobile Based Quiz Game for Learning.” 2009 International

Workshop on Technology for Education , 2009.

Saga, Masaki et al. “Development of a Multiple User Quiz System on a Shared Display.” 2009

Seventh International Conference on Creating, Connecting and Collaborating through
Computing , 2009.

 20

Appendix A : Game Logic Workflow and Specifics

The game logic is described in the following workflow charts:

Admin Phase A1

 21

Player 1 Phase A1

 22

Player 1 Phase B1

 23

Special Circumstances A1

 24

Special Circumstances A2

 25

Appendix B : Source Code

SERVER: app.js

'use strict';

const express = require('express');
const fs = require('fs');
const path = require('path');
const http = require('http');
const socketio = require('socket.io');
const request = require('request');

const Game = require('./lib/game');
const Player = require('./lib/player');

// Special reset option available to admin
// This is to be used if anything goes wrong during the demo
const ADMIN_RESET = 'Admin Reset';

// The Application
class App {
 constructor () {
 // Initialize the express app, the http server, and the socket io port
 this. app = express();
 this. httpserver = http .Server(this. app);
 this. io = socketio . listen (this. httpserver);

 // Initialize the game
 this. game = null;

 this. host = (process . env.ENVIRONMENT === 'production') ?
'https://distributed-quiz.herokuapp.com' : 'localhost';
 this. port = process. env. PORT || 8080 ;

 // Setup Http routes
 this. _setupRoutes ();

 // Setup Socket Connection
 this. _setupSocketCon nection ();

 // Run the App
 this. run ();
 }
 _setupRoutes () {
 // Lets us import files from the server on the client side
 this. app. use ('/', express. static(path . join (__dirname, 'client')));

 // Sets up the home directory
 this. app. get ('/', (req, res) => {
 res. sendFile (path . join (__dirname, 'client', 'index.html'));

 });
 }

 26

 _setupSocketConnection () {
 // Handle response on new socket connection
 this. io. on ('connection', (socket) => {
 // We have two types of players, a normal player and an admin player
 // An admin player creates the game and moves the game forward
 // A normal player only answers questions and waits for the next question to be served
 if (this. game && this. game. admin) {
 App. notifyIsNotAdmin (socket);
 } else {
 App. notifyIsAdmin (socket);
 }

 // Setup the main socket routes
 this. _setupSocketRoutes (socket);
 });
 }

 _setupSocketRoutes (socket) {
 // Handle creation of new game
 socket. on ('create new game', (data) => {
 this. onCreateNewGame (socket, data);
 });

 // Handle joining of game
 socket. on ('join game', (data) => {
 this. onJoinGame (socket, data);
 });
 }

 onCreateNewGame (socket, data) {
 // Create a new game
 this. game = new Game();

 // Set the new player as an admin player and add the admin player to the game
 let adminPlayer = new Player(socket, data. name);
 this. game. addPlayer (adminPlayer);

 // Notify to admin player that the game has just been created
 App. notifyGameCreated (socket, adminPlayer);
 }

 onJoinGame (socket, data) {
 // If game exists
 if (this. game && this. game. admin) {
 // Reset the game in the case of an admin reset
 if (data. name === ADMIN_RESET) {
 this. game. resetGame ();
 } else {
 // Create the new player
 let player = new Player(socket, data. name);

 // Notify all other players that the player has been added
 App. notifyGameJoined (socket, player , this. game);

 // Add the player to the game
 this. game. addPlayer (player);

 27

 }
 }
 }

 static notifyIsAdmin (socket) {
 socket. emit ('admin', {});
 }

 static notifyIsNotAdmin (socket) {
 socket. emit ('not admin', {});
 }

 static notifyGameCreated (socket, player) {
 socket. emit ('game created', {
 name: player. name,
 id: player. id
 });
 }

 static notifyGameJoined (socket, player, game) {
 socket. emit ('game joined', {
 name: player. name,
 id: player. id,
 players: game. players. map ((player) => ({
 name: player. name,
 id: player. id
 }))
 })
 }

 // Run the server by listening to the main port or port 8080
 run () {
 if (module === require. main) {
 this. httpserver. listen (this. port);
 console. log (`Server Listening on port ${ this. port} ̀);
 }

 module. exports = this. app;
 }
}

// Create the app and run it
const app = new App();

 28

SERVER: lib/game.js

const async = require('./async');
const random = require('./random');
const QUESTIONS = require('./question-repository');

class Game {
 constructor () {
 this. admin = null;
 this. players = [];
 this. isPlaying = false;
 this. correction = 0 ;
 this. buzzBuffer = [];
 this. isWaitingForBuzzes = false;
 this. currentQuestionIndex = 0 ;

 setInterval (() => {
 this. syncClocks ();
 }, 3000);
 }

 resetGame () {
 this. admin = null;
 this. players = [];
 this. isPlaying = false;
 this. correction = 0 ;
 this. buzzBuffer = [];
 this. isWaitingForBuzzes = false;
 this. currentQuestionIndex = 0 ;
 }

 getTime () {
 return Date. now () + Math. round (this. correction);
 }

 correct (correction= 0) {
 this. correction = this. correction + correction;
 }

 syncClocks () {
 if (this. players. length > 1) {
 console. log ("Sync Clocks");

 const timeRequests = this. players. map ((player, index) => {
 return player. getTime ()
 . then ((time) => ({
 index: index,
 time: time
 })
);
 });

 return async. optional (timeRequests)
 . then ((timeResponses) => {
 const localtime = this. getTime ();

 29

 const numberOfClocks = timeResponses. length + 1 ;

 let averageTime = localtime ;

 timeResponses. forEach ((timeResponse) => {
 averageTime = averageTime + timeResponse.time;
 console. log (`Time Difference ${timeResponse. index} : ${ localtime -
timeResponse.time} ̀);
 });

 averageTime = averageTime / numberOfClocks ;

 const localcorrection = averageTime - localtime ;
 this. correct (localcorrection);

 timeResponses. forEach ((timeResponse) => {
 const correction = averageTime - timeResponse.t ime;
 this. players[timeResponse. index]. correct (correction);
 });
 });
 }
 }

 static getQuestion (index) {
 const question = QUESTIONS [index];

 if (question) {
 let choices = question . choices . slice ();
 choices . splice (random. randInt (choices . length), 0 , question . answer);

 return {
 statement: question . statement,
 choices: choices
 };

 } else {
 return null;
 }
 }

 evaluateBuzz () {
 if (this. buzzBuffer. length === 0) {
 setTimeout(() => {
 this. evaluateBuzz ();
 }, 3000);
 } else {
 this. buzzBuffer. sort ((i1, i2) => i1. timestamp - i2. timestamp);
 const currentPlayer = this. buzzBuffer[0].player;

 this. players. forEach ((player) => {
 if (player == currentPlayer) {
 player. answer();
 } else {
 player. waitForAnswer (currentPlayer);
 }
 });

 30

 this. isWaitingForBuzzes = false;
 this. buzzBuffer = [];
 }
 }

 sendNextQuestion () {
 if (this. currentQuestionIndex < QUESTIONS .length) {
 let question = Game. getQuestion (this. currentQuestionIndex);
 this. currentQuestionIndex = this. currentQuestionIndex + 1 ;
 this. players. forEach ((player) => {
 player. sendNextQuestion (question);
 });
 } else {
 this. sendGameOver ();
 }
 }

 getScoreTable () {
 return this. players. map ((player) => ({
 name: player. name,
 id: player. id,
 score: player. score
 }));
 }

 sendGameOver () {
 const scoreTable = this. getScoreTable ();
 this. players. forEach ((player) => {
 player. sendGameOver (scoreTable);
 });
 this. resetGame ();
 }

 getCurrentAnswer () {
 if (this. currentQuestionIndex < QUESTIONS .length + 1) {
 return QUESTIONS [this. currentQuestionIndex - 1]. answer;
 } else {
 return null;
 }
 }

 processAnswer (answer, player) {
 console. log ("Provided Answer: ");
 console. log (answer);
 console. log ("Correct Answer: ");
 console. log (this. getCurrentAnswer ());
 const correctAnswer = this. getCurrentAnswer ();
 if (answer === this. getCurrentAnswer ()) {
 player. score = player. score + 10 ;
 this. players. forEach ((player) => {
 player. sendAnswerIsCorrect (correctAnswer);
 });
 } else {
 player. score = player. score - 5 ;
 this. players. forEach ((player) => {
 player. sendAnswerIsIncorrect (correctAnswer);
 });

 31

 }
 }

 handleBuzz (player, socket, data) {
 console. log (`Buzzed at ${data. timestamp} ̀);
 if (! this. isWaitingForBuzzes) {
 this. isWaitingForBuzzes = true;
 this. buzzBuffer = [];

 setTimeout(() => {
 this. evaluateBuzz ();
 }, 3000);
 }
 const bufferItem = {
 player: player,
 timestamp: data. timestamp
 };
 this. buzzBuffer. push (bufferItem);
 }

 addPlayer (player) {
 if (! this. isPlaying) {

 player . onBuzz = (socket, data) => {
 this. handleBuzz (player , socket, data)
 };

 player . onAnswer = (socket, data) => {
 this. processAnswer (data. answer, player);
 };

 if (! this. admin) {
 player . onStartGame = (socket, data) => {
 this. sendNextQuestion ();
 };

 player . onNextQuestion = (socket, data) => {
 this. sendNextQuestion ();
 };

 this. admin = player ;
 }

 this. players. push (player);

 this. players. forEach ((p) => {
 p. sendNewPlayerJoined (player);
 });
 }
 }
}

module. exports = Game;

 32

SERVER: lib/player.js

const Promise = require('bluebird');
const uuid = require('uuid/v4');

class Player {

 constructor (socket, name) {
 this. score = 0 ;
 this. socket = socket;
 this. name = name;
 this. id = uuid ();

 // Event Handlers
 this. onRespondTime = null;
 this. onStartGame = null;
 this. onNextQuestion = null;
 this. onBuzz = null;
 this. onAnswer = null;

 // Setup Socket Handlers
 this. _setupSocketHan dlers ();
 }

 _setupSocketHandlers () {
 this. socket. on ('respond time', (data) => {
 if (this. onRespondTime) {
 this. onRespondTime (this. socket, data);
 }
 });

 this. socket. on ('start game', (data) => {
 if (this. onStartGame) {
 this. onStartGame(this. socket, data);
 }
 });

 this. socket. on ('next question', (data) => {
 if (this. onNextQuestion) {
 this. onNextQuestion(this. socket, data);
 }
 });

 this. socket. on ('buzz', (data) => {
 if (this. onBuzz) {
 this. onBuzz(this. socket, data);
 }
 });

 this. socket. on ('select answer', (data) => {
 if (this. onAnswer) {
 this. onAnswer(this. socket, data);
 }
 });
 }

 33

 getTime () {
 return new Promise ((resolve) => {
 const sendTime = Date. now ();
 this. socket. emit ('request time', {});
 this. onRespondTime = (socket, data) => {
 console. log (data);
 const receiveTime = Date. now ();
 const roundTripTime = receiveTime - sendTime ;
 const remoteTime = data. timestamp ;
 const time = remoteTime + Math. round (roundTripTime / 2);
 resolve(time);
 };
 });
 }
 correct (correction) {
 this. socket. emit ('correct time', {
 correction: correction
 });
 }
 answer () {
 this. socket. emit ('answer', {});
 }
 waitForAnswer (player) {
 this. socket. emit ('wait for answer', {
 name: player. name,
 id: player. id
 });
 }
 sendNextQuestion (question) {
 this. socket. emit ('next question', question);
 }
 sendGameOver (scoreTable) {
 this. socket. emit ('game over', {
 scoreTable: scoreTable
 });
 }
 sendNewPlayerJoined (player) {
 this. socket. emit ('new player joined', {
 id: player. id,
 name: player. name
 });
 }
 sendAnswerIsCorrect (answer) {
 this. socket. emit ('correct', {
 answer: answer,
 score: this. score
 });
 }
 sendAnswerIsIncorrect (answer) {
 this. socket. emit ('incorrect', {
 answer: answer,
 score: this. score
 });
 }
}

module. exports = Player;

 34

SERVER: lib/async.js

const Promise = require('bluebird');

// Function that evaluates a list of promises, only keeping the promises that are successful
function optional (promises) {
 return Promise . all (
 promises. map((promise) => promise. reflect ()))
 . filter ((inspection) => inspection. isFulfilled ())
 . map ((inspection) => inspection. value());
}

module. exports = {
 optional : optional
};

SERVER: lib/random.js

// Function to generate a random uniformly distributed integer from 0 to n - 1
function randInt (n) {
 return Math. floor (Math. random () * n);
}

module. exports = {
 randInt : randInt
};

CLIENT: client/index.html

<!DOCTYPE html>
< html lang="en">
 < head>
 < meta charset="UTF-8">
 < meta name="viewport" content="width=device-width, initial-scale=1.0">
 < title> Distributed Quiz </ title>
 < script src="bower_components/webcomponentsjs/webcomponents-lite.min.js"></ script>

< link rel="import" href="components/d-app.html">
 < style>
 html, body {
 height: 100 %;
 width: 100 %;
 margin: 0 ;
 font-family: 'Roboto', 'Noto', 'Helvetica Neue', 'Arial', sans-serif;
 }
 </ style>
 </ head>
 < body class="fullbleed layout vertical">
 < d-app></ d-app>
 </ body>
</ html>

 35

CLIENT: client/components/d-app.html

<!-- Import Polymer, the framework used to make the client -->
< link rel="import" href="../bower_components/polymer/polymer.html">

<!-- Import the components used -->
< link rel="import" href="../bower_components/paper-button/paper-button.html">
< link rel="import" href="../bower_components/paper-header-panel/paper-header-panel.html">
< link rel="import" href="../bower_components/paper-toolbar/paper-toolbar.html">
< link rel="import" href="../bower_components/paper-input/paper-input.html">
< link rel="import" href="../bower_components/paper-radio-group/paper-radio-group.html">
< link rel="import" href="../bower_components/paper-radio-button/paper-radio-button.html">
< link rel="import" href="../bower_components/iron-data-table/iron-data-table.html">

<!-- Import the socket io library -->
< script src="../bower_components/socket.io-client/dist/socket.io.js"></ script>

<!-- The Application component definition -->
< dom-module id="d-app">
 < template>
 < style>
 : host {
 display: block;
 width: 100 %;
 height: 100 %;
 }

 . new-game-container {
 flex: 1 ;
 display: flex;
 align-items: center;
 justify-content: center;
 }

 . container {
 height: 100 %;
 width: 100 %;
 display: flex;
 flex-direction: column;
 position: absolute;
 justify-content: space-between;
 }

 . button-container {
 height: 76 px;
 width: 100 %;
 display: flex;
 flex-direction: row;
 align-items: center;
 justify-content: flex-end;
 }

 . create-button {
 height: 44 px;
 background-color: #00e676;
 margin-right: 16 px;

 36

 }

 . player-list-container {
 flex: 1 ;
 margin: 16 px;
 overflow: scroll;
 }

 . action-button {
 width: 100 %;
 margin: 0 ;
 background-color: #00e676;
 }

 . disabled-button {
 width: 100 %;
 margin: 0 ;
 }
 . statement {
 margin: 10 px;
 display: flex;
 align-items: center;
 justify-content: center;
 font-size: 20 pt;
 }
 . choices {
 flex: 2 ;
 display: flex;
 flex-direction: column;
 justify-content: space-around;
 margin: 15 px;
 }
 . response {
 height: 80 px;
 margin: 10 px;
 }

 . score {
 margin: 15 px;
 }
 </ style>

 < paper-header-panel>
 < paper-toolbar class="toolbar">
 < div> Distributed Quiz </ div>

 </ paper-toolbar>

 <!-- The Enter Name Screen -->
 < template is="dom-if" if="[[_shouldRenderEnterNameScreen]]">
 < div class="content fit container">
 < div class="new-game-container">
 < paper-input label="Enter Name" value="{{name}}"></ paper-input>
 </ div>
 < div class="button-container">

 < template is="dom-if" if="[[isAdmin]]">

 37

 < paper-button class="create-button" on-tap="createNewGame">
 CREATE GAME
 </ paper-button>
 </ template>
 < template is="dom-if" if="[[!isAdmin]]">
 < paper-button class="create-button" on-tap="joinGame">
 JOIN
 </ paper-button>
 </ template>
 </ div>
 </ div>
 </ template>

 <!-- The Join Game Screen -->
 < template is="dom-if" if="[[_shouldRenderJoinGameScreen]]">
 < div class="content fit container">
 < div class="player-list-container">
 < span> Players: </ span>
 < ul>
 < template is="dom-repeat" items="{{players}}">
 < li> {{item.name}} </ li>
 </ template>
 </ ul>
 </ div>
 < template is="dom-if" if="[[_shouldRenderStartButton]]">
 < paper-button class="action-button" on-tap="startGame">
 START
 </ paper-button>
 </ template>
 < template is="dom-if" if="[[_shouldRenderWaitingDisabledButton]]">
 < paper-button disabled class="disabled-button">
 WAITING...
 </ paper-button>
 </ template>
 </ div>
 </ template>

 <!-- The Question Screen -->
 < template is="dom-if" if="[[_shouldRenderQuestion]]">
 < div class="container">
 < div class="score">
 Score: {{score}}
 </ div>
 < span class="statement">
 [[statement]]
 </ span>

 < template is="dom-if" if="[[_shouldRenderWaitingPage]]">
 < div class="response">
 Waiting for {{playerCurrentlyAnswering}} to answer
 </ div>
 </ template>

 < template is="dom-if" if="[[_shouldRenderChoices]]">
 < paper-radio-group selected="{{selectedAnswer}}" class="choices">
 < template is="dom-repeat" items="{{choices}}">

 38

 < paper-radio-button
name="{{index}}"> {{item}} </ paper-radio-button>
 </ template>
 </ paper-radio-group>

 < paper-button class="action-button" on-tap="selectAnswer">
 Submit
 </ paper-button>
 </ template>

 < template is="dom-if" if="[[_shouldRenderBuzzButton]]">
 < paper-button class="action-button" on-tap="buzz">
 Buzz
 </ paper-button>
 </ template>

 < template is="dom-if"
if="[[_shouldRenderWaitingBuzzResponseDisabledButton]]">
 < paper-button disabled class="disabled-button">
 WAITING...
 </ paper-button>
 </ template>

 < template is="dom-if" if="[[_shouldRenderCorrectPage]]">
 < div class="response">
 Correct : The answer is {{correctAnswer}}
 </ div>
 </ template>

 < template is="dom-if" if="[[_shouldRenderIncorrectPage]]">
 < div class="response">
 Incorrect : The answer is {{correctAnswer}}
 </ div>

 </ template>

 < template is="dom-if" if="[[_shouldRenderNextQuestionButton]]">
 < paper-button class="action-button" on-tap="nextQuestion">
 NEXT QUESTION
 </ paper-button>
 </ template>
 </ div>
 </ template>

 <!-- The Score Table Screen -->
 < template is="dom-if" if="[[_shouldRenderScoreTable]]">
 < iron-data-table items="[[scoreTable]]">
 < data-table-column name="Player">
 < template> [[item.name]] </ template>
 </ data-table-column>
 < data-table-column name="Score" sort-by="score">
 < template> [[item.score]] </ template>
 </ data-table-column>
 </ iron-data-table>
 </ template>
 </ paper-header-panel>
 </ template>

 39

 < script>
 // Application player state constants
 const EMPTY_STATE = 'empty state';
 const CREATING_NEW_GAME = 'creating new game';
 const JOINING_GAME = 'joining game';
 const PLAYING = 'playing';
 const DONE_PLAYING = 'done playing';

 // Question state constants
 const NOT_BUZZED = 'not buzzed';
 const BUZZED = 'buzzed';
 const ANSWERING = 'answering';
 const WAITING = 'waiting';
 const CORRECT = 'correct';
 const INCORRECT = 'incorrect';

 // Application component
 // The entire component is defined here
 Polymer ({
 // The name of the component
 is: "d-app",
 // The list of properties
 properties: {
 // The score table
 scoreTable: {
 type: Array,
 value: []
 },

 // The web socket
 socket: Object,

 // The player name
 name: {
 type: String,
 value: ""
 },

 // The player state of the application
 state: {
 type: String,
 value: EMPTY_STATE
 },

 // The question state
 questionState: {
 type: String,
 value: NOT_BUZZED
 },

 // Flag if player is an admin player
 isAdmin: {
 type: Boolean,
 value: true
 },

 // The id of the player

 40

 id: Number,

 // The current question statement
 statement: String,

 // The question choices
 choices: Array,

 // The amount by which the physical clock is to be corrected
 timeCorrection: {
 type: Number,
 value: 0
 },

 // The list of players in the game
 players: {
 type: Array,
 value: []
 },

 // The current player score
 score: {
 type: Number,
 value: 0
 },

 // The current selected answer index
 selectedAnswer:{
 type: Number,
 value: 0
 },

 // The correct answer
 correctAnswer: String,

 // The name of the player currently answering
 playerCurrentlyAnswering: String,

 // Flag indicating if we should be rendering the enter name screen
 _shouldRenderEnterNameScreen: {
 computed: '_computeShouldRenderEnterNameScreen(state)'
 },

 // Flag indicating if we should be rendering the join game screen
 _shouldRenderJoinGameScreen: {
 computed: '_computeShouldRenderJoinGameScreen(state)'
 },

 // Flag indicating if we should be rendering the start game button
 _shouldRenderStartButton: {
 computed: '_computeShouldRenderStartButton(state, isAdmin)'
 },

 // Flag indicating if we should be rendering the waiting button
 _shouldRenderWaitingDisabledButton: {
 computed: '_computedShouldRenderWaitingDisabledButton(state, isAdmin)'
 },

 41

 // Flag indicating if we should be rendering the question
 _shouldRenderQuestion: {
 computed: '_computeShouldRenderQuestion(state)'
 },

 // Flag indicating if we should be rendering the choices
 _shouldRenderChoices: {
 computed: '_computeShouldRenderChoices(state, questionState)'
 },

 // Flag indicating if we should be rendering the waiting page
 _shouldRenderWaitingPage: {
 computed: '_computeShouldRenderWaitingPage(state, questionState)'
 },

 // Flag indicating if we should be rendering the buzz button
 _shouldRenderBuzzButton: {
 computed: '_computeShouldRenderBuzzButton(state, questionState)'
 },

 // Flag indicating if we should be rendering the correct page
 _shouldRenderCorrectPage: {
 computed: '_computeShouldRenderCorrectPage(state, questionState)'
 },

 // Flag indicating if we should be rendering the incorrect page
 _shouldRenderIncorrectPage: {
 computed: '_computeShouldRenderIncorrectPage(state, questionState)'
 },

 // Flag indicating if we should be rendering the next question button
 _shouldRenderNextQuestionButton: {
 computed: '_computeShouldRenderNextQuestionButton(state, questionState,
isAdmin)'
 },

 // Flag indicating if we should be rendering the score table
 _shouldRenderScoreTable: {
 computed: '_computeShouldRenderScoreTable(state)'
 },

 // Flag indicating if we should be rendering the waiting for buzz response
disabled button
 _shouldRenderWaitingBuzzResponseDisabledButton: {
 computed: '_computeShouldRenderWaitingBuzzResponseDisabledButton(state,
questionState)'
 }
 },
 // Method that runs as soon as the component is ready
 ready () {
 // Setup the socket connection
 this. _setupSocketConnection ();

 // Setup the socket routes
 this. _setupSocketRoutes ();
 },

 42

 _setupSocketConnection () {
 this. socket = io ();
 },

 _setupSocketRoutes () {
 this. socket. on ('request time', () => {
 this. onRequestTime ();
 });

 this. socket. on ('correct time', (data) => {
 this. onCorrectTime (data);
 });

 this. socket. on ('game created', (data) => {
 this. onGameCreate (data);
 });

 this. socket. on ('game joined', (data) => {
 this. onGameJoined (data);
 });

 this. socket. on ('next question', (data) => {
 this. onNextQuestion (data);
 });

 this. socket. on ('admin', (data) => {
 this. onAdmin ();
 });

 this. socket. on ('not admin', (data) => {
 this. onNotAdmin ();
 });

 this. socket. on ('new player joined', (data) => {
 this. onNewPlayerJoined (data);
 });

 this. socket. on ('answer', () => {
 this. onAnswer ();
 });

 this. socket. on ('wait for answer', (data) => {
 this. onWaitForAnswer (data);
 });

 this. socket. on ('correct', (data) => {
 this. onCorrect (data);
 });

 this. socket. on ('incorrect', (data) => {
 this. onIncorrect (data);
 });

 this. socket. on ('game over', (data) => {
 this. onGameOver (data);
 });
 },

 43

 // Socket event handlers
 onRequestTime () {
 let timestamp = Date. now () + Math. round (this. timeCorrection);
 this. socket. emit ('respond time', {
 timestamp: timestamp
 });
 },
 onCorrectTime (data) {
 this. timeCorrection = this. timeCorrection + data.corre ction;
 },
 onGameCreate (data) {
 this. id = data. id;
 },
 onGameJoined (data) {
 this. id = data. id;
 data. players. forEach ((player) => {
 this. push ('players', player);
 });
 },
 onNextQuestion (data) {
 this. statement = data. statement;
 this. choices = data. choices;
 this. questionState = NOT_BUZZED ;
 this. state = PLAYING ;
 },
 onAdmin () {
 this. isAdmin = true;
 },
 onNotAdmin () {
 this. isAdmin = false;
 },
 onNewPlayerJoined (data) {
 this. push ('players', {
 id: data. id,
 name: data. name
 });
 },
 onAnswer () {
 this. questionState = ANSWERING ;
 },
 onWaitForAnswer (data) {
 this. questionState = WAITING ;
 this. playerCurrentlyAnswering = data. name;
 },
 onCorrect (data) {
 this. correctAnswer = data. answer;
 this. questionState = CORRECT ;
 this. score = data. score;
 },
 onIncorrect (data) {
 this. correctAnswer = data. answer;
 this. questionState = INCORRECT ;
 this. score = data. score;
 },
 onGameOver (data) {
 this. scoreTable = data. scoreTable;

 44

 this. state = DONE_PLAYING ;
 },

 // Methods that run when client events are handled
 createNewGame () {
 this. state = JOINING_GAME ;
 this. isAdmin = true;
 this. socket. emit ("create new game",{ name: this. name})
 },
 joinGame (){
 this. state = JOINING_GAME ;
 this. socket. emit ("join game",{ name: this. name})
 },
 startGame () {
 this. socket. emit ("start game",{});
 },
 buzz () {
 this. socket. emit ('buzz', {
 timestamp: Date. now () + Math. round (this. timeCorrection)
 });
 this. questionState = BUZZED ;
 },
 selectAnswer () {
 this. socket. emit ('select answer', {
 answer: this. choices[this. selectedAnswer]
 });
 },
 nextQuestion () {
 this. socket. emit ('next question', {});
 },

 // Methods to compute the computed properties
 _computeShould RenderEnterNameScreen (state) {
 return state === EMPTY_STATE ;
 },
 _computeShouldRenderCreateNewGameScreen (state) {
 return state === CREATING_NEW_GAME ;
 },
 _computeShouldRenderJoinGameScreen (state) {
 return state === JOINING_GAME ;
 },
 _computeShouldRenderStartButton (state, isAdmin) {
 return (state === JOINING_GAME) && isAdmin;
 },
 _computedShouldRenderWaitingDisabledButton (state, isAdmin) {
 return (state === JOINING_GAME) && (!isAdmin);
 },
 _computeShouldRenderQuestion (state){
 return state === PLAYING ;
 },
 _computeShouldRenderChoices (state, questionState) {
 return (state === PLAYING) && (questionState === ANSWERING);
 },
 _computeShouldRenderWaitingPage (state, questionState) {
 return (state === PLAYING) && (questionState === WAITING);
 },
 _computeShouldRenderBuzzButton (state, questionState) {

 45

 return (state === PLAYING) && (questionState === NOT_BUZZED);
 },
 _computeShouldRenderCorrectPage (state, questionState) {
 return (state === PLAYING) && (questionState === CORRECT);
 },
 _computeShouldRenderIncorrectPage (state, questionState) {
 return (state === PLAYING) && (questionState === INCORRECT);
 },
 _computeShouldRenderNextQuestionButton (state, questionState, isAdmin){
 return (state === PLAYING) &&
 ((questionState === INCORRECT) || (questionState === CORRECT)) &&
 (isAdmin);
 },
 _computeShouldRenderScoreTable (state) {
 return state === DONE_PLAYING ;
 },
 _computeShouldRenderWaitingBuzzResponseDisabledButton (state, questionState){
 return (state === PLAYING) && (questionState === BUZZED);
 }
 });
 </ script>
</ dom-module>

 46

