

Incremental Learning from IoT
for Smart Home Automation

Term Research Project Report

Santa Clara University
COEN 281

Nguyen Do
Quan Bach

Acknowledgements

The researchers of this project would like to extend their gratitude to Dr. Ming-Hwa Wang

for providing us the opportunity to conduct this research and write this research paper. We are also

thankful to his lectures in data mining and patterns recognition.

We also would like to express our gratitude to the Center of Advanced Studies in Adaptive

Systems (CASAS) for providing us the data sets in this research.

1

Table of Contents
Page

ACKNOWLEDGEMENTS…………………………………………………………………...…1

TABLE OF CONTENTS……………………………….…………………………...……….…..2

List of Tables and Figures………………...…………….…………………………...……….…..5

ABSTRACT………………….………………………………………………………...………...6

I. INTRODUCTION……………………………………………………....……………………...7

Objective and Problem……………….……………………………………………………...……7

Why this project is related to this class……..………………………………………………….....8

Why other approach is No Good……………………………………...………………………......8

Why we think our approach is better……………………………………...……………………....9

Statement of the problem…….……………..…………………………………………………....10

Scope of Investigation………..…………..……………………………………………………....11

II. THEORETICAL BASES AND LITERATURE REVIEW.…...……………....…..………….12

Theoretical Background of the Problem………………………………………………….....…...12

Internet of Things definitions……………………...…………...………………………………...12

Data streaming from Internet of Things…………………..………………..………………….....13

The importance of a device…………………..…………………...…………………..……….....13

Apriori, AprioriTid and AprioriHybrid algorithms………...………………………………….....13

Allen’s thirteen temporal logic…………………………………………………………………...16

2

Related research to solve the problem…………………..…………………………………….....17

Advantage/Disadvantage of those research………………………………………………….......22

Our solution to Solve This Problem………………..…………...…………………………….....22

Where our solution differs……………………………………....…………………………….....23

Why is it better?…………………..………………………..…...…………………………….....24

III. HYPOTHESES………………….….………………...…………………………………..…25

Positive Hypotheses for Research……………..…………………………………………......….25

IV. METHODOLOGY…………………………………………………………………..…...….26

How to Generate/Collect Input Data……………...………………………………....………..…26

How to Solve the Problem….………...…………...…………………………………....……..…26

How to Generate Output………………………..……………………………………....………..29

How to Test Against Hypotheses……….……………………………………………..................31

V. IMPLEMENTATION…………....……….……………………………………...……..……..33

Code base…………………………………………………………………………....………...…33

Design Document and Flowchart…………………………………………….…..………………34

VI. DATA ANALYSIS AND DISCUSSION………………...……...……...………...…………36

Output Generation and Analysis…………………………………….…...………………………36

Compare Output Against Hypothesis……………………………………………………………37

3

Abnormal Case Explanation……………....……………………………………………..………37

Discussion………………………....………………………………………………………….….37

VII. CONCLUSIONS AND RECOMMENDATIONS…………....………...………..………....40

Summary and Conclusions………………………………....……………………………..……..40

Recommendations for Future Studies……………………....……………………………………41

VIII. BIBLIOGRAPHY…………………...…..………………………………………………....42

IX. APPENDIX ………………………..…………………...……………………….…...…...….44

4

List of Tables and Figures

Tables

(1) Table 1: Identification for Internet of Things devices used in this research.

Figures

(1) Figure 1. Example of the run of the Apriori algorithm with a minimum support 2

(2) Figure 2. Example of the run of the AprioriTid algorithm with a minimum support 2

(3) Figure 3. Allen’s thirteen temporal logics

(4) Figure 4. Comparison of CoPMiner with and without pruning techniques from the paper

‘Significant Correlation Pattern Mining in Smart Homes’ by Yi-Cheng Chen- Tamkang

University, Wen-Chih Peng and Jiun-Long Huang - National Chiao Tung University, and

Wang-Chien Lee - Pennsylvania State University

(5) Figure 5. Population Information Association Model Framework from paper “Research and

Application of Community Population Information Association Model Based on IoT

Multi-device Mining” by Junwei Gang and Lin Qin

(6) Figure 6. Comparison of Runtime performances for different models from paper “Research

and Application of Community Population Information Association Model Based on IoT

Multi-device Mining” by Junwei Gang and Lin Qin

(7) Figure 7. An example of the dataset from “WSU Smart Apartment 2010 Two Resident

Testbed”

(8) Figure 8. Sensors layout in apartment 1

5

(9) Figure 9. Sensors layout in apartment 2

(10) Figure 10. Heatmaps showing the differences between 2 weeks. On the left, there were no

actuators, on the right, we have an interesting scenario worth mining.

(11) Figure 11. Flowchart of the pruning processes and association rules generation

(12) Figure 12. Size of association rules over time

(13) Figure 13. Comparisons between 3 pruning techniques in this research

6

Abstract

 In the era of the industrial revolution 4.0, turning a regular boring home into a Smart Home

has never been easier with the price of smart sensors and gadgets becoming much affordable. Home

owners can equip smart sensors, install monitoring systems, integrate voice and remote control.

Smart Homes, however, are very reactive and not really smart yet. Hence, there is a need for a

central system to mine data and learn from the resident’s occupancy and usage behavior. In this

project, we demonstrated the possibility of such a system via the development of 3 different pruning

techniques that can be applied to Internet of Things data prior to performing association rules: Naive

Duration Based Pruning, Time Threshold Based Pruning and Duration Based Pruning. By

mix-matching the techniques, we can apply them to different scenarios and we hope they will pave

the way for future research.

7

I. Introduction

Objective

The objective of this research is to mine sensors and appliances data to detect

usage correlation patterns. We aim to improve the Smart Home Management system (SHMS) by

letting it continuously learn from these patterns to make automatic suggestions or decisions for the

users without the manual SHMS configurations.

What is the problem

With the technological advancement in the Internet of Things (IoT) and SHMS, turning a

regular home into a smart home has been easier. The lights turn on when a sensor is triggered. The

heating/cooling system can be controlled remotely on smartphone devices. The SHMS can display

usage data in real time. Nevertheless, smart homes still remain rather reactive and involve manual

rule setup. Smart homes are lacking a central system to mine the residents data and to apply what

they learn from those patterns.

Smart sensors have become very affordable and reliable, which enable the collection of a

large amount of daily from a single home. The challenge of mining patterns from these large data

sets has been taken on by many researchers, and there are quite a number of efficient algorithms

have been proposed. However, these studies only focused on mining data from single ‘events’(i.e.

occupancy, traffic in and out of a building) or from a single appliance.

8

There was a study and proposed algorithm to mine the correlation patterns among appliances

and showed splendid results. The researchers of the paper introduced an algorithm that can

efficiently mine the big database and detect meaningful patterns. This research has made clear the

objective and necessity of incrementally mining patterns among sensors and appliances, with

intention to expand to the learning of occupancy and electricity consumption data.

Why this project is related to this class

This project is related to this class because it aligns with the course objectives and learning

outcomes. The project focuses on the problems of ming in large data sets and patterns recognition.

We are not only implementing different data mining techniques, but also exploring different methods

to learn from the mined patterns. Principally, we will research and implement frequent-sequence

detection algorithms.

Through this research, we would deeply understand the significance of processing the data in

such a way that not only preserving the information accuracy but also minimizing the requirements

for time and memory extension.

Why other approach is No Good

The problem with other approaches does not come from the technical aspect, but rather the

lack of diversity and generalization in data mining. Most of the studies for the past decade had only

focused on mining the patterns of either individual appliance, occupancy, or energy consumption.

There were many good algorithms that had been proposed and proven to work efficiently to mine

patterns from the large data sets generated from the sensors. However, the applications of these

9

findings have not lived up to their expectations. Our smart homes have not yet become smart. The

paper ‘Significant Correlation Pattern Mining in Smart Homes’ by Yi-Cheng Chen - Tamkang

University, Wen-Chih Peng and Jiun-Long Huang - National Chiao Tung University, and

Wang-Chien Lee - Pennsylvania State University has also pointed out the same problem and showed

promising results in finding correlations patterns among appliances.

Why we think our approach is better

Our approach is better as we have several enhancements to previous studies including

datasets, preprocessing, methods of mining and application. We use data from multiple sources,

which is closer to the real life situations. Our data pool includes fifty motion sensors, door sensors,

light sensors, fan sensors, temperature sensors, and energy usage. In this research, we will process

and mine data from motion sensors with doors, and lights sensors to discover correlation patterns in

usage behavior of the residents.

We intend to develop an evaluation method to learn from these patterns and then to make

suggestions/decisions for the residents. The association rules coming out from the mining would get

updated incrementally using the data collected in the future to self correct and self adapt to real

changes of the users.

10

Statement of the problem

In the era of the Internet of Things, the availability and affordability of smart home gadgets,

sensors, and system; has arisen the necessity of a central system to mine and learn from the

correlation patterns between all the appliances and sensors within the house. As most of the previous

studies have only focused on a single data source, we intend to explore different mining techniques

to discover the correlation patterns between appliances and motion sensors. From the patterns we

want to develop an evaluation process to learn and make suggestions/decisions for the resident.

11

Scrope of investigation

(1) Explore different mining techniques to tackle the large data sets problem

(2) Explore different algorithms to discover frequent sequence and correlations patterns

(3) Explore different probability models to develop rules for a central system to learn from the

correlation patterns, then make suggestions/decisions.

12

II. Theoretical bases and literature review

Theoretical background of the problem

Internet of Things definitions:

Internet of Things​: are internet-connected objects (things) that are able to collect and

transmit information over wire or wireless network without human intervention (Luigi et al.). They

can be described as an extension of the Internet and other network connections (ZWave/ZigBee) to

different sensors and devices, such as light bulbs, doors, locks, motion sensors, temperature sensors,

camera…

Sensors​: these devices collect data about the environment status. The data measurement can

be as simple as in binary form, such as Motion ON/OFF to complex multivariable, such as

Temperature Level, Luminance Level, Fitness Performance Measure… In this paper, we consider

sensors as triggers for our actuators.

Actuators​: the device that can produce actual physical action from either programmable

command or user manual control. A light switch, for example, can turn on via a signal command via

network communication, or when a person presses on it. The actuator data could be collected in the

similar manner as sensors. In fact, most devices can be both sensor and actuator.

Connection and identification​: to communicate with other devices in the Internet of Things

system, the device has to have a unique identifier, usually paired with its own IP address. In this

paper, the device identifications in the data set are named as in the following table:

13

Name / Pattern Device Type

Mxx Motion sensor

Lxx Light, Fan

Dxx Door sensor

Txx Temperature sensor

P001 Electricity power meter

Ixx Item sensor for selected kitchen item

Table 1: Identification for Internet of Things devices used in this research.

Data streaming from Internet of Things:

In the Internet of Things data streaming model, the data arrives at a “very large scale and

high dynamicity, as well as the great heterogeneity of the data and systems involved” (Benjamin),

while the algorithms that process it must run under very strict constraints of space and time. Due to

this characteristic, data streams present many challenges for Internet of Things data mining

algorithms when running in real-time to archive the acceptable accuracy.

Our method does not focus on real time mining, rather, we focus on pre-computed

information to generate decision trees for real time responses. However, we will still continuously

collect the streaming data and retrain the model to learn new patterns or correct the wrong ones.

14

The importance of a device:

In text mining, the TF.IDF (Term Frequency multiply Inverse Document Frequency) is the

method used to calculate the importance of a word to a document in a collection. The Term

Frequency, TF is defined as:

F (t) T = T otal number of terms in the document
Number of times term t appears in a document

Applying the same idea to rank the importance of IoT devices, we define DF (Device

Frequency) as follow:

F (t) D = T otal number of devices in the same period of time
Number of times device t appears in a period of time

Apriori, AprioriTid and AprioriHybrid algorithms

To find Association Rules, the Apriori algorithms are usually utilized. Association Rules find

all itemsets with the support greater than the minimum support and then use the large itemsets to

generate the desired rules that have confidence greater than the minimum confidence. The Apriori

algorithm utilizes the monotonicity property of the subsets of the frequent itemsets as mean to prune

the lower support itemsets. In general, here are the steps of a pass in the Apriori algorithm:

1. The candidate itemsets are generated with only the itemsets that are frequent (meet the minimum

support) from the previous pass, ignoring the transactions in the database.

2. The frequent itemset of the previous pass is joined with itself to generate all itemsets with size

larger than 1.

3. Each generated itemset that doesn’t meet the minimum support will be discarded. The remaining

itemsets are the candidate for the next pass.

15

Figure 1. Example of the run of the Apriori algorithm with a minimum support 2

Another modified version of the Apriori algorithm is known as the AprioriTid algorithm. The

processing of a pass is slightly different:

1. After the first pass, the AprioriTid algorithm will not use the database to count the support of

candidate itemsets.

2. However, the candidate itemsets are generated similar to the Apriori algorithm.

3. In AprioriTid, a table C’ is added to hold the TID (Transaction ID) and the candidate frequent

itemsets of that transaction. This table is then utilized to count the support of each candidate itemset

in the next pass.

Usually, the entries in C’ would be much smaller than the original database, hence it would

speed up the time used when counting support for later passes. The following figure shows an

example of the AprioriTid algorithm.

16

Figure 2. Example of the run of the AprioriTid algorithm with a minimum support 2

Finally, the AprioriHybrid algorithm invented by Agrawal and Srikant utilizes both Apriori

and AprioriTid algorithms for a faster result. They have proven that the AprioriHybrid can

outperform others by 3 to 10 times while scaling linearly with the database size.

17

Allen’s thirteen temporal logic

In order to discover the correlation between different usage intervals, having a suitable

representation is very important. Therefore, in this research, we organize the relationship between

the intervals using Allen's thirteen temporal logics. Given two usage intervals A and B, the

relationship between A and B can be fully represented by the figure below.

Figure 3. Allen’s thirteen temporal logics

By representing the relationships with these temporal logics, the representation will be

lossless, unambiguous and simple.

18

Related research to solve the problem

In the paper “Significant Correlation Pattern Mining in Smart Homes” by Yi-Cheng Chen -

Tamkang University, Wen-Chih Peng and Jiun-Long Huang - National Chiao Tung University, and

Wang-Chien Lee - Pennsylvania State University, the authors have developed an algorithm to

efficiently mine the large data sets to detect usage frequent-sequences, then by implementing a

statistical significance model to determine the probability of a frequent-sequence to happen, and then

these patterns are used to detect abnormal activities in usage or make suggestions for saving power.

Figure 4. Comparison of CoPMiner with and without pruning techniques from the paper ‘Significant

Correlation Pattern Mining in Smart Homes’ by Yi-Cheng Chen, Wen-Chih Peng, Jiun-Long Huang, and

Wang-Chien Lee

Their CoPMiner algorithm with four pruning techniques has shown to be much more

efficient than other algorithms. Moreover, The authors also showed the significance of the four

19

pruning techniques by comparing the CoPMiner with pruning and without. The result in Figure 4.

showed that the algorithm runs twice as fast with the four pruning techniques.

Another study called “Occupant Behavior Modeling for Smart Buildings: A CriticalReview

of Data Acquisition Technologies and Modeling Methodologies” by Mengda Jia

and Ravi S. Srinivasan - University of Florida, has also emphasized on the relation between

occupancy and energy consumption.

In “Research and Application of Community Population Information Association Model

Based on IoT Multi-device Mining” by Junwei Gang and Lin Qin, the researchers focused on mining

large and complex Internet of Things data with applications around the population information. The

following Figure 2. shows the framework of this research.

Figure 5. Population Information Association Model Framework from paper “Research and

Application of Community Population Information Association Model Based on IoT Multi-device

Mining” by Junwei Gang and Lin Qin

In their research, they assessed the two famous association algorithms in big data: the Apriori

algorithm and the FP-Growth algorithm. While the FP-Growth algorithm can achieve a better

performance, the Apriori algorithm has far simpler data structure. However, they found a drawback

of the classical Apriori algorithm, which is “only suitable for single-dimensional association

mining”; thus, it didn’t work with their data source as is. Their fundamental idea in the paper is to

20

combine calculation principles from the Apriori algorithm into the FP-Growth algorithm and call it

“the improved FP-Growth algorithm.” This algorithm successfully processed their population

information data to one-to-one correspondence.

Figure 6. Comparison of Runtime performances for different models from paper “Research and

Application of Community Population Information Association Model Based on IoT Multi-device

Mining” by Junwei Gang and Lin Qin

The improved FP-Growth algorithm is done in 3 steps:

Step 1 consists of 2 scans to the database. The first scan calculates the support of each

itemset. The second scan filters the itemsets that do not meet the support threshold, defined in

advance to generate frequent itemsets.

Step 2 is the construction of the FP-Tree, using the itemsets from the previous step. Thus,

this FP-Tree should only contain the frequent itemsets.

21

Step 3 proceeds with the actual mining on the FP-Tree. Then, with the mined frequent

binomial sets, they calculate the confidence for each of the sets to determine the “strength of the

association rule relationship.” This confidence value is a key element for filtering undesirable

association rules in their research.

Finally, they use one of the data sources as a key to join multiple association rules together

from separate association models. The comparison that they conducted between the improved

Apriori algorithm and their Improved FP-Growth algorithm in Figure 3. proves a significant

enhancement in performance.

The 4th paper we looked at was “Pattern mining based compression of IoT data” by Dusan

Ramljak, Amitangshu Pal and Krishna Kant discussed several pattern mining based compression

algorithms for IoT data. Their algorithms are lossy with some trade-offs between the level of

compressions and accuracy. These algorithms could be useful for us to deal with even larger data if

we need to store historical data for incremental mining.

Advantage/Disadvantage of those research

Advantages: the above studies have a longer period of time to conduct their research. Also,

they have access to many valuable equipment and help from the Taiwan government or private

companies to collect real data. Therefore, their studies are usually thorough and widen in scopes.

Furthermore, their research was published to The Association for Computing Machinery, a reliable

and trustworthy source for computer scientists. With that, we can be confident in using their

proposed methods and results as bases for our research. In fact, we will reuse or enhance some of

their techniques to create our solution in this paper.

22

In the paper from Chen et al, the introduction to Allen's temporal logics could help us keep

track of possible cases when the actuators react and potential overlapping that could cause false

detections in our methods. The same paper also explores the idea of pruning to make the mining less

noisy. They also surveyed multiple pruning techniques that could be applied to our scenario, such as

spatial-pruning.

On the other hand, the paper from Gang et al introduces us to the idea of combining

principles of different algorithms to archive a better performance. Since our data is complex, we

think combining multiple techniques will give us the better results as well.

Disadvantage: the dataset used in their papers are not readily available for us to revalidate or

use, so we cannot test or learn from their actual implementations. Some of the research papers were

conducted in earlier years, when the technology of IoT and Smart Homes have not yet as advanced

as of today. As a result, they are limited to the technologies available at the time their research was

conducted. Moreover, all of the research papers above didn’t take into account time and incremental

learning as important factors for their work.

Our solution to Solve This Problem

Our dataset is fairly complex due to the mix of multiple IoT devices, such as sensors and

actuators. In addition, the frequency of recording the data from those devices are extremely high,

from milliseconds to seconds. Therefore, the amount of data in our datasets is large and usually

includes noises. Our proposed solution to the problem is to emphasize the pruning techniques to the

existing data, and pre-categorize the data before mining.

23

Since human life is usually based on circles and set schedules, such as, 24 hour circle and

weekly routine, we would like to divide our data into subsets by date of a week, time of a day, down

to every single minute. Having each minute as a basket in the Apriori algorithm would help us

identify the association between the sensors and the actuators much better with higher confidence.

On top of that, comparing the mined Hourly Association Rules based on the same days of a week

could further help us confirm the correctness of the rules.

After learning from the manual human trigger events, we will start to make predictions in the

system and observe overwrites to the actuators from human reactions. We can call these human

interventions as corrections to our prediction. Hence, we shall design an algorithm that can detect the

corrections and discard the incorrect Associate Rules that were previously discovered. We believe

that the correction mechanism will play a significant role in incremental learning capability of our

method.

Where our solution differs

We intend to develop an evaluation method to learn from these patterns and then to make

suggestions/decisions for the residents. The association rules coming out from the mining would get

updated incrementally using the data collected in the future to self correct and self adapt to real

changes of the users.

Also, we will divide our data into periods of time in order to analyze and discover patterns

incrementally. Furthermore, we are looking forward to discovering correlation patterns between

different sets of sensors and data points instead of focusing on a single type of sensor and an

appliance.

24

Why is it better?

Our approach is better as we have several enhancements to previous studies including

datasets, preprocessing, methods of mining and application. We use data from multiple sources,

which is closer to the real life situations. Our data pool includes fifty motion sensors, door sensors,

light sensors, fan sensors, temperature sensors, and energy usage. In this research, we will process

and mine data from motion sensors with doors, and lights sensors to discover correlation patterns in

usage behavior of the residents.

Furthermore, since our ideas follow the daily routine in human life and we organize the

learning phase according to that, we should be able to produce more accurate results than taking all

data into consideration.

25

III. Hypothesis

Positive hypothesis

Based on the papers we have been researching, the researchers have focused on mining the

usage data of the resident as a whole to discover the usage patterns. They would receive the collected

data as a whole and would develop algorithms and data structures to analyze and discover patterns

from the whole period of time. However, we believe that human behaviors will change over time,

hence their usage and interacting with their home will change too. This has motivated us to conduct

this research on incremental learning from the change behaviors in order to enable our system to

learn and adapt.

We hypothesize that the patterns in usage and behavior of residents of smart homes will

change. Therefore, we believe that we will be able to find the significant change in resident usage

behavior then we can design our central control system to be able to detect the changes and learn the

new patterns incrementally.

26

IV. Methodology

How to generate/collect data input

We won’t be generating our data. Our entire data sets for this project will be provided and

can be downloaded from the Center of Advanced Studies for Adaptive System (CASAS). The data

sets belong to a project called ‘WSU Smart Apartment 2010 Two Resident Testbed’. The set

includes the sensor events in which the start and end of various activities are annotated at the end of

the corresponding sensor event lines. The sensors are categorized as mentioned in Figure 1. The

dataset was recorded in space separated - CSV format. The following Figure shows a snippet of the

dataset:

2009-08-24 00:00:00.000009 M046 OFF
2009-08-24 00:00:01.039408 M048 OFF
2009-08-24 00:00:19.034964 M050 ON R1_Wandering_in_room begin
2009-08-24 00:00:19.078563 M044 ON
2009-08-24 00:00:21.029362 M046 ON
2009-08-24 00:00:21.095411 M044 OFF
2009-08-24 00:00:22.077674 M050 OFF
2009-08-24 00:00:25.061429 M046 OFF
2009-08-24 00:00:41.015317 M044 ON
….
2009-08-24 00:02:16.034348 M045 OFF
2009-08-24 00:02:16.078363 M045 ON
2009-08-24 00:02:19.020443 M050 ON
2009-08-24 00:02:20.025331 M045 OFF
2009-08-24 00:02:21.001098 M045 ON
2009-08-24 00:02:21.005446 M050 OFF
2009-08-24 00:02:47.069235 M045 OFF
2009-08-24 00:02:48.004345 P001 1002.9
2009-08-24 00:02:48.008569 P001 684

Figure 7. An example of the dataset from

“WSU Smart Apartment 2010 Two Resident Testbed”

27

The data sets include the collected data from these sensors, which are installed in two WSU

apartments during the 2009-2010 academic year. The apartment housed two residents, R1 and R2, at

this time and they performed their normal daily activities. The participants also notated their

activities during their time in the apartment. However, we will not use those notations for our

mining. We will use them for the verification step. The the sensors layouts in the two apartments are

also included in the following figures:

Figure 8. Sensors layout in apartment 1

28

Figure 9. Sensors layout in apartment 2

How to solve the problem

Algorithm design

Spatial-pruning​: in order to reduce the time complexity and memory usage, we implement

spatial-pruning technique to exclude the possibility of including the sequence with motion

sensors that are too far away from each other. This can be done by implementing a threshold

max_distance based on the Euclidean distance between two sensors.

Noise-reduction-pruning​: we will filter significant patterns based on the triggers of the

actuators. Frequent-sequences that do not end with a triggered actuator will be ignored since

29

we aim to find the correlation patterns between the motion sensors and actuators. Therefore,

sequences without the involvement of an actuator are categorized as noise and won’t be

stored to analyze.

Hybrid partitioning: ​For horizontal partitioning, we will filter the data further to the date of

a week and time of a day, could be down to minutes for each basket as a trigger of the sensor

and actuator reaction are effective in minute level. We will compare and combine the

frequent itemsets based on the same days of a week.

For device partitioning, we will separate the sensors and actuators records. This will

help us to apply the noise-reduction-pruning technique: only consider the basket that has both

sensors and actuators. Otherwise, there will be nothing to learn and we should be able to

safely discard such baskets.

Duration-pruning: ​From the hybrid partitioning, we also implement what we defined as

duration pruning to find the routine activities of the time partitions. For each of the

partitioned windows, we will scan the database for ON and OFF of each sensor ID and

compute the total duration of occupancy for motion sensors and usage for actuators

(appliances). From the duration accumulated we will compare with the duration threshold

and determine the routine activities. These activities will then be converted into baskets ready

for Apriori to find association rules.

30

AprioriHybrid: ​we will use this algorithm on our partitioned data to mine the association

rules. Since we will combine multiple days, this algorithm should help us run Apriori in an

efficient way.

Repeat with correction detection: ​after learning the initial rules, we will update our system

by continuing to re-mine and re-learning the future data. If we see the actuators changes in a

specific time unit, we would consider that as a correction user has made and consider that

action at a higher weight.

Language used

Python 3.5

MatLab

Tools used

IDE: JupyterLab 2.2.4

Build machine configuration:

macOS Catalina; 2.5GHz Intel Core i7; 16GB 1600MHz DDR3.

Windows 10 Pro; 2.6GHz Intel Xeon E5-2660; 16GB 2333MHz DDR4.

External libraries:

pandas/numpy

scikit-learn

efficient-apriori

31

How to generate output

Our program will generate the discovered frequent correlation patterns between motion

sensors and the triggers of the actuators. Also, we will show the association rules generated by the

program based on the frequent correlation patterns.

How to test against hypothesis

We hypothesize the existence of the change in correlation patterns over time between the

motion sensors and the triggered actuators. Our hypothesis will fail in the case when there is no

change in the correlation patterns in all the analyzed and mined time intervals. Hence, if the set of

association rules will remain constant over time, our hypothesis would be wrong.

32

V. Implementation

Code base

Our main code base is mainly written in Python 3. Due to the nature of the Internet of

Things, our code should be able to run in multiple environments. To replicate this scenario, we

deployed and executed our codes in 2 different Operating Systems: Windows and Mac using

Anaconda 3 as an installation platform. Thanks to the Environment config file, we were able to

successfully replicate the same environment among the platforms and proven the portability of the

code base on different machines. The entire code base is shown in the appendices section.

Besides the main Python code, we also use MatLab for sketching and analyzing the events

visually using heatmaps.

Figure 10. Heatmaps showing the differences between 2 weeks. On the left, there were no actuators,

on the right, we have an interesting scenario worth mining.

33

We use Github and Gitflow for managing our collaboration, code review and code sharing

between the team members. Our repository is located and can be accessed publicly at Github:

https://github.com/nguyenshane/IoTMining
For performance measurement, we use the time library provided by Python and print the

delta between the start and end of the pruning algorithms.

Design Document and Flow Chart

Our research started with a naive design solution, which we called the Naive Duration Based

Pruning. In this algorithm, we looked for ON and OFF events and extracted the duration between

them. The maximum duration we looked for was 15 minutes. With the naive algorithm design, we

were able to generate the dataset and preliminary association rules that could be used to prove our

hypothesis. However, we did see the slowness and complexity of the computation, while the pruned

dataset is still quite large.

This led us to find different ways to mine the data. Our hope is to innovate ways to lower the

computational complexity as well as the input dataset. We came up with 2 different strategies as

shown in the figure below:

34

https://github.com/nguyenshane/IoTMining

Figure 11. Flowchart of the pruning processes and association rules generation

We will examine each box in the flowchart:

● Import data: By running this file, it will pick up datasets specified in the datasets array,

import to numpy array with various preliminary filters and then partition into weeks and

write to the npy/prunedDataByWeek directory.

● Time Threshold Pruning: This process will pick up datasets in npy/prunedDataByWeek,

prune the data based on 1 minute time threshold, combine with deduplication and filter

segments that don't contain interesting device types to mine.

● Duration Pruning: This process will pick up datasets in npy/prunedDataByWeek, prune the

data based on longer minute time threshold, combine with filtering for ON and OFF events.

This contains the naive method we discussed above, and also the upgradedDurationPruning()

method, which improves the performance by using predefined label sets and numpy filtering.

● Association Rules Generator: This function will search in the imported and pruned data,

apply the apriori algorithm for each sliding window of 4 weeks and generate the rules.

35

V. Data Analysis and Discussion

Output and Data Analysis

After processing the data and performing a sliding window of size four to find the association

rules in the data of four weeks each, we have generated thirty three sets of association rules out of

thirty six weeks of data. An example an association rule we generate is showed in the following:

{BA_sink_Light} -> {BA_fan}

{BA_fan} -> {BA_sink_Light}

{LivRoom} -> {Liv_Light, Kitchen_Light}

The association rules above mean when the bathroom sink light is on, the bathroom fan must

be on and vice versa. The third association rule means when the living room is occupied, the living

room light and the kitchen light must be on. The first two association rules belong to the segment of

a Thursday morning and the third one belongs to a Tuesday afternoon. However, these association

rules are not fixed. As mentioned above, we generate our association rules by the time partitions of

the day and by a sliding window of four weeks to mimic the incremental learning over time of

collecting resident usage behavior data. We also find that the association rules change drastically

over time and vary as time progresses.

36

Abnormal case explanation

We set out to build our program to detect the relationship between motion sensors and

actuators. When we ran our program the first couple of test runs, we did not find any association

rules generated from the first few weeks. At first, we thought there were logic errors in our program

design, but testing with a test dataset yielded nominal results. Then, we decided to examine the data

source itself and found out that for the six to seven weeks of living in the apartment, the two

residents made no interaction with the lighting system (actuators). We do not know this was the

residents actual behaviors or some error in collecting the data.

Discussion

We have essentially proved our hypotheses from the changing sizes and the variations of the

association rules by the time partition of the day. From our results, we have shown that there are

meaningful relationships and correlation patterns in usage across devices. Also, we have shown that

a central system canlearn from the resident occupancy and usage behavior and partially take control

of the smart home without any hard/fixed instructions setup by the residents. The following figures

show the change overtime of the size of the association rules.

37

Figure 12. Size of association rules over time

Through the iterations of the 3 pruning methods, we also learned that the size of the dataset

can be trimmed down significantly while keeping the accuracy and characteristic of the events. The

Duration Pruning method is a great candidate for edge computing, where the computational time is

usually limited. However, the Time Threshold Pruning method can be a good resource for

discovering events and rules from multiple agnostic devices as it doesn’t require the label sets. The

following chart shows the differences between 3 methods we researched and developed:

38

Figure 13. Comparisons between 3 pruning techniques in this research

39

VI. Conclusions and Recommendations

Conclusion

In this project, we aim to prove the possibility and necessity of a central system to mine

occupancy and usage data from a smart home. We set out to find the relationship and patterns among

devices rather than just focusing on one device. We hypothesize that the behavior of the residents

will change over time and only an incrementally learning system can adapt to these changes. We

have got our data set from a real living situation of two voluntary residents in Kyoto and set out to

mine the patterns between motion sensors and lighting sensors. We have found meaningful

association rules between these motion sensors and the lighting system. From these association rules,

a central system can partially take control of the smart home without any preset/fixed instructions

input by the residents. All they have to do is to live in and interact with the house.

Recommendations

In this project, we have found meaningful information in the interaction between motion

sensors that trigger the lighting system (i.e. actuators as defined). We believe that there will be a lot

of meaningful information that can be found from analyzing the correlation patterns between all the

sensors in a smart home system. When combined with the incremental learning method we

implemented in this project, we believe a central system can partially take control of the smart home

based on the residents usage behavior. Therefore, we recommend extending future projects to more

kinds of sensors and devices.

40

Furthermore, when analyzing the association rules generated by our program, we have

noticed that there might be meaningful relationships between all these appliances, and these relations

are formed by the residents. We believe a graph can be built from the frequent pairs with the edges

are the implication of the association rules. From this graph, we hypothesize the existence of

communities or clusters in the way the appliances are used.

On another note, we have also noticed that the amount of appliances used in a time partition

are much less than the amount that aren’t not used. Therefore, we also recommend mining the

un-usage data and we believe that there is meaningful information in those data.

41

VIII. Bibliography

Atzori, Luigi & Iera, Antonio & Morabito, Giacomo. (2016). Understanding the Internet of Things:

definition, potentials, and societal role of a fast evolving paradigm. Ad Hoc Networks. 56.

10.1016/j.adhoc.2016.12.004.

Billet, Benjamin. (2015). Data stream management system for the future Internet of Things.

Agrawal, Rakesh & Srikant, Ramakrishnan. (2000). Fast Algorithms for Mining Association Rules.

Proc. 20th Int. Conf. Very Large Data Bases VLDB. 1215.

Chen, Yi-Cheng & Peng, Wen-Chih & Huang, Jiun-Long & Lee, Wang-Chien. (2015). Significant

Correlation Pattern Mining in Smart Homes. ACM Transactions on Intelligent Systems and

Technology. 6. 1-23. 10.1145/2700484.

Jia, Mengda & Srinivasan, Ravi. (2015). Occupant behavior modeling for smart buildings: A critical

review of data acquisition technologies and modeling methodologies. 10.1109/WSC.2015.7408496.

Geng, Junwei & Qin, Lin. (2019). Research and Application of Community Population Information

Association Model Based on IoT Multi-device Mining. BDIOT 2019: Proceedings of the 3rd

International Conference on Big Data and Internet of Things. 93-98. 10.1145/3361758.3361767.

42

Ramijak, Dusan & Pal, Amitangshu & Kant, Krishna. (2018). Pattern mining based compression of

IoT data. 1-6. 10.1145/3170521.3170533.

43

IX. Appendices

importData.py
#!/usr/bin/env python3

Research: Incremental Learning from IoT for Smart Home Automation

Authors: Nguyen Do, Quan Bach

Usage:

Import Data

By running this file, it will pick up datasets in specified in datasets

array,

import to numpy array with some filters and then partition into weeks

import​ os
import​ utils
from​ datetime ​import​ datetime, time, timedelta
from​ utils ​import​ sensorFilter
import​ numpy ​as​ np

datasets = [​"./dataset/data"​]
datasetsNames = [i.split(​'/'​)[-​1​] ​for​ i ​in​ datasets]

def​ ​loadDataset​(​filename​):
 dataTable = []

 ​with​ ​open​(filename, ​'rb'​) ​as​ features:
 database = features.readlines()

 ​for​ i, line ​in​ ​enumerate​(database): ​# each line
 lineList = line.decode().split() ​# split a line into a list
separated by spaces.

 ​# A line looks like this
 ​# 2009-08-24 00:00:19.034964 M050 ON R1_Wandering_in_room
begin

 ​# Turn them into the following fields
 timestamp = ​None
 originalSensor = ​None

44

 sensor = ​None
 value = ​None
 activity = ​None
 dayOfWeek = ​None
 partitionTimeOfDay = ​None
 ​try​:
 ​if​ ​'M'​ == lineList[​2​][​0​] ​or​ ​'L'​ == lineList[​2​][​0​]:
 ​# choose only M, L sensors

 originalSensor = ​str​(np.array(lineList[​2​]))
 sensor = sensorFilter(originalSensor)

 ​if​ (sensor ​is​ ​None​):
 ​continue

 ​if​ ​not​ (​'.'​ ​in​ ​str​(np.array(lineList[​0​])) +
str​(np.array(lineList[​1​]))):
 lineList[​1​] = lineList[​1​] + ​'.000000'
 timestamp = (datetime.strptime(​str​(np.array(lineList[​0​]))
+ ​str​(np.array(lineList[​1​])),

"%Y-%m-​%d​%H:%M:%S.​%f​"​))
 dayOfWeek = timestamp.weekday()

 partitionTimeOfDay =

utils.timeInPartition(timestamp.hour)

 value = (​str​(np.array(lineList[​3​])))

 ​if​ ​len​(lineList) == ​4​: ​# if activity does not exist
 activity = ​''
 ​else​: ​# if activity exists
 activity = ​str​(​' '​.join(np.array(lineList[​4​:])))
 ​if​ ​'begin'​ ​in​ activity:
 ​#activity = re.sub('begin', '', des)
 ​if​ activity[-​1​] == ​' '​: ​# if white space at the
end

45

 activity = activity[:-​1​] ​# delete white
space

 ​if​ ​'end'​ ​in​ activity:
 ​if​ activity[-​1​] == ​' '​: ​# if white space at the
end

 activity = activity[:-​1​] ​# delete white
space

 dataTable.append([timestamp,

 dayOfWeek,

 partitionTimeOfDay,

 originalSensor,

 sensor,

 value,

 activity])

 ​except​ ​IndexError​:
 ​print​(i, line)

 features.close()

 ​return​ dataTable

def​ ​partitionDataByWeek​(​path​):
 dataTable = np.load(path, ​allow_pickle​=​True​)
 startDate = datetime.combine(dataTable[​0​][:​1​][​0​].date(), time(​0​))
 finalDate =

datetime.combine(dataTable[dataTable.shape[​0​]-​1​][:​1​][​0​].date()
 + timedelta(​days​=​1​), time(​0​))

 currentWeek = ​0

 ​while​ ​True​:
 nextEndDate = startDate + timedelta(​days​=​7​)
 idx = ((dataTable[:, ​0​] >= startDate)
 & (dataTable[:, ​0​] < nextEndDate)
 & (dataTable[:, ​0​] < finalDate))

46

 ​if​ ​not​ os.path.exists(​'./npy/dataByWeek/'​):
 os.makedirs(​'./npy/dataByWeek/'​)

 np.save(​'./npy/dataByWeek/week'​ + ​str​(currentWeek), dataTable[idx])
 ​print​(​'Saved ./npy/dataByWeek/week'​ + ​str​(currentWeek))

 ​if​ (nextEndDate >= finalDate):
 ​break
 ​else​:
 startDate = nextEndDate

 currentWeek += ​1

if​ ​__name__​ == ​'__main__'​:

 ​if​ ​not​ os.path.exists(​'npy/datanpy.npy'​):
 ​# Generate the full dataset
 ​for​ filename ​in​ datasets:
 datasetName = filename.split(​"/"​)[-​1​]
 ​print​(​'Loading '​ + datasetName + ​' dataset ...'​)
 dataTable = loadDataset(filename)

 dataTable = np.array(dataTable, ​dtype​=​object​)
 ​if​ ​not​ os.path.exists(​'npy'​):
 os.makedirs(​'npy'​)

 np.save(​'./npy/'​ + datasetName + ​'npy'​, dataTable)
 ​print​(​'Saved '​ + datasetName)
 ​# Partition full dataset to week
 partitionDataByWeek(​'npy/datanpy.npy'​)

47

timeThresholdPruning.py
#!/usr/bin/env python3

Research: Incremental Learning from IoT for Smart Home Automation

Authors: Nguyen Do, Quan Bach

Usage:

Time Threshold Pruning

By running this file, it will pick up datasets in npy/prunedDataByWeek,

prune the data based on minute time threshold, combine with deduplication

and filter segments that doesn't have interesting device type to learn

import​ utils
import​ os
from​ datetime ​import​ timedelta
import​ numpy ​as​ np
import​ time

def​ ​timeThresholdPruning​(​week​, ​dataTable​):
 startProcessTime = time.process_time()

 ​if​ (dataTable ​is​ ​None​):
 filename = ​"./npy/dataByWeek/week"​ + ​str​(week) + ​".npy"
 dataTable = np.load(filename, ​allow_pickle​ = ​True​)

 dataSize = ​len​(dataTable)

 prunedDataTable = []

 startTime = dataTable[​0​][:​1​][​0​]

 dataTableIndex = ​0
 segmentCount = ​0

 ​while​ ​True​:

 nextTimeSegment = startTime + timedelta(​minutes​=
utils.timePruningThreshold)

 ​#print('next time', nextTimeSegment)

48

 idx = (dataTable[:, ​0​] >= startTime) & (dataTable[:, ​0​] <
nextTimeSegment)

 currentSegment = dataTable[idx]

 dataTableIndex += ​len​(currentSegment) - ​1
 ​#print('segment', currentSegment, segmentCount)

 prunedSegment = pruneByDevice(currentSegment, segmentCount)

 ​if​ (​len​(prunedSegment) > ​0​):
 prunedDataTable.extend(prunedSegment)

 ​if​ (​len​(dataTable) > ​1​):
 segmentCount += ​1

 ​# trim off dataTable as we go
 dataTable = dataTable[​len​(currentSegment): ​len​(dataTable), :]

 ​if​ (​len​(dataTable) == ​0​):
 ​break
 startTime = dataTable[​0​][:​1​][​0​]
 ​else​:
 ​break

 prunedDataTable = np.array(prunedDataTable, ​dtype​=​object​)
 ​if​ ​not​ os.path.exists(​'npy/prunedDataByWeek'​):
 os.makedirs(​'npy/prunedDataByWeek'​)
 np.save(​'./npy/prunedDataByWeek/week'​ + ​str​(week), prunedDataTable)

 endProcessTime = time.process_time() - startProcessTime

 ​print​(​'week:'​, week, ​'excecution time:'​, endProcessTime)
 ​if​ ​not​ os.path.exists(​'./ProgOutput/'​):
 os.makedirs(​'./ProgOutput/'​)

 outFile = ​open​(​'./ProgOutput/pruneFineTimeThreshold-Measure.txt'​,​'a+'​)
 outFile.writelines(​"​{}​, ​{}​, ​{}​\n​"​.format(week, dataSize, endProcessTime))
 outFile.close()

49

 ​print​(​'prunedDataTable'​, prunedDataTable)

 ​return

def​ ​pruneByDevice​(​segment​, ​segmentCount​):

 deviceList = segment[:, ​4​]
 ​for​ index, device ​in​ ​enumerate​(deviceList):
 ​if​ (device != ​None​):
 ​if​ (​'Light'​ ​in​ device) ​or​ (​'fan'​ ​in​ device):
 segment = pruneDuplication(segment)

 newCol = np.full((​1​, ​len​(segment)), segmentCount)
 segment = np.insert(segment, ​3​, newCol, ​axis​=​1​)
 ​return​ segment.tolist()

 ​return​ []

def​ ​pruneDuplication​(​segment​):
 onIdx = (segment[:, ​5​] == ​"ON"​)
 onSegment = segment[onIdx]

 uniqueKeys, indices = np.unique(onSegment[:, ​4​], ​return_index​=​True​)

 newSegment = onSegment[indices]

 ​return​ newSegment

if​ ​__name__​ == ​'__main__'​:
 path = ​'./npy/dataByWeek/'
 weekCount = ​len​([name ​for​ name ​in​ os.listdir(path) ​if
os.path.isfile(os.path.join(path, name))])

 ​for​ i ​in​ ​range​ (​0​, weekCount):
 filename = ​"./npy/dataByWeek/week"​ + ​str​(i) + ​'.npy'

 timeThresholdPruning(i, ​None​)

#timeThresholdPruning(9, None)

50

durationPruning.py
#!/usr/bin/env python3

Research: Incremental Learning from IoT for Smart Home Automation

Authors: Nguyen Do, Quan Bach

Usage:

Duration Pruning

By running this file, it will pick up datasets in npy/prunedDataByWeek,

prune the data based on longer minute time threshold, combine with

filtering

for ON and OFF events. upgradedDurationPruning() improves the performance

by using

predefined labelset and numpy filtering.

from​ utils ​import​ labelSet, timeStampDiff, durationThreshold, basketsKeySet
from​ collections ​import​ defaultdict
import​ numpy ​as​ np
import​ os
import​ time

def​ ​durationPruning​(​week​, ​filename​):
 startProcessTime = time.process_time()

 ​"""Return a map of routine items i.e. a baskets for A-priori"""
 ​"""keys of the map are the combinations of dayOfWeek + partitionTimeOfDay
i.e. 00, 01, 02...62 """

 ​# an item is routine if its duration is longer then the time pruning
threshold

 ​# a routine item can be occupancy: motion sensors ;and usage: lightning
sensor

 routineItemsMap = {}

 dataTable = np.load(filename, ​allow_pickle​ = ​True​)
 dataSize = ​len​(dataTable)

 ​for​ key ​in​ basketsKeySet:
 timeStampList = []

 routineItems = []

51

 ​for​ elem ​in​ labelSet: ​# scan the data for each sensor ID
 totalDuration = ​0
 endPoint = dataTable.shape

 lookingForOn = ​True​ ​# flag to alternate looking for ON and not ON
(i.e. OFF)

 ​for​ row ​in​ ​range​(​0​,endPoint[​0​]):
 keyInTable = ​str​(dataTable[row][​1​])+​str​(dataTable[row][​2​])
 ​if​ key == keyInTable:
 ​#in case reach the end but OFF not found (i.e. device has
only ON)

 ​if​ row == (endPoint[​0​]-​1​) ​and​ ​not​ lookingForOn:
 timeStamp = ​str​(dataTable[row][​0​]).split()
 timeStampList.append(timeStamp[​1​])

 ​#looking for ON
 ​if​ elem == dataTable[row][​3​] ​and​ lookingForOn ​and​ ​"ON"​ ==
str​(dataTable[row][​4​]):
 timeStamp = ​str​(dataTable[row][​0​]).split()
 timeStampList.append(timeStamp[​1​])
 lookingForOn = ​False

 ​#looking for OFF
 ​if​ elem == dataTable[row][​3​] ​and​ ​not​ lookingForOn ​and
"OFF"​ == ​str​(dataTable[row][​4​]):
 timeStamp = ​str​(dataTable[row][​0​]).split()
 timeStampList.append(timeStamp[​1​])
 lookingForOn = ​True

 ​#compute the duration of the intervals between ON and OFF
 ​if​ ​len​(timeStampList) == ​2​:
 totalDuration +=

timeStampDiff(timeStampList[​0​],timeStampList[​1​])
 timeStampList.clear()

 ​if​ totalDuration > durationThreshold : ​#duration pruning
 routineItems.append((elem,​int​(totalDuration)))

52

 routineItemsMap[key] = routineItems

 endProcessTime = time.process_time() - startProcessTime

 ​print​(​'week:'​, week, ​'excecution time:'​, endProcessTime)
 ​if​ ​not​ os.path.exists(​'./ProgOutput/'​):
 os.makedirs(​'./ProgOutput/'​)

 outFile = ​open​(​'./ProgOutput/pruneDuration-Measure.txt'​,​'a+'​)
 outFile.writelines(​"​{}​, ​{}​, ​{}​\n​"​.format(week, dataSize, endProcessTime))
 outFile.close()

 ​return​ routineItemsMap

def​ ​upgradedDurationPruning​(​week​, ​filename​):
 startProcessTime = time.process_time()

 ​"""Return a map of routine items i.e. a baskets for A-priori"""
 ​"""keys of the map are the combinations of dayOfWeek + partitionTimeOfDay
i.e. 00, 01, 02...62 """

 ​# an item is routine if its duration is longer then the time pruning
threshold

 ​# a routine item can be occupancy: motion sensors ;and usage: lightning
sensor

 ​#upgraded version to run faster by taking advantages of numpy table
features

 routineItemsMap = defaultdict(​list​)
 routineItemMapIDOnly = defaultdict(​list​)
 dataTable = np.load(filename, ​allow_pickle​ = ​True​)
 dataSize = ​len​(dataTable)

 ​for​ elem ​in​ labelSet:
 ​for​ i ​in​ ​range​(​0​,​7​):
 ​for​ j ​in​ ​range​(​0​,​3​):
 idx = ((dataTable[:,​4​] == elem) & (dataTable[:,​1​] == i) &
(dataTable[:,​2​] == j))
 opTable = dataTable[idx]

 lookingForOn = ​True
 endPoint = opTable.shape

53

 timeStampList = []

 totalDuration = ​0
 firstOnFound = ​False
 firstOn = ​''
 lastOff = ​''
 ​for​ row ​in​ ​range​(​0​,endPoint[​0​]):

 ​#looking for last off
 ​if​ ​"OFF"​ == ​str​(opTable[row][​5​]):
 lastOff = ​str​(opTable[row][​0​]).split()[​1​]

 ​#in case reach the end but OFF not found (i.e. device has
only ON)

 ​if​ row == (endPoint[​0​]-​1​) ​and​ ​not​ lookingForOn:
 timeStamp = ​str​(opTable[row][​0​]).split()
 timeStampList.append(timeStamp[​1​])

 ​#looking for ON
 ​if​ lookingForOn ​and​ ​"ON"​ == ​str​(opTable[row][​5​]):
 ​if​ ​not​ firstOnFound:
 firstOn = ​str​(opTable[row][​0​]).split()[​1​]
 firstOnFound = ​True
 timeStamp = ​str​(opTable[row][​0​]).split()
 timeStampList.append(timeStamp[​1​])
 lookingForOn = ​False

 ​#looking for OFF
 ​if​ ​not​ lookingForOn ​and​ ​"OFF"​ == ​str​(opTable[row][​5​]):
 timeStamp = ​str​(opTable[row][​0​]).split()
 timeStampList.append(timeStamp[​1​])
 lookingForOn = ​True

 ​#compute the duration of the intervals between ON and OFF
 ​if​ ​len​(timeStampList) == ​2​:
 totalDuration +=

timeStampDiff(timeStampList[​0​],timeStampList[​1​])
 timeStampList.clear()

54

 ​if​ totalDuration > durationThreshold : ​#duration pruning
 key = ​str​(i) + ​str​(j)

routineItemsMap[key].append((elem,​int​(totalDuration),​str​(firstOn),​str​(lastOff
)))

 routineItemMapIDOnly[key].append(elem)

 endProcessTime = time.process_time() - startProcessTime

 ​print​(​'week:'​, week, ​'excecution time:'​, endProcessTime)
 ​if​ ​not​ os.path.exists(​'./ProgOutput/'​):
 os.makedirs(​'./ProgOutput/'​)

 outFile = ​open​(​'./ProgOutput/pruneDurationUpgraded-Measure.txt'​,​'a+'​)
 outFile.writelines(​"​{}​, ​{}​, ​{}​\n​"​.format(week, dataSize, endProcessTime))
 outFile.close()

 ​return​ routineItemsMap, routineItemMapIDOnly

if​ ​__name__​ == ​'__main__'​:
 path = ​'./npy/dataByWeek/'
 weekCount = ​len​([name ​for​ name ​in​ os.listdir(path) ​if
os.path.isfile(os.path.join(path, name))])

 ​for​ i ​in​ ​range​ (​0​,weekCount):
 filename = ​"./npy/dataByWeek/week"​ + ​str​(i) + ​'.npy'
 ​#uncomment to demonstrate the different between two algorithms
 ​#durationPruning(i, filename) #old version, much slower
 table1, table2 = upgradedDurationPruning(i, filename)

 currentWeek = ​'===== Week '​ + ​str​(i+​1​) + ​' ====='
 ​print​(currentWeek)
 ​for​ key ​in​ basketsKeySet:
 ​print​(​"​{}​ : ​{}​"​.format(key,table2[key]))
 ​print​(​'​\n​'​)

 ​if​ ​not​ os.path.exists(​'./ProgOutput/'​):
 os.makedirs(​'./ProgOutput/'​)

 outFile = ​open​(​'./ProgOutput/weeklyRoutineActivities.txt'​,​'a+'​)
 currentWeek = ​'===== Week '​ + ​str​(i+​1​) + ​' ====='
 outFile.write(currentWeek)

55

 outFile.write(​'​\n​'​)
 ​for​ key ​in​ basketsKeySet:
 outFile.writelines(​"​{}​ : ​{}​"​.format(key,table2[key]))
 outFile.write(​'​\n​'​)
 outFile.write(​'​\n​'​)
 outFile.close()

#test output

#table = upgradedDurationPruning('./npy/dataByWeek/week11.npy')

table = durationPruning('./npy/dataByWeek/week11.npy')

#for key in basketsKeySet:

 ​#print("{} : {}".format(key,table[key]))

56

timeThresholdBasedAssociationRulesGenerator.py
#!/usr/bin/env python3

Research: Incremental Learning from IoT for Smart Home Automation

Authors: Nguyen Do, Quan Bach

Usage:

Time Threshold Based Association Rules Generator

By running rulesGenerator(), this function will get into the imported and

pruned data,

runs the apriori algorithm per sliding window of 4 weeks and generate the

rules

import​ utils
from​ utils ​import​ sizeOfSlidingWindow
import​ os
from​ datetime ​import​ datetime, time, timedelta
import​ numpy ​as​ np
from​ numpy.core.defchararray ​import​ find
from​ efficient_apriori ​import​ apriori

def​ ​findFrequentSets​(​weeks​):
 dataTable = ​None
 baskets = {} ​# dictionary
 ​for​ week ​in​ weeks:
 filename = ​"./npy/prunedDataByWeek/week"​ + ​str​(week) + ​".npy"
 weekDataTable = []

 ​try​:
 weekDataTable = np.load(filename, ​allow_pickle​ = ​True​)
 ​except​:
 ​print​(filename, ​"doesn't exist."​)

 ​if​ (​len​(weekDataTable) > ​0​):
 ​for​ dayInWeek ​in​ ​range​(​0​,​6​):
 ​for​ partitionTimeIndex ​in​ utils.timePartitionMap:
 idx = (weekDataTable[:, ​1​] == dayInWeek) &
(weekDataTable[:, ​2​] == ​int​(partitionTimeIndex))

57

 currentDataTable = weekDataTable[idx]

 ​id​ = ​str​(dayInWeek) + partitionTimeIndex
 ​# print('currentDataTable', tuple(set(currentDataTable[:,
3])))

 ​if​ (​len​(currentDataTable) == ​0​):
 ​continue

 uniqueSegments = np.unique(currentDataTable[:,​4​])

 ​for​ uniqueSegment ​in​ uniqueSegments:
 ​if​ (​not​ ​id​ ​in​ baskets):
 baskets[​id​] = [​tuple​(​set​(currentDataTable[:,
5​]))]
 ​else​:
 baskets[​id​].extend([​tuple​(​set​(currentDataTable[:,
5​]))])

 rulesList = []

 itemsetsList = []

 sizeOfRules = []

 ​for​ ​id​ ​in​ baskets:

 itemsets, rules = apriori(baskets[​id​], ​min_support​=​0.5​,
min_confidence​=​1​, ​max_length​=​2​)
 itemsetsList.append(itemsets)

 rulesFilter = ​filter​(​lambda​ ​rule​: findActuator(rule), rules)
 filteredRules = []

 ​for​ rule ​in​ rulesFilter:
 filteredRules.append(rule)

 rulesList.append([​id​, filteredRules])

 ​return​ itemsetsList, rulesList, ​len​(baskets)

def​ ​findActuator​(​tup​):

58

 ​return​ ​all​((​any​(substr ​in​ e ​for​ substr ​in​ [​'Light'​, ​'fan'​])) ​for​ e ​in
tup.rhs)

def​ ​rulesGenerator​():

 path = ​'./npy/prunedDataByWeek/'
 weekCount = ​len​([name ​for​ name ​in​ os.listdir(path) ​if
os.path.isfile(os.path.join(path, name))])

 ​#compute the total number of sliding window
 windowCount = weekCount - sizeOfSlidingWindow + ​1​ ​#algor:(n-k+1) with k
is the size of sliding window

 ​if​ ​not​ os.path.exists(​'./ttRules/'​):
 os.makedirs(​'./ttRules/'​)

 ruleSizeFile = ​open​(​'./ttRules/ruleSize.txt'​, ​'a+'​)
 ​for​ i ​in​ ​range​(​0​, windowCount+​1​):
 itemsetsList, rulesList, basketsSize =

findFrequentSets(​tuple​(​range​(i, i+​3​)))
 outFile = ​open​(​'./ttRules/f'​ + ​str​(i) + ​'t'​ +​str​(i+​3​) + ​'.txt'​, ​'w'​)
 outFile.write(​"size of baskets: "​ + ​str​(basketsSize))
 outFile.write(​"​\n​"​)
 ​for​ i ​in​ ​range​(​0​, basketsSize):
 ruleSizeFile.write(​"​\n​"​)
 outFile.write(​"date time segment: "​ + ​str​(rulesList[i][​0​]) +
"​\n​"​)
 outFile.write(​"size of rule list: "​ + ​str​(​len​(rulesList[i][​1​])))
 outFile.write(​"​\n​"​)
 outFile.write(​str​(rulesList[i]))
 outFile.write(​"​\n​"​)
 outFile.write(​"​\n​"​)
 outFile.close()

rulesGenerator()

Utils.py
Research: Incremental Learning from IoT for Smart Home Automation

59

Authors: Nguyen Do, Quan Bach

Usage:

Utils

This file contains configurable variables, mapping and common functions

sizeOfSlidingWindow = ​4​ ​#the number of weeks in the sliding window for
apriori

timePruningThreshold = ​1​ ​# time threshold in minute
durationThreshold = ​30​ ​# duration threshold in minute

startDate = ​"2009-08-24"​ ​# start and end date got from the study
endDate = ​"2010-05-01"

timePartitionMap = {​"0"​: {​"start"​: ​6​, ​"end"​: ​11​}, ​# Morning
 ​"1"​: {​"start"​: ​12​, ​"end"​: ​19​}, ​# Afternoon
 ​"2"​: {​"start"​: ​20​, ​"end"​: ​5​}} ​# Everning

lightningMap = {​"L001"​ : ​"R1room_Light"​,
 ​"L002"​ : ​"R3room_Light"​,
 ​"L003"​ : ​"uHall_Light"​,
 ​"L004"​ : ​"R2room_Light"​,
 ​"L005"​ : ​"BA_sink_Light"​,
 ​"L006"​ : ​"BA_tub_Light"​,
 ​"L007"​ : ​"BA_fan"​,
 ​"L008"​ : ​"Liv_Light"​,
 ​"L009"​ : ​"dHall_Light"​,
 ​"L010"​ : ​"Kitchen_Light"​}

"""

Organizing sensors IDs into sets.

"""

LivingRoomSensorSet = (​"M001"​,
 ​"M002"​,
 ​"M003"​,
 ​"M004"​,

60

 ​"M005"​,
 ​"M006"​,
 ​"M007"​,
 ​"M008"​,
 ​"M009"​,
 ​"M010"​,
 ​"M011"​,
 ​"M012"​,
 ​"M013"​,
 ​"M014"​,
 ​"M015"​)
R1roomSensorSet = (​"M044"​,
 ​"M045"​,
 ​"M046"​,
 ​"M047"​,
 ​"M048"​,
 ​"M049"​,
 ​"M050"​)

R2roomSensorSet = (​"M030"​,
 ​"M031"​,
 ​"M032"​,
 ​"M033"​,
 ​"M034"​,
 ​"M035"​,
 ​"M036"​)

upstairsHallSensorSet = (​"M027"​,
 ​"M028"​,
 ​"M029"​)

downstairsHallSensorSet = (​"M021"​,
 ​"M022"​,
 ​"M023"​,
 ​"M024"​,
 ​"M025"​,

61

 ​"M026"​)

kitchenSensorSet = (​"M016"​,
 ​"M017"​,
 ​"M018"​,
 ​"M051"​)

bathroomSensorSet = (​"M037"​,
 ​"M038"​,
 ​"M039"​,
 ​"M040"​,
 ​"M041"​)

labelSet = (​"LivRoom"​,
 ​"R1room"​,
 ​"R2room"​,
 ​"UpstairsHall"​,
 ​"DownstairsHall"​,
 ​"Kitchen"​,
 ​"Bathroom"​,
 ​"R1room_Light"​,
 ​"R3room_Light"​,
 ​"uHall_Light"​,
 ​"R2room_Light"​,
 ​"BA_sink_Light"​,
 ​"BA_tub_Light"​,
 ​"BA_fan"​,
 ​"Liv_Light"​,
 ​"dHall_Light"​,
 ​"Kitchen_Light"​)

labelTestSet = (​"Kitchen_Light"​,
 ​"R1room"​,
 ​"R2room"​,
 ​"Liv_Light"​,
 ​"dHall_Light"​)

62

basketsKeySet = (​"00"​, ​"01"​, ​"02"​,

 ​"10"​, ​"11"​, ​"12"​,

 ​"20"​, ​"21"​, ​"22"​,

 ​"30"​, ​"31"​, ​"32"​,

 ​"40"​, ​"41"​, ​"42"​,

 ​"50"​, ​"51"​, ​"52"​,

 ​"60"​, ​"61"​, ​"62"​)

sensorGroupList = [LivingRoomSensorSet,

 R1roomSensorSet,

 R2roomSensorSet,

 upstairsHallSensorSet,

 downstairsHallSensorSet,

 kitchenSensorSet,

 bathroomSensorSet]

"""

Function sensorFilter

this funcntion will read in the sensor ID and return the primary ID of each

group

primary ID for each group is the frist element of that group

"""

def​ ​sensorFilter​(​sensorID​):
 ​for​ element ​in​ sensorGroupList:
 ​if​ (element.count(sensorID) > ​0​):
 ​return​ labelSet[sensorGroupList.index(element)]

63

 ​if​ sensorID ​in​ lightningMap.keys():
 ​return​ lightningMap.get(sensorID)
 ​return​ ​None​ ​#return None if not found in the group list

def​ ​timeInRange​(​start​, ​end​, ​x​):
 ​"""Return true if x is in the range [start, end]"""
 ​if​ start <= end:
 ​return​ start <= x <= end
 ​else​:
 ​return​ start <= x ​or​ x <= end

def​ ​timeInPartition​(​x​):
 ​for​ (key) ​in​ timePartitionMap:
 ​if​ (timeInRange(timePartitionMap[key][​"start"​],
 timePartitionMap[key][​"end"​], x)):
 ​return​ ​int​(key)

def​ ​timeStampDiff​ (​timeStamp1​, ​timeStamp2​):
 ​""" Return the absolute different between two timeStamps"""
 ​#a timeStamp has this format HH:MM:SS:mmmmmmm
 time1 = timeStamp1.split(​':'​)
 time2 = timeStamp2.split(​':'​)
 ​return​ ​abs​((​float​(time1[​0​])*​60​ + ​float​(time1[​1​]) +
float​(time1[​2​])*(​1​/​60​)) - (​float​(time2[​0​])*​60​ + ​float​(time2[​1​]) +
float​(time2[​2​])*(​1​/​60​)))

64

heatmapGenerate.py
#!/usr/bin/env python3

Research: Incremental Learning from IoT for Smart Home Automation

Authors: Nguyen Do, Quan Bach

Usage:

Heatmap Generator

By running this file, it will pick up datasets in npy/prunedDataByWeek,

and generate heat maps for analysis purpose

import​ numpy ​as​ np
import​ matplotlib.pyplot ​as​ plt
import​ matplotlib.colors ​as​ mcolors
from​ PIL ​import​ Image

#2D Gaussian function

def​ ​twoD_Gaussian​(​x​, ​y​, ​xo​, ​yo​, ​sigma_x​, ​sigma_y​):
 a = ​1​./(​2​*sigma_x**​2​) + ​1​./(​2​*sigma_y**​2​)
 c = ​1​./(​2​*sigma_x**​2​) + ​1​./(​2​*sigma_y**​2​)
 g = np.exp(- (a*((x-xo)**​2​) + c*((y-yo)**​2​)))
 ​return​ g.ravel()

def​ ​transparent_cmap​(​cmap​, ​N​=​255​):
 ​"Copy colormap and set alpha values"

 mycmap = cmap

 mycmap._init()

 mycmap._lut[:,-​1​] = np.linspace(​0​, ​0.6​, N+​4​)
 ​return​ mycmap

if​ ​__name__​ == ​"__main__"​:

 dataTable = np.load(​'./npy/dataByWeekNoFilter/week0.npy'​,
allow_pickle​=​True​)
 sensorArr = dataTable[:,​3​]

65

 unique, counts = np.unique(sensorArr, ​return_counts​=​True​)
 countDict = ​dict​(​zip​(unique, counts))

 ​if​ ​bool​(countDict):
 maxCount = ​max​(countDict.values())

 locationDict = {}

 filename = ​"./sensorLocation.txt"
 ​with​ ​open​(filename, ​'rb'​) ​as​ locations:
 lines = locations.readlines()

 ​for​ line ​in​ lines:
 lineList = line.decode().split()

 locationDict.update({​str​(lineList[​0​]):
(​float​(lineList[​1​]),​float​(lineList[​2​]))})

 ​#Use base cmap to create transparent
 redcmap = transparent_cmap(plt.cm.Oranges)

 bluecmap = transparent_cmap(plt.cm.Blues)

 ​# Import image and get x and y extents
 I = Image.open(​'./heatmap.png'​)
 p = np.asarray(I).astype(​'float'​)
 w, h = I.size

 y, x = np.mgrid[​0​:h, ​0​:w]

 ​#Plot image and overlay colormap
 fig, ax = plt.subplots(​1​, ​1​)

 ​for​ key ​in​ locationDict:
 ​if​ key ​in​ countDict.keys():
 Gauss = twoD_Gaussian(x, y, locationDict[key][​0​] *x.max(),
locationDict[key][​1​] *y.max(), ​.08​*x.max(), ​.08​*y.max())
 ​if​ ​str​(key)[​0​] == ​"M"​:
 value = ​int​(((countDict[key])/maxCount)*​200​)

66

 cb = ax.contourf(x, y, Gauss.reshape(x.shape[​0​], y.shape[​1​]),
value , ​cmap​=redcmap)
 ​else​:
 value = ​int​(((countDict[key]*​101​)/maxCount)*​100​)
 cb = ax.contourf(x, y, Gauss.reshape(x.shape[​0​], y.shape[​1​]),
value , ​cmap​=bluecmap)

 plt.axis(​'off'​)
 ax.imshow(I)

 plt.show()

67

