
1

COEN 241 – Cloud Computing

Project: Off-Loading Algorithm on Simulated Mobile Edge

Computing

By

Liang Xia, Weiben Zhang, Xuemei Wei, Nuo Dou

Date: June 12, 2017

Prof. Dr Ming-Hwa Wang

2

Preface

Since the invention of iPhone and Android mobile devices, smartphones have changed people’s

lifestyles enormously. Correspondingly, more and more mobile applications are developed, such

as face recognition, interactive games, natural language processing, to fulfill all the aspects of

demands. However, as these applications become more and more complicated, the conflicts

between mobile devices’ limited computation capacity and resource hungry applications are

more and more intense. Thus, to solve the conflicts, people come up with the cloud service for

mobile devices.

List of Figures:
Figure 1: Relation among Cloud Computing, Mobile Cloud Computing, Mobile Crowd

Computing 5

Figure 2: Workflow of offloading tasks 12

Figure 3: Class Design 14

Figure 4: Initialize customized tasks 15

Figure 5: Start running jobs 15

Figure 6: Choosing a channel randomly 15

Figure 7: Offloading decisions 15

Figure 8: Process tasks on base station 15

Figure 9: cloud server processes tasks 15

Figure 10: Results in the log file 16

Figure 11: Energy and Time Saved under Different Battery Level with 30MB Data of
EMU 17
Figure 12: Energy and Time Saved under Different Data Sizes with 75% Battery Level

of EMU 17

Figure 13: Average Energy and Time Saved under Different Number of Devices of

Dynamic Algorithm 18

Figure 14: Dynamics of system-wide computation overhead 18

Figure 15: Execution Time of DPR for a different number of tasks 19

Figure 16: Program flowchart 21

Table of Contents
1 Introduction 4

1.1 Objective 4

1.2 What is the problem 4

1.3 Why this is a project related to this class 4

1.4 Why other approach is no good and your approach is better 5

3

1.5 Area or scope of investigation 5

2 Theoretical Bases And Literature Review 5

2.1 Definition of the problem 5

2.2 Theoretical background of the problem 6

2.3 Related research to solve the problem 6

2.4 Advantage/disadvantage of those research 6

2.5 Your solution to solve this problem 6

2.6 Where your solution different from others 7

2.7 Why your solution is better 7

3 Hypothesis 7

4 Methodology 7

4.1 How to generate/collect input data 7

4.2 How to solve the problem 7

4.3 Algorithm design 7

4.4 Language used 8

4.5 Tools used 8

4.6 How to generate output 8

4.7 How to test against hypothesis 8

5 Implementation 8

5.1 Code (refer programming requirements) 8

5.2 Design Document and Flowchart 12

6 Data Analysis and Discussion 14

6.1 Output Generation 14

6.2 Abnormal Case Explanation 16

6.3 Output Analysis 16

6.4 Compare Output against Hypothesis 18

7 Conclusions and Recommendations 19

7.1 Summary and Conclusions 19

7.2 Recommendations for Future Studies 19

8 Bibliography 20

9 Appendices 20

4

1. Introduction

1.1 Objective:
Though mobile-edge cloud computing helps solve the conflicts, it cannot be randomly applied.

Before offloading local computation tasks from mobile devices to the cloud, there should be

certain algorithms to evaluate the performance, to determine whether offloading tasks to cloud

is better than computing locally. In this project, we mainly focus on these evaluation algorithms

which are used for making offloading decisions. We firstly read papers, to explore potential

algorithms; then we simulate the situation of the mobile-edge cloud computing, like wireless

stations and the cloud; after this, we apply the algorithms from the papers we selected; finally,

we compare these algorithms against with each other, to have a performance analysis. By doing

so, we can better understand the problems of mobile-edge cloud computing and the common

solutions.

1.2 What is the problem:
The tension between resource-hungry applications and resource-constrained mobile devices

hence poses the emerging of mobile-edge cloud computing.
● Computation capability: due to the physical constraint, mobile devices can only provide

limited computation resources.

● Short battery life: the battery cannot last very long especially when performing tasks.

● Modern mobile applications are more and more resource-hungry which is too costly for

mobile devices.

1.3 Why this is a project related to this class?
The class is about Cloud Computing and Mobile Edge Computing is part of Cloud Computing.

Here we give the relationship among Cloud Computing, Mobile Cloud Computing and Mobile

Crowd Computing(Mobile Edge Computing) in Figure 1. The difference between Mobile cloud

Computing and Cloud Computing is that Mobile Cloud Computing only caters to mobile clients

while Cloud Computing caters to both mobile and stationary clients. The difference between

Mobile Edge Computing and Mobile Cloud Computing is Mobile Edge Computing only moves

storage /computation to external mobile resources.

5

Figure 1 Relation among Cloud Computing, Mobile Cloud Computing, Mobile Crowd Computing

1.4 Why other approach is no good and your approach is better?
There are two other potential models for mobile cloud computing. One is to offload tasks to

remote public cloud, another one is named as cloudlet based mobile cloud computing. The

problems for Offload Tasks to Remote Public Cloud are the hard-to-reduced long latency. The

problem for Cloudlet Based Mobile Cloud Computing is that it cannot provide accessible cloud

service to users at anytime and anywhere, also the computation power of its cloud service

provider may also be limited due to the physical constraints. By using cellular wireless network

and fiber link, the MEC solves both the latency and coverage problems.

For the algorithm, the most well-known algorithm is called Cross Entropy Based Centralized

Optimization. This algorithm works the best when all the detailed information of users are known

by the wireless stations. However, to gain the information, the cost of the overhead of data

commuting may be too high. Whereas, the algorithms we are going to apply in this project can

make decisions based on limited information. Thus, in real situation, the algorithms applied in

this project are more applicable.

1.5 Area or scope of investigation:
We mainly focus on two algorithms. One is designed based on a static-scenario which assumes

the number of users remains unchanged during an off-loading period. The other is designed

based on the Dynamic Programming, which is an optimization technology that transforming

complex problems into a sequence of general problems, with Randomization strategy. Also,

before implementing the algorithm, we have to simulate the real situations. Additionally, energy

saving, pervasive computing and base station technologies are included in investigation.

2. Theoretical Bases And Literature Review

2.1 Definition of the problem

6

The problem includes the simulating of the real mobile-edge cloud computing scenario which is

required before implementing problem, implementing the offloading algorithms basing on the he

chosen papers and analyzing performance by specially designed input and configured

parameters.

2.2 Theoretical background of the problem
As stated in the preface part, offloading tasks to cloud may or may not be beneficial, which

depends on the cost evaluation results on both offloading tasks to cloud and completed

computing locally. Thus, before sending tasks out, the evaluation should be done. The problem

includes: how to properly define the system model to modulate actual situation into

mathematical expressions; how to subtract formulate from information gained in last step; how

to apply the formulations into real situation to analyze; and how to analyze performance. The

papers that will be studied in this project solve the questions above perfectly, which provides

solid background.

2.3 Related research to solve the problem
The related research covers a very large field, including studies on energy saving issues,

pervasive computing issues and even on wireless station issues, etc, The authors of two main

papers that are studied in this project read through those related research detailed, and finally

provide comprehensive algorithms.

2.4 Advantage/disadvantage of those research
In the paper Efficient Multi-User Computation Offloading for Mobile-Edge Cloud Computing, the

authors proposed a very efficient algorithm. It provides better performance than CE Based

Centralized Offloading algorithm if we take the consumption of parameters exchange into

account. However, the disadvantage of this algorithm is that it is designed basing on a static

scenario which assumes the number of users are never changed. Thus, this algorithm may fail

to work properly when the number of users fluctuates.

In the paper A Dynamic Programming Offloading Algorithm using Biased Randomization, the

authors propose a self-adjustable algorithm which can find near-optimal solutions quickly.

However, since the authors assume and analyze basing on WiFi network connection, the

performance may vary when the mobile devices are under 3G/4G/LTE networks, of which

situations the consumption of both energy and time may be higher.

2.5 Your solution to solve this problem
The first thing we are going to do is to simulate the real situation of mobile-edge cloud

computing. This step can be achieved by implementing server-client application. The server is

used to simulate wireless station and the cloud, and the client is used to simulate the mobile

devices. The second step is to implement the algorithms. We plan to implement two algorithms

independently, then, if possible, we may combine these two algorithms together and implement

it. Finally, we give sample inputs and parameters to test and analyze performance.

7

2.6 Where your solution different from others
For the algorithm part, our Nash Equilibrium Based Algorithm is a mobile device making

decision model, while most other algorithms are centralized model which means Base Station

will make a decision for mobiles to choose which task should be offloaded to cloud, which would

stay in local to compute.

For the implementation part, the main difference is where and whom the algorithms are going to

applied to. In the original papers, the author apply and analyze algorithms on actual mobile

devices and wireless stations. However, considering the lack of knowledge on mobile part, we

can only achieve it by simulated server-client application. This may cause the results different

with the papers’, but should not be a very big difference.

2.7 Why your solution is better
For the algorithm part, our algorithm will combine the advantages from the Nash Equilibrium

Algorithm and Biased Randomization Algorithm. First Nash Equilibrium Algorithm have a good

performance and high efficiency with a fixed number of users in the cloud while the biased

randomization algorithm help to fit to the actual situation perfectly when mobile users join and

leave the cloud dynamically.

For the implementation part, the biggest benefit of our methodology also relates to the way we

simulate the real situation. By simulation, it enables us to easily configure the parameters of

both mobile devices and wireless station, which helps to know in what case the performance

could be best. It may also be used to guide the actual design of products.

3. Hypothesis
The mobile devices are able to make decisions about offloading by only knowing limited

information. The performance of applied algorithms should be much better than both the

performance of locally computing and plain cloud computing, which randomly chooses channels

to offload tasks, but it may be lower than CE Based Centralized Offloading algorithm. The

algorithms may be unable to work properly when the number of users is changed during

offloading period.

4. Methodology
4.1 How to generate/collect input data
Running client with a parameter as a weight value to simulate off-loading tasks.

4.2 How to solve the problem
Simulating the real situation, implementing the algorithms and analyzing the performance.

4.3 Algorithm design
Referring to the papers.

8

4.4 Language used
Java

4.5 Tools used
Eclipse IDE

4.6 How to generate output
Printing logs in terminals on both clients(mobile devices) and server(base station).

4.7 How to test against hypothesis
● Multiple users request to off-loading tasks simultaneously.

● User requests to off-loading tasks with different weight values. The higher the weight

value is, the higher cost the task has.

5. Implementation
5.1. Code (refer programming requirements)

 Code of EMU’s offloading algorithm

/**

 * Use Efficient Multi-user Algorithm to make offload decision

 * @param device : current mobile device

 * @param port : randomized port number which was used to connect to wireless station

 */

public void offloadingDecisionByMEC(MobileDevice device, int port) {

 // get the port which provides best performance

 int bestPort = calculateOverheadForMEC(port, device);

 // set the port

 device.setTargetPort(bestPort);

 // decide offloading weight according to the status of current device

 setOffloadingWeight(device);

}

 Code of dynamic offloading algorithm

 /**

 * Use the Dynamic Algorithm to make offload decision

 * @param device : current mobile device

 */

public void offloadingDecisionByDynamic(MobileDevice device) {

 // the matrix is a list of integer which stores decisons for all the tasks

 // to make it consistent, if the device's id is bigger than current list's size,

 // the previous not made decisions should be filled as -1

9

 if(device.getId() >= matrix.size()) {

 for(int i = matrix.size(); i <= device.getId(); ++i) {

 matrix.add(-1); // -1 indicates the decision for task i has

not made

 }

 }

 // random(): a 0 - 1 generator which is used to

 // generate decisions according to decision history;

 //

 if(matrix.get(device.getId()) == -1) {

 matrix.set(device.getId(), random());

 }

 // use the dynamic algorithm to make decision

 if(matrix.get(device.getId()) == 0 && !isBeneficial(device)) {

 // offloading is not applicable, set offloading weight to 0

 device.setOffloadWeight(0);

 }

}

 Code that helps dynamic offloading algorithm to find best channel

/**

 * To see whether a decision is beneficial for dynamic algorithm

 * @param device

 * @return

 */

public boolean isBeneficial(MobileDevice device) {

 // connectionInfo of the wireless station

 Hashtable<Integer,Integer> connectionInfo =

WirelessStation.getConnectionInfo();

 // get the total time span to complete the task

 double localTimeOverhead = device.getCompletelyLocalySpan();

 // get the total energy consumption

 double localEnergyOverhead = localTimeOverhead/2;

 double minCloudOverhead = Double.MAX_VALUE;

 int transferTimeSpan = -1;

 int bestPort = -1;

 // compare each channel's overhead with locally computing's, and to find

 // a best channel which gives best performance

 for(int port : WirelessStation.getPorts()) {

 int lossFactor = connectionInfo.get(port) * 2;

10

 double curOverhead = 6

 + ((double) device.getDataSize() /

(double)WirelessStation.getBandWidth()) * lossFactor

 + ((double) device.getDataSize() /

(double)WirelessStation.getBandWidth()) / 3;

 if(curOverhead < minCloudOverhead) {

 minCloudOverhead = curOverhead;

 transferTimeSpan = device.getDataSize() /

WirelessStation.getBandWidth() * lossFactor;

 bestPort = port;

 }

 }

 if(minCloudOverhead < (localTimeOverhead + localEnergyOverhead)) {

 if(transferTimeSpan > 30) return false;

 device.setTargetPort(bestPort);

 device.setCloudTimeSpan(6);

 device.setTransferTimeSpan(transferTimeSpan) ;

 device.setOffloadWeight(1);

 return true;

 }

 return false;

}

 Code that helps EMU algorithm to find the best channel

/***

 * calculate overhead for emu algorithm

 * @param connectionInfo

 * @param port

 * @param device

 * @return

 */

public int calculateOverheadForMEC(int port, MobileDevice device) {

 // get current connection info

 int currentChannelConnectionNum =

WirelessStation.getConnectionInfo().get(port);

 int lossFactor = WirelessStation.getLossFactor();

 int bandWidth = WirelessStation.getBandWidth();

 // get current overhead

 double currentOverHead = calculateOverhead(lossFactor,

currentChannelConnectionNum, bandWidth);

11

 // get conditional overhead which represents the overhead to let the task use

another channel

 double conditionalOverhead =

calculateOverhead(lossFactor,currentChannelConnectionNum - 1, bandWidth);

 // calculate other channel's overhead and find a best one

 double[] connections= new double[WirelessStation.getPorts().length - 1];

 double[] lossFactors = new double[connections.length];

 double[] overheads = new double[connections.length];

 int[] ports = new int[overheads.length];

 int index = 0;

 for(int otherPort : WirelessStation.getPorts()) {

 if(otherPort == port) continue;

// overheads[index] =

WirelessStation.getConnectionInfo().get(otherPort);

 connections[index] = WirelessStation.getConnectionInfo().get(otherPort);

 lossFactors[index] = Math.pow(WirelessStation.getLossFactor(),

connections[index]);

 ports[index] = otherPort;

 currentOverHead += calculateOverhead(lossFactor,

connections[index],bandWidth);

 index++;

 }

 index = 0;

 for(int i = 0; i < overheads.length; ++i) {

 overheads[i] = conditionalOverhead + calculateOverhead(lossFactor,

connections[i]+1, bandWidth);

 }

 double minOverhead = currentOverHead;

 int bestPort = port;

 // get the best channel

// System.out.println("initialOverhead: "+currentOverHead);

 for(int i = 0; i < overheads.length; ++i) {

 if(minOverhead > overheads[i]) {

 minOverhead = overheads[i];

 bestPort = ports[i];

 }

 }

 return bestPort;

}

12

5.2. Design Document and Flowchart

 Workflow of offloading tasks

Figure 2 Workflow of offloading tasks

Step 1: Mobile device sends request to base station to get base station’s

information.

Step 2: Base station responses mobile device with information of availability and

usage.

Step 3: Mobile device makes decision of offloading task based on the offloading

algorithm. Then it sends the request to the base station with its choice.

Step 4: Base station gets the request and offload the task in the targeted channel.

Once previous tasks are finished in the same channel, the task will be sent to the

cloud for calculation.

Step 5: Cloud responses the result back to the base station.

Step 6: Base station forwards the result back to the mobile device then removes the

task from the channel.

 Class Design

13

14

Figure 3 Class Design

6. Data Analysis and Discussion
6.1. Output Generation

 Wireless station, cloud server and mobile devices initialized

Figure 4 Initialize customized tasks

 Devices start to run

15

Figure 5 Start running jobs

 Devices randomly choose a channel at first

Figure 6 Choosing a channel randomly

 Offloading decisions made

Figure 7 Offloading decisions

 Wireless station receives requests and transfer data to cloud server

Figure 8 Process tasks on base station

 Cloud server receives requests and starts to run

Figure 9 cloud server processes tasks

16

 An example of log information

Figure 10 Results in the log file

6.2. Abnormal Case Explanation

 Sometimes, if mobile devices randomly choose the channels which finish the task

before getting the new tasks, randomly choosing channels will have higher

performance compared to using offloading algorithms.

 Sometimes, the Dynamic Offloading Algorithm may let most of tasks to compute

locally and only let several of tasks to be offloaded to the cloud. This happens

because the Dynamic Offloading Algorithm doesn’t care about the optimal solution

for all the tasks, but just want to let the total execution time shorter than the

constraint and minimize the total energy consumption.

 Sometimes, the EMU offloading Algorithm may give bad performance, this happens

when the number of devices changes rapidly, which cause the situation of decision

making period totally different with the situation when the task offloads to the cloud.

6.3. Output Analysis

 Energy and Time Saved under Different Battery Level with 30MB Data of EMU
Offloading Algorithm

17

Figure 11 Energy and Time Saved under Different Battery Level with 30MB Data of
EMU

 Energy and Time Saved under Different Data Sizes with 75% Battery Level of EMU

Offloading Algorithm

Figure 12 Energy and Time Saved under Different Data Sizes with 75% Battery Level of

EMU

 Average Energy and Time Saved under Different Number of Devices of Dynamic

Offloading Algorithm

18

Figure 13 Average Energy and Time Saved under Different Number of Devices of

Dynamic Algorithm

6.4. Compare Output against Hypothesis

Figure 14 Dynamics of system-wide computation overhead

According to the figure at above, the reduced overhead of EMU offloading algorithm

tends to be steady when the number of devices increase, which is same as the

information shown in Figure 11.

19

Figure 15 Execution Time of DPR for a different number of tasks

According to the figure at above, the execution time keeps increasing when the number

of devices is not very big and tends to be steady when it becomes big enough, which is

the same as the Figure 13.

7. Conclusions and Recommendations
7.1. Summary and Conclusions

MEC technology focuses on the end-user customer experience. The end device is
defined as a mobile device. The user is not only able to access deployed services but
also able to have local computing resource. Basically, on the local device, it has to
deploy the client. The core tasks includes task dividing policy, distribution of the
subtasks on local devices or task offloading on mobile edge devices.
Problems with high dynamic situation:
 Load variance of services
 Load variance of local devices and the changes of available resources including

battery and cpu.
 Mobility that users’ information has to be updated frequently.

Optimization goals:
 Application response time
 Battery consumption
 Cost

7.2. Recommendations for Future Studies

20

Since the MEC environment is complicated, many factors may impact the result. It is

significant to do tradeoff decisions based on the actual needs. The challenges we may

face in future work will be the topics like:

 Building multi-tenancy architecture by using pure cloud technology:

MEC servers cannot rely on the advantages of high availability and high

performance from large-scale data center since the location may be far away and

the capability is lower. Therefore, it needs pure cloud technology to separate the

functionalities of the services on different MEC servers to ensure each MEC server

has high availability and high performance with limited resource for the specific

service.

 Network control system of separating services of control level and user level:

If MEC servers are deployed close to access point of network edge, it requests

massive network configuration and maintenance. Network control system simplifies

the network construction and prevents routing loop and high load issues.

 Real-time entertainment:

High-definition video service based on MCDN, AR/VR mobile interactive gaming

and intelligent vehicles request MEC servers have fast response to the real time

tasks of calculation.

8. Bibliography
[1] X. Chen, L. Jiao, W. Li and X. Fu, "Efficient Multi-User Computation Offloading for

Mobile-Edge Cloud Computing," in IEEE/ACM Transactions on Networking, vol. 24, no.

5, pp. 2795-2808, October 2016.

[2] H. Shahzad and T. H. Szymanski, "A Dynamic Programming Offloading Algorithm

Using Biased Randomization," 2016 IEEE 9th International Conference on Cloud

Computing (CLOUD), San Francisco, CA, 2016, pp. 960-965.

9. Appendices
9.1. Program flowchart

21

Figure 16 Program flowchart

