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Preface 

The objective of this project is to compare linear regression model and gradient boosting 

model on the use case of predicting house prices. The ability to predict real time market value of 

a house is extremely beneficial to home buyers, investors, and realtors. This project utilizes 

knowledge from data mining and machine learning. It is the term project of the subject Pattern 

Recognition & Data Mining in winter 2020 under the supervision of Dr. Ming-Hwa Wang. 
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Abstract 

Buying a home is usually one of the largest and most expensive purchases a person can 

ever make during his or her lifetime. Therefore, being able to monitor the value of these assets 

becomes extremely important. Current existing solutions on predicting house prices include 

using domain knowledge as independent features and feeding them into machine learning 

algorithms as input to get prediction of the house value. However, these models did not evaluate 

the effects of feature engineering on the performance of the model. In this project, we performed 

various feature engineering techniques on the dataset before feeding it into our model as input. 

We used Zillow open source datasets from Kaggle as the training data, and compared the 

performance of the linear regression models with our tuned gradient boosting model using mean 

absolute error metric.  

 

 

 

 

 

 



 

Introduction 

Objective 

The purpose of this project is to compare linear regression models and gradient boosting 

models on predicting the price of houses. New implementation of the gradient boosting model is 

developed to increase the accuracy of the prediction. The models are trained with Zillow open 

source dataset, and the performances of the models are then analyzed and discussed.  

 

Why: 

Buying or Owning a house is probably one of the most crucial investment decisions              

money-wise for a person has to make in his lifetime (especially here in the Bay area). Therefore,                 

being aware of the real time market-value would be very valuable for a homeowner.  

 

What: 

Using housing transaction data including housing property such as number of bedrooms, total              

area, location to forecast the property price in the coming future becomes a classical regression               

question. We will make a comprehensive compassion of the performance on machine learning             

model by using housing property data to train not only traditional LR (linear regression) model,               

but also develop some of the new coming implementation framework based on (GBDT) gradient              

boosting model such as (XGBOOST, LightGBM). 



Why other approach is no good: 

Linear regression assumes all the features in a data entry are independent. However, in 

the house price prediction problem, there exists collinearity, which means some of the 

independent variables are highly correlated. This will affect the accuracy of the final prediction. 

Moreover, it is more complicated to deal with categorical variables in linear regression. We can 

not directly feed them into the model, instead, we need to perform some preprocessing before the 

training. 

Generally, a linear regression model is limited to linear relationships. It only looks at 

linear relationships between dependent and independent variables and assumes there is a 

straight-line relationship between them. However, real-life scenarios are more complicated than 

that. A linear regression model is also sensitive to outliers. Surprising data points may affect the 

overall performance of the model.  

 

Why our approach is better: 

The XGBoost model solves the problems imposed by linear regression models. Gradient 

boosting model is able to handle both numerical and categorical variables very well. It can 

optimize on different loss functions and provides several hyperparameter tuning options for 

machine learning engineers to adjust the model. As an implementation of the gradient boosting 

decision tree, XGBoost supports in-built L1 (Lasso Regression) and L2 (Ridge Regression) 

regularization, which prevents the model from overfitting. It is much faster than GBM because it 



utilizes parallel processing. Furthermore, it allows machine learning engineers to use 

cross-validation at each iteration. 

 

Area of Investigation: 

We focused on the full list of real estate properties in three counties (Los Angeles, Orange and                  

Ventura, California) data in 2016. (released by Zillow), and compared the performance between             

traditional linear model and a series of variation of Gradient Boosting Decision tree model              

(XGBOOST) with metric in MAE (mean absolute error), which is defined by the equation: 

  

 

 

 

 

 

 

 



Theoretical Bases and Literature Review  

Definition of the Problem 

In this project, we are trying to compare the performance between linear regression 

models and ensemble boosting models (GBDT, XGBOOST) on predicting real time house 

prices.  

 

Theoretical background of the problem 

Our project is closely related to regression modeling. Regression analysis is a statistical 

process for estimating the relationships between a dependent variable, which is the outcome,  and 

one or more independent variables, which is the features in the training set. The most common 

form of regression analysis is linear regression, which maps a function to the data according to a 

specific mathematical criterion. It is widely used for prediction and forecasting. 

 

Related research to solve the problem 

Cinar’s work on making predictions of housing values [1] combines the use of domain 

knowledge and machine learning techniques. He used a neural network model and a XGBoost 

model to train the input data and compared their performance using MSE.  

Varma’s work on house price prediction using machine learning and neural networks [4] 

proposed various regression techniques to gain a weighted mean for the most accurate results. He 

also proposed to use real-time neighborhood details using Google maps to get exact real-world 

valuations. 



Chen introduced a document of using xgboost in R [3]. It is an efficient implementation 

of the gradient boosting framework. The package supports various objective functions such as 

regression and classification, and is also made to be extensible to the users. 

 

Advantage/disadvantage of those research 

These researches mainly focus on the implementation of the machine learning models as 

well as their performances, but do not analyze much on feature engineering. In our project, we 

spent more effort on the comparison of different feature engineering techniques on the dataset 

before feeding them into machine learning algorithms as inputs. 

 

Our solution to solve the problem 

Our solution is to implement the linear regression model and gradient boosting model 

with Zillow open source data as input. We will then evaluate the performance of these models 

using MAE (mean absolute error). In the equation below, n is the total number of training data 

entry, x is the predicted house value, and xi is the real value of the house.  

 
Fig 1. MAE equation 

 

Where our solution is different from others 

Cinar’s work on making predictions using boosting techniques on house value [1] 

combines the use of domain knowledge and machine learning techniques. He used XGBoost 



model to train the input data. In our project, we developed some new implementation based on 

the gradient boosting model (GBDT) and compared it with linear regression models. 

Current models for predicting housing value did not analyze much on feature 

engineering. In our solution, we performed evaluation on how various feature engineering 

techniques, especially dealing with missing values, affects the performance of linear regression 

models and gradient boosting models.  

 

Why our solution is better 

While the traditional linear model (LR,ridge) is simple and very effective for linear data , 

it has the potential inefficiency in predicting non-linear data and easily gets underfitted. On the 

other hand, the ensemble boosting model (GBDT, XGBOOST) not only performs very well on 

all types of data (linear or nonlinear) and gets a very generalized model with very less training 

time but also very interpretable due to the nature of the tree model. 

 

 

 

 

 

 

 

 

 



Hypothesis   

a)  Null hypothesis(Ho) :  

There is no significant difference in real estate market value prediction performance 

(RMSE) between linear model and ensemble boosting learning model. (XGBOOST) 

 b) Alternative hypothesis (Ha):  

There is a significant difference in real estate market value prediction performance 

(RMSE) between linear model and ensemble boosting learning model.(XGBOOST) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Methodology 

Input Data 

We used the open source data from Zillow Prize: Zillow’s Home Value Prediction 

(Zestimate) provided by Kaggle as the input and fed them into the machine learning models. To 

download the dataset, we first had to register an Kaggle account and create an API key and 

install the kaggle command through the Python Package Installer. The dataset was then 

downloaded with the command line: 

kaggle competitions download -c zillow-prize-1 
 

The data includes 58 features related to the construction of a house, including the number 

of bedrooms, total living area, zip code of the house, etc. Table 1 shows some of the features and 

their description of the input data. While these features are numerical values, the data also 

contains categorical features that require further differentiation. For example, the type of air 

conditioner is represented by a type id, and its type can be central, chilled water, partial, etc.  

 

Table 1: Input Feature Description 

 



How to Solve the Problem 

Algorithm Design 

1. Data Preprocessing: Data preprocessing, also called feature engineering, is required in 

order to build a better model with good prediction.  

 

One Hot Encoding: 

One hot encoding is a process to convert categorical features to a form that is 

better understandable for machine learning algorithms. For example, the air-conditioner 

type is represented by a type id between 1 and 4. One Hot Encoding technique will 

convert the type id into 4 columns. Each column refers to a type. The column of the type 

of a particular air-conditioner will have a value of 1, and others in the same row will have 

a value of 0. 

 

Fill NaN with mean value: 

For each data entry, some feature values may be missing. One way to resolve this 

is to replace the NaN with the mean of the feature. This may be a good estimation of the 

missing value.  

 

Fill NaN with 0: 

Another way to remove the missing value is to replace each value with 0. During 

the model training process, a value of 0 may have little influence on the output.  

 



Remove Missing Values: 

If the proportion of the missing value exceeds 97%, it may be better to just 

remove the feature altogether, since there is not enough information to determine the 

overall influences of this feature on the output.  

 

Ordinal Encoding: 

Ordinal Encoding transforms non-numerical labels into numerical labels. The 

numbers are always between 1 and the number of categories that need to be encoded. 

 

Remove Outliers: 

We also need to remove abnormal data points such as extreme value of the house 

due to special reasons.  

 

2. Building Models: For the machine learning part, we will build linear regression models 

and a gradient boosting model with some of the new coming implementation framework. 

 

Linear Regression Models:  

Linear regression models are commonly used on predictive analysis. This type of 

model examines whether a set of variables perform well on predicting the outcome and 

explores the relationships between one or more independent variables. In this project, in 

addition to the regular linear regression model, we also built the linear regression model 



with L1 regularization, L2 regularization, and a combination of both L1 and L2 

regularization.  

The linear regression model fits the data using a polynomial function, as shown in 

the equation below. M is the order of the polynomial, it usually equals to the number of 

features in the dataset. w = (w1, w2, …, wm) is the coefficient of the polynomial 

function.  

 

Fig2. Linear Regression Objective Function 

The objective of the linear regression model is to minimize the sum of squared 

estimates of errors between the data entries in the dataset, and the targets predicted by the 

linear approximation, which is shown in the equation below. y(x, w) is the predicted 

value and tn is the true value. N is the total number of training data. 

 

Fig3. Linear Regression Loss Function 

 The image below shows an example of the linear regression. The blue dots 

represent the data points in the dataset and the green curve represents the function learned 

by the linear model to map the input to the corresponding output.  



 

Fig4. Linear Regression Example 

However, sometimes the model may not generalize well and causes an overfitting 

problem. Regularization is a process of introducing additional information in order to 

prevent overfitting. L1 regularization in linear regression is called Lasso regression. It 

implements the L1 norm for regularization by adding the L1 regularization term in the 

loss function. Lambda controls the degree of the generalization. If lambda is too big, it 

may cause underfitting problems.  

 

Fig5. Lasso Regression Loss Function 

Similarly, L2 regularization adds L2 term into the loss function, called Rigid 

Regression, as shown in the equation below.  

 

Fig6. Lasso Regression Loss Function 



The key difference between these techniques is that Lasso shrinks the less 

important feature’s coefficient to zero, and therefore, removes some features altogether. 

So, this works well for feature selection in case we have a huge number of features. In the 

last, we also combined both L1 regularization and L2 regularization in our linear 

regression model.  

 

Gradient Boosting Models: 

Gradient boosting is a technique for classification and regression problems, which 

produces a prediction model in the form of an ensemble of weak prediction models, 

typically decision trees. It is an ensemble learner that creates a final model based on a 

collection of individual models.  

It begins by training a decision tree in which each observation is assigned an 

equal weight. After evaluating the first tree, it identifies the weakness of the tree by using 

gradients in the loss function. The loss function is a measure of how good the model’s 

coefficients are at fitting the training data. Then, the second tree is grown on this 

weighted data to improve upon the predictions of the first tree. The new model is formed 

by Tree 1 + Tree 2. The classification error is computed from this new 2-tree ensemble 

model and a third tree is grown to predict the revised residuals. In other words, it converts 

weak learners into strong learners by making each new tree a fit on a modified version of 

the original dataset.  



 

Fig 7. Pseudo code for gradient boosting model 

This process is repeated for a specified number of iterations. Subsequent trees 

help to classify observations that are not well classified by the previous trees. Predictions 

of the final ensemble model is therefore the weighted sum of the predictions made by the 

previous tree models. 

 

3. Performance Evaluation: The performance of both the linear regression model and the 

gradient boosting model is evaluated using the root-mean-square error metric. The 

performance of these models with different feature engineering techniques are also 

compared and evaluated.  

 

Language Used 

We will use Python as the primary programming language for our project. It is the most 

popular language suitable for a variety of tasks in machine learning.  

 



Tools Used 

For data preprocessing and visualization, we used pandas, a Python data analysis library, 

to manipulate the dataset, and we used matplotlib to plot the data into a visually viewable format. 

In the model implementation step, We used scikit-learn, which is a library for machine learning 

in Python and contains many efficient methods for statistical modeling such as regression, 

classification, and dimensionality reduction. We will also use Github for teamwork 

communication and collaboration.  

 

How to generate output  

Since the true price of the house is hidden by Zillow, we trained our dataset on a logerror, 

which is defined by the following equation:  

 

Fig 8. Logerror Equation 

Therefore, the output of the model is also a logerror between the Zestimate model and the 

actual price of the house. We then submit the output file to Zillow Price: Zillow’s Home Value 

Prediction to get the final score. 

 

How to test against hypotheses 

We compared the performance of both linear regression models and gradient boosting 

models on the same dataset and test cases. The result would show whether these two types of 



models have no difference in their performance or significant difference in their performance in 

predicting the house prices. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Implementation 

Code 

Linear Regression Model 

 

Fig 9. Linear Regression Code 



Simple XGBoost

 

Fig 10. Simple XGBoost Code 

 

 

 

 

 

 

 

 

 



Tuned XGBoost 

 

Fig 11. Tuned XGBoost Code 



Design Document 

Each class represents a model type and mainly contains two functions.  

Table 2. Functions Description 

Function Name Input Output Description 

constructor() model_param (optional) None Construct the machine 
learning model. 

fit() x_train: training data 
y_train: training label 

None Feed the model with 
training data and labels. 

predict() x_test: testing data predicted labels Predict the testing data 
using the trained model. 

 

Workflow Chart 

 

Fig 12. Workflow Chart 

The first step is to import data from Kaggle. Once we retrieved the data, we performed 

exploratory data analysis on the dataset to gain a visual understanding of the data.  We then 



performed feature engineering on the dataset, such as adding new features, one hot encoding, 

label encoding on categorical variables, and removing missing values to increase the 

performance of the machine learning models. After that, we built linear regression models and 

XGBoost models, and fed the preprocessed data into the models as input. We also tuned the 

XGBoost model to increase its accuracy. Finally, we compared the performance of all models on 

this dataset.  

 

 

 

 

 

 

 

 

 

 



Data analysis and Discussion 

Output generation  

     For exploratory data analysis , we used various analysis and visualization packages in R to 

implement interactive visualization to help us better understand the characteristic for our data 

before further feature engineering and modeling. 

    This is the transaction distribution over time. There were only some of the transactions after 

2016/10 in the train set, because the rest is in the test set.  

 

  



When house were built 

The majority of houses were built between 1955~1995. Surprisingly, after 2000 there 

were no newly built houses. 

 

 

 

 

 

 

 

 



BB(Bed/Bath) combination distribution 

Through the distribution of room type, we can see that 2b2b and 3b2b was most popular 

in the LA real estate Market. 

 

 

 

 

 

 

 



Missing value 

Handling missing values was probably one of the most important processes during 

feature engineering. we can see about half of the features missed 60% or more. In fact, some 

features are missing nearly completely. So, we probably have to focus on other features. 

 



Distribution of Logerror 
To get the feel of the label(y) , we can check the distribution of our outcome (logerror). 

Notice the difference in log(Zestimate) - log(Realprice). 

 

 

 

 

 

 



Absolute logerror 

A smaller value of abs_error that Zestimate is close to real value. So, Zestimate 

predictions are close to the Sale Price. So the greater abs error will indicate that it’s over- or 

under-estimating the real price. 

 

 

 

 

 



Abs_error on the map 

Here we sampled 2000 housing data on the map. The larger the size of bubble, the larger 

of this housing age is, and higher colour means larger abs error. It gives us a feel that, older 

house tends to easily get miss-predicted (overestimated or underestimated) 

 



Abs_error change with build_year 
 Here the plot seems corresponding with what we saw previously. And also we can see 

that houses built around 1950 seem to also get a very good estimation. 

 

 

 

 

 



Absolute log error over time 
It looks like the abs log error in 2016 for zillow zestimate is getting better prediction. 

 

 

 

 

 

 



Cluster of housing point on map 
Check how those 80,000 housing transaction data are distributed on map with automatic 

clustering. 

 

 



Output analysis 

 

After each stage of experiment on different models, we had the test result above. 

 XGboost has the best performance in terms of MAE as 0.06460 after several feature engineering 

and hyperparameter tuning.As a reference, we got the Kaggle leaderboard for top 10% model 

performance at 0.06419. 

 



Compare output against hypothesis 

 

Based on the result here , we can reject the null hypothesis which hereby said that the 

XGBOOST actually performs better performance for linear regression model after feature 

engineering and hyperparameter tuning. 

 

 

 

 

 

 

 

 

 

 

 



Abnormal case explanation 

One of the abnormal cases we have here is after dropping the na column for L1 model, 

the MAE actually goes up which means the performance goes down. Possible reason could be 

underfitting since Drop missing value will lose information for linear model at L1 normalization. 

  

 

 

 

 

 

 



Conclusions and Recommendations 

Summary and conclusions 

Throughout our project,  we could conclude that XGBOOST as an GBDT could gives us 

 Slightly better model performance especially in the housing price prediction area but only as a 

starter. What is more important, it’s how you interpret your data and do feature engineering. 

There is an “old saying” in the ML area: Data and features determine the upper limit of machine 

learning, and models and algorithms just approach this upper limit.  In machine learning, a 

prediction model (linear regression, logistic regression, SVD, etc.) and a bunch of raw data are 

often used to get some predicted results. What people need to do is to extract better results from 

this bunch of raw data. And then make the best prediction. This includes two aspects, the first is 

how to select and use various models, and the second is how to use these raw data to achieve the 

best results. So how can we get the best results? : In fact, the success of all machine learning 

algorithms depends on how you present your data. 

  

Recommendations for future studies 

   For better model performance,  there were also several options that could be done for future 

study. 

* feature engineering: 

    During our research project, we only tried adding new features such as ratio or sum of other 

features.However, for those missing values , we could implement K-NN for restoring missing 

values instead of filling it with -1 or median. 



* new model: 

   While XGBoost performs really great, there were a lot of models that came out recently with 

better results. For example , LightGBM (by Microsoft) and CatBoost. 

* model fusion of ensemble model: 

    There were a lot of top results（ie.champion for this competition）,and used model ensembles 

for better results. We could consider stacking several different boosting models with giving 

weight to get a better result. 
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