

COEN 281 Term Project

Comparison of Regression Models
on House Value Prediction

Team 1
Lixiang Zhu

Louise Li

Instructor

Prof. Ming-Hwa Wang
Santa Clara University

March 17, 2020

Preface

The objective of this project is to compare linear regression model and gradient boosting

model on the use case of predicting house prices. The ability to predict real time market value of

a house is extremely beneficial to home buyers, investors, and realtors. This project utilizes

knowledge from data mining and machine learning. It is the term project of the subject Pattern

Recognition & Data Mining in winter 2020 under the supervision of Dr. Ming-Hwa Wang.

Acknowledgement

We would like to take this opportunity to express our gratitude to Professor Ming-Hwa

Wang. His teaching on the data mining topics has been extremely helpful toward the completion

of this project. We would also like to thank him for being encouraging and supportive whenever

we encounter a problem during the class. In addition, we would like to thank all the contributors

mentioned in the bibliography. Their works were vital for the success of this project. Lastly, we

thank all the team members for dedicatedly pushing this project into completion.

Table of Contents
1. Pre-introduction

1.1 Preface
1.2 Acknowledgements
1.3 Table of Contents
1.4 List of tables/figures
1.5 Abstract

2. Introduction
2.1 Objective
2.2 What is the problem
2.3 Why is this project related to this class
2.4 Why other approach is no good
2.5 Why our approach is better
2.6 Area or scope of investigation

3. Theoretical bases and literature review
3.1 Definition of the problem
3.2 Theoretical background of the problem
3.3 Related research to solve the problem
3.4 Advantage/disadvantage of those research
3.2 Solution to the problem
3.3 Where solution is different from others
3.4 Why the solution is an improvement of the current methods

4. Hypothesis
4.1 Single Hypothesis

5. Methodology
5.1 How to collect input data
5.2 How to solve the problem

5.2 How to generate output
5.3 How to test against hypotheses

6. Implementation
6.1 Code
6.2 Design document and flow chart

7. Data analysis and Discussion
7.1 Output generation
7.2 Output analysis
7.3 Compare output against hypothesis
7.4 Abnormal case explanation
7.5 Static regression
7.6 Discussion

8. Conclusions and recommendations
8.1 Summary and conclusions
8.2 Recommendations for future studies

9. Bibliography
10. Appendices

List of Tables & Figures
Figure 1: MAE Equation
Figure 2: Linear Regression Objective Function
Figure 3: Linear Regression Loss Function
Figure 4: Linear Regression Example
Figure 5: Lasso Regression Loss Function
Figure 6: Ridge Regression Loss Function
Figure 7: Pseudo Code for Gradient Boosting Model
Figure 8: Logerror Equation
Figure 9: Linear Regression Code
Figure 10: Simple XGBoost Code
Figure 11: Tuned XGBoost Code
Figure 12: Workflow Chart

Table 1: Input Feature Description
Table 2: Functions Description

Abstract

Buying a home is usually one of the largest and most expensive purchases a person can

ever make during his or her lifetime. Therefore, being able to monitor the value of these assets

becomes extremely important. Current existing solutions on predicting house prices include

using domain knowledge as independent features and feeding them into machine learning

algorithms as input to get prediction of the house value. However, these models did not evaluate

the effects of feature engineering on the performance of the model. In this project, we performed

various feature engineering techniques on the dataset before feeding it into our model as input.

We used Zillow open source datasets from Kaggle as the training data, and compared the

performance of the linear regression models with our tuned gradient boosting model using mean

absolute error metric.

Introduction

Objective

The purpose of this project is to compare linear regression models and gradient boosting

models on predicting the price of houses. New implementation of the gradient boosting model is

developed to increase the accuracy of the prediction. The models are trained with Zillow open

source dataset, and the performances of the models are then analyzed and discussed.

Why:

Buying or Owning a house is probably one of the most crucial investment decisions

money-wise for a person has to make in his lifetime (especially here in the Bay area). Therefore,

being aware of the real time market-value would be very valuable for a homeowner.

What:

Using housing transaction data including housing property such as number of bedrooms, total

area, location to forecast the property price in the coming future becomes a classical regression

question. We will make a comprehensive compassion of the performance on machine learning

model by using housing property data to train not only traditional LR (linear regression) model,

but also develop some of the new coming implementation framework based on (GBDT) gradient

boosting model such as (XGBOOST, LightGBM).

Why other approach is no good:

Linear regression assumes all the features in a data entry are independent. However, in

the house price prediction problem, there exists collinearity, which means some of the

independent variables are highly correlated. This will affect the accuracy of the final prediction.

Moreover, it is more complicated to deal with categorical variables in linear regression. We can

not directly feed them into the model, instead, we need to perform some preprocessing before the

training.

Generally, a linear regression model is limited to linear relationships. It only looks at

linear relationships between dependent and independent variables and assumes there is a

straight-line relationship between them. However, real-life scenarios are more complicated than

that. A linear regression model is also sensitive to outliers. Surprising data points may affect the

overall performance of the model.

Why our approach is better:

The XGBoost model solves the problems imposed by linear regression models. Gradient

boosting model is able to handle both numerical and categorical variables very well. It can

optimize on different loss functions and provides several hyperparameter tuning options for

machine learning engineers to adjust the model. As an implementation of the gradient boosting

decision tree, XGBoost supports in-built L1 (Lasso Regression) and L2 (Ridge Regression)

regularization, which prevents the model from overfitting. It is much faster than GBM because it

utilizes parallel processing. Furthermore, it allows machine learning engineers to use

cross-validation at each iteration.

Area of Investigation:

We focused on the full list of real estate properties in three counties (Los Angeles, Orange and

Ventura, California) data in 2016. (released by Zillow), and compared the performance between

traditional linear model and a series of variation of Gradient Boosting Decision tree model

(XGBOOST) with metric in MAE (mean absolute error), which is defined by the equation:

Theoretical Bases and Literature Review

Definition of the Problem

In this project, we are trying to compare the performance between linear regression

models and ensemble boosting models (GBDT, XGBOOST) on predicting real time house

prices.

Theoretical background of the problem

Our project is closely related to regression modeling. Regression analysis is a statistical

process for estimating the relationships between a dependent variable, which is the outcome, and

one or more independent variables, which is the features in the training set. The most common

form of regression analysis is linear regression, which maps a function to the data according to a

specific mathematical criterion. It is widely used for prediction and forecasting.

Related research to solve the problem

Cinar’s work on making predictions of housing values [1] combines the use of domain

knowledge and machine learning techniques. He used a neural network model and a XGBoost

model to train the input data and compared their performance using MSE.

Varma’s work on house price prediction using machine learning and neural networks [4]

proposed various regression techniques to gain a weighted mean for the most accurate results. He

also proposed to use real-time neighborhood details using Google maps to get exact real-world

valuations.

Chen introduced a document of using xgboost in R [3]. It is an efficient implementation

of the gradient boosting framework. The package supports various objective functions such as

regression and classification, and is also made to be extensible to the users.

Advantage/disadvantage of those research

These researches mainly focus on the implementation of the machine learning models as

well as their performances, but do not analyze much on feature engineering. In our project, we

spent more effort on the comparison of different feature engineering techniques on the dataset

before feeding them into machine learning algorithms as inputs.

Our solution to solve the problem

Our solution is to implement the linear regression model and gradient boosting model

with Zillow open source data as input. We will then evaluate the performance of these models

using MAE (mean absolute error). In the equation below, n is the total number of training data

entry, x is the predicted house value, and xi is the real value of the house.

Fig 1. MAE equation

Where our solution is different from others

Cinar’s work on making predictions using boosting techniques on house value [1]

combines the use of domain knowledge and machine learning techniques. He used XGBoost

model to train the input data. In our project, we developed some new implementation based on

the gradient boosting model (GBDT) and compared it with linear regression models.

Current models for predicting housing value did not analyze much on feature

engineering. In our solution, we performed evaluation on how various feature engineering

techniques, especially dealing with missing values, affects the performance of linear regression

models and gradient boosting models.

Why our solution is better

While the traditional linear model (LR,ridge) is simple and very effective for linear data ,

it has the potential inefficiency in predicting non-linear data and easily gets underfitted. On the

other hand, the ensemble boosting model (GBDT, XGBOOST) not only performs very well on

all types of data (linear or nonlinear) and gets a very generalized model with very less training

time but also very interpretable due to the nature of the tree model.

Hypothesis

a) Null hypothesis(Ho) :

There is no significant difference in real estate market value prediction performance

(RMSE) between linear model and ensemble boosting learning model. (XGBOOST)

 b) Alternative hypothesis (Ha):

There is a significant difference in real estate market value prediction performance

(RMSE) between linear model and ensemble boosting learning model.(XGBOOST)

Methodology

Input Data

We used the open source data from Zillow Prize: Zillow’s Home Value Prediction

(Zestimate) provided by Kaggle as the input and fed them into the machine learning models. To

download the dataset, we first had to register an Kaggle account and create an API key and

install the kaggle command through the Python Package Installer. The dataset was then

downloaded with the command line:

kaggle competitions download -c zillow-prize-1

The data includes 58 features related to the construction of a house, including the number

of bedrooms, total living area, zip code of the house, etc. Table 1 shows some of the features and

their description of the input data. While these features are numerical values, the data also

contains categorical features that require further differentiation. For example, the type of air

conditioner is represented by a type id, and its type can be central, chilled water, partial, etc.

Table 1: Input Feature Description

How to Solve the Problem

Algorithm Design

1. Data Preprocessing: Data preprocessing, also called feature engineering, is required in

order to build a better model with good prediction.

One Hot Encoding:

One hot encoding is a process to convert categorical features to a form that is

better understandable for machine learning algorithms. For example, the air-conditioner

type is represented by a type id between 1 and 4. One Hot Encoding technique will

convert the type id into 4 columns. Each column refers to a type. The column of the type

of a particular air-conditioner will have a value of 1, and others in the same row will have

a value of 0.

Fill NaN with mean value:

For each data entry, some feature values may be missing. One way to resolve this

is to replace the NaN with the mean of the feature. This may be a good estimation of the

missing value.

Fill NaN with 0:

Another way to remove the missing value is to replace each value with 0. During

the model training process, a value of 0 may have little influence on the output.

Remove Missing Values:

If the proportion of the missing value exceeds 97%, it may be better to just

remove the feature altogether, since there is not enough information to determine the

overall influences of this feature on the output.

Ordinal Encoding:

Ordinal Encoding transforms non-numerical labels into numerical labels. The

numbers are always between 1 and the number of categories that need to be encoded.

Remove Outliers:

We also need to remove abnormal data points such as extreme value of the house

due to special reasons.

2. Building Models: For the machine learning part, we will build linear regression models

and a gradient boosting model with some of the new coming implementation framework.

Linear Regression Models:

Linear regression models are commonly used on predictive analysis. This type of

model examines whether a set of variables perform well on predicting the outcome and

explores the relationships between one or more independent variables. In this project, in

addition to the regular linear regression model, we also built the linear regression model

with L1 regularization, L2 regularization, and a combination of both L1 and L2

regularization.

The linear regression model fits the data using a polynomial function, as shown in

the equation below. M is the order of the polynomial, it usually equals to the number of

features in the dataset. w = (w1, w2, …, wm) is the coefficient of the polynomial

function.

Fig2. Linear Regression Objective Function

The objective of the linear regression model is to minimize the sum of squared

estimates of errors between the data entries in the dataset, and the targets predicted by the

linear approximation, which is shown in the equation below. y(x, w) is the predicted

value and tn is the true value. N is the total number of training data.

Fig3. Linear Regression Loss Function

 The image below shows an example of the linear regression. The blue dots

represent the data points in the dataset and the green curve represents the function learned

by the linear model to map the input to the corresponding output.

Fig4. Linear Regression Example

However, sometimes the model may not generalize well and causes an overfitting

problem. Regularization is a process of introducing additional information in order to

prevent overfitting. L1 regularization in linear regression is called Lasso regression. It

implements the L1 norm for regularization by adding the L1 regularization term in the

loss function. Lambda controls the degree of the generalization. If lambda is too big, it

may cause underfitting problems.

Fig5. Lasso Regression Loss Function

Similarly, L2 regularization adds L2 term into the loss function, called Rigid

Regression, as shown in the equation below.

Fig6. Lasso Regression Loss Function

The key difference between these techniques is that Lasso shrinks the less

important feature’s coefficient to zero, and therefore, removes some features altogether.

So, this works well for feature selection in case we have a huge number of features. In the

last, we also combined both L1 regularization and L2 regularization in our linear

regression model.

Gradient Boosting Models:

Gradient boosting is a technique for classification and regression problems, which

produces a prediction model in the form of an ensemble of weak prediction models,

typically decision trees. It is an ensemble learner that creates a final model based on a

collection of individual models.

It begins by training a decision tree in which each observation is assigned an

equal weight. After evaluating the first tree, it identifies the weakness of the tree by using

gradients in the loss function. The loss function is a measure of how good the model’s

coefficients are at fitting the training data. Then, the second tree is grown on this

weighted data to improve upon the predictions of the first tree. The new model is formed

by Tree 1 + Tree 2. The classification error is computed from this new 2-tree ensemble

model and a third tree is grown to predict the revised residuals. In other words, it converts

weak learners into strong learners by making each new tree a fit on a modified version of

the original dataset.

Fig 7. Pseudo code for gradient boosting model

This process is repeated for a specified number of iterations. Subsequent trees

help to classify observations that are not well classified by the previous trees. Predictions

of the final ensemble model is therefore the weighted sum of the predictions made by the

previous tree models.

3. Performance Evaluation: The performance of both the linear regression model and the

gradient boosting model is evaluated using the root-mean-square error metric. The

performance of these models with different feature engineering techniques are also

compared and evaluated.

Language Used

We will use Python as the primary programming language for our project. It is the most

popular language suitable for a variety of tasks in machine learning.

Tools Used

For data preprocessing and visualization, we used pandas, a Python data analysis library,

to manipulate the dataset, and we used matplotlib to plot the data into a visually viewable format.

In the model implementation step, We used scikit-learn, which is a library for machine learning

in Python and contains many efficient methods for statistical modeling such as regression,

classification, and dimensionality reduction. We will also use Github for teamwork

communication and collaboration.

How to generate output

Since the true price of the house is hidden by Zillow, we trained our dataset on a logerror,

which is defined by the following equation:

Fig 8. Logerror Equation

Therefore, the output of the model is also a logerror between the Zestimate model and the

actual price of the house. We then submit the output file to Zillow Price: Zillow’s Home Value

Prediction to get the final score.

How to test against hypotheses

We compared the performance of both linear regression models and gradient boosting

models on the same dataset and test cases. The result would show whether these two types of

models have no difference in their performance or significant difference in their performance in

predicting the house prices.

Implementation

Code

Linear Regression Model

Fig 9. Linear Regression Code

Simple XGBoost

Fig 10. Simple XGBoost Code

Tuned XGBoost

Fig 11. Tuned XGBoost Code

Design Document

Each class represents a model type and mainly contains two functions.

Table 2. Functions Description

Function Name Input Output Description

constructor() model_param (optional) None Construct the machine
learning model.

fit() x_train: training data
y_train: training label

None Feed the model with
training data and labels.

predict() x_test: testing data predicted labels Predict the testing data
using the trained model.

Workflow Chart

Fig 12. Workflow Chart

The first step is to import data from Kaggle. Once we retrieved the data, we performed

exploratory data analysis on the dataset to gain a visual understanding of the data. We then

performed feature engineering on the dataset, such as adding new features, one hot encoding,

label encoding on categorical variables, and removing missing values to increase the

performance of the machine learning models. After that, we built linear regression models and

XGBoost models, and fed the preprocessed data into the models as input. We also tuned the

XGBoost model to increase its accuracy. Finally, we compared the performance of all models on

this dataset.

Data analysis and Discussion

Output generation

 For exploratory data analysis , we used various analysis and visualization packages in R to

implement interactive visualization to help us better understand the characteristic for our data

before further feature engineering and modeling.

 This is the transaction distribution over time. There were only some of the transactions after

2016/10 in the train set, because the rest is in the test set.

When house were built

The majority of houses were built between 1955~1995. Surprisingly, after 2000 there

were no newly built houses.

BB(Bed/Bath) combination distribution

Through the distribution of room type, we can see that 2b2b and 3b2b was most popular

in the LA real estate Market.

Missing value

Handling missing values was probably one of the most important processes during

feature engineering. we can see about half of the features missed 60% or more. In fact, some

features are missing nearly completely. So, we probably have to focus on other features.

Distribution of Logerror
To get the feel of the label(y) , we can check the distribution of our outcome (logerror).

Notice the difference in log(Zestimate) - log(Realprice).

Absolute logerror

A smaller value of abs_error that Zestimate is close to real value. So, Zestimate

predictions are close to the Sale Price. So the greater abs error will indicate that it’s over- or

under-estimating the real price.

Abs_error on the map

Here we sampled 2000 housing data on the map. The larger the size of bubble, the larger

of this housing age is, and higher colour means larger abs error. It gives us a feel that, older

house tends to easily get miss-predicted (overestimated or underestimated)

Abs_error change with build_year
 Here the plot seems corresponding with what we saw previously. And also we can see

that houses built around 1950 seem to also get a very good estimation.

Absolute log error over time
It looks like the abs log error in 2016 for zillow zestimate is getting better prediction.

Cluster of housing point on map
Check how those 80,000 housing transaction data are distributed on map with automatic

clustering.

Output analysis

After each stage of experiment on different models, we had the test result above.

 XGboost has the best performance in terms of MAE as 0.06460 after several feature engineering

and hyperparameter tuning.As a reference, we got the Kaggle leaderboard for top 10% model

performance at 0.06419.

Compare output against hypothesis

Based on the result here , we can reject the null hypothesis which hereby said that the

XGBOOST actually performs better performance for linear regression model after feature

engineering and hyperparameter tuning.

Abnormal case explanation

One of the abnormal cases we have here is after dropping the na column for L1 model,

the MAE actually goes up which means the performance goes down. Possible reason could be

underfitting since Drop missing value will lose information for linear model at L1 normalization.

Conclusions and Recommendations

Summary and conclusions

Throughout our project, we could conclude that XGBOOST as an GBDT could gives us

 Slightly better model performance especially in the housing price prediction area but only as a

starter. What is more important, it’s how you interpret your data and do feature engineering.

There is an “old saying” in the ML area: Data and features determine the upper limit of machine

learning, and models and algorithms just approach this upper limit. In machine learning, a

prediction model (linear regression, logistic regression, SVD, etc.) and a bunch of raw data are

often used to get some predicted results. What people need to do is to extract better results from

this bunch of raw data. And then make the best prediction. This includes two aspects, the first is

how to select and use various models, and the second is how to use these raw data to achieve the

best results. So how can we get the best results? : In fact, the success of all machine learning

algorithms depends on how you present your data.

Recommendations for future studies

 For better model performance, there were also several options that could be done for future

study.

* feature engineering:

 During our research project, we only tried adding new features such as ratio or sum of other

features.However, for those missing values , we could implement K-NN for restoring missing

values instead of filling it with -1 or median.

* new model:

 While XGBoost performs really great, there were a lot of models that came out recently with

better results. For example , LightGBM (by Microsoft) and CatBoost.

* model fusion of ensemble model:

 There were a lot of top results（ie.champion for this competition）,and used model ensembles

for better results. We could consider stacking several different boosting models with giving

weight to get a better result.

Bibliography

1. Cinar, Utku. (2019). Combining Domain Knowledge & Machine Learning: Making

Predictions using Boosting Techniques. 9-13. 10.1145/3369114.3369125

2. “Installation Guide¶.” Installation Guide - Xgboost 1.1.0-SNAPSHOT Documentation,

xgboost.readthedocs.io/en/latest/build.html#python-package-installation.

3. Chen, Tianqi, and Carlos Guestrin. “XGBoost.” Proceedings of the 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining - KDD '16, 2016,

doi:10.1145/2939672.2939785.

4. Varma, Ayush, et al. “House Price Prediction Using Machine Learning and Neural

Networks.” 2018 Second International Conference on Inventive Communication and

Computational Technologies (ICICCT), 2018, doi:10.1109/icicct.2018.8473231.

