
 1

COEN 281 Data mining - 2018 Spring

I read, I see, I order

Chen Zheng

Yue Wang

Shaobo Wang

Jing Xu

 Anusha Suresh

 2

Contents

2. INTRODUCTION	...	3	

2.1 OBJECTIVE	..	3	

2.2 WHAT IS THE PROBLEM?	...	3	

2.3 WHY THIS IS A PROJECT RELATED TO THIS CLASS?	...	7	

2.4 WHY OTHER APPROACH IS NO GOOD?	...	7	

2.5 WHY YOU THINK YOUR APPROACH IS BETTER?	..	8	

3. THEORETICAL BASES AND LITERATURE REVIEW	..	9	

3.1	 OUR SOLUTION:	..	9	

3.2 DIFFERENCES FROM OTHERS’ SOLUTION:	...	11	

3.3 WHY OUR SOLUTION IS BETTER	..	13	

4. GOALS	..	15	

4.1 IMAGE RECOGNITION OR IMAGE CLASSIFIER	...	15	

4.2 A MECHANISM TO MAP REVIEW TO IMAGE	...	16	

4.3 CHROME EXTENSION FOR YELP	..	17	

4.4 TWO OTHER OPTIONAL GOALS	..	17	

5. METHODOLOGY	...	19	

5.1 METHODOLOGY FOR BUILDING CHROME EXTENSION FOR YELP	...	19	

5.2 METHODOLOGY FOR MAPPING REVIEW TO IMAGE	...	21	

6.	 IMPLEMENTATION	..	30	

7.	 DATA ANALYSIS AND DISCUSSION	...	35	

8.	 CONCLUSIONS AND RECOMMENDATIONS	..	45	

9. BIBLIOGRAPHY	...	46	

10.	 APPENDICES	...	48	

 3

2. Introduction

2.1 Objective

As recent years, YELP has become the dominated reviewing website to help

the customers to choose the right restaurant. Customers like taking other

people’s opinions if they decide to go eat at this restaurant or not. Helping

the user efficiently to identify the photo is critical part to improve the user’s

experience.

We will build the application to recognize the food name in the sentence

and return back the food image corresponding to the same name with food

ingredients, cooking method, and nutrition.

2.2 What is the problem?

When users are reading the comment on yelp, a lot of times they are curious

 4

what type of the food looks like in this restaurant. I clipped two comments

which reviews the local Japanese food restaurant and makes some

recommendations from YELP. As we can see, a lot of recommended food

names are Japanese, ultimately this would take long time to do your own

research to find out the what the food looks like. Since they are directly

translated from Japanese, you have no clues what are them or maybe food

have different names and you cannot remember each of them. Nowadays,

more and more people care about the fitness, they also would like to know

the specific nutritional parts of the selected food. We can provide the

ingredient parts and create the nutrition label for this chosen food. Such as

 5

protein, carbs, sugar, fat and so on. We understand that the most appealing

part is picture which you can actually see corresponding to the menu.

However, we need carefully to think of how to choose the most qualified

photo for the user, instead of dragging the random picture from the internet,

user actually prefer to see the real one directly from this restaurant that they

are interested in. In another scenario, when foreigners come to visit another

country, it is very difficult for them to order right food because of lacking

the local culture and language barrier. If there is a tool which could

accurately help users to identify the food immediately, when users are

reading the comments online, this would definitely improve the user

experience a lot. Users can simply click the food name in the sentence and

there will be small window indicating the related food, ingredients, cooking

direction and calories popped out. Finding the correct picture sounds

straightforward. If there is existed corresponding name tag for this kind of

food on the yelp, we only need to do one to one function matching.

 6

However, some people forget to describe their food pictures when they

uploaded to the YELP and there are a lot of photos don’t come with name

tag. As we can see these two photos come from YELP which not include

name tag on them. So, even the original restaurant does have the existed

photos, there is still high probability that user could not accurately find food

pictures on the YELP. At this time, we could not use the one to one function

to simply match the food name. At this scenario, developing the application

to recognize these pictures without name tag is very necessary for helping

the user. Our training model will identify these pictures under the different

food categories. Lately, all these unnamed photos will be assigned name tag

by our application and it will prioritize the original photos will be chosen

from the same restaurant which user queries for. Moreover, there may be

another case that new restaurant has just opened, there are not many

customer pictures on YELP database yet and it is frequently to see that user

write the comment, rather than uploading images to the YELP. We can only

recognize the food name first and find similar picture through our database.

 7

2.3 Why this is a project related to this class?

According to the Oracle webpage. The definition of Data mining is the

practice of automatically searching large stores of data to discover patterns

and trends that go beyond simple analysis. Data mining uses sophisticated

mathematical algorithms to segment the data and evaluate the probability of

future events. Data mining is also known as Knowledge Discovery in

Data(KDD)

They key properties of data mining are:

● Automatic discovery of patterns

● Prediction of likely outcomes

● Creation of actionable information

● Focus on large data sets and database

we collect a lot of food photos as the training data to predict the food

category. Also, we use the CNNs model to train these sample pictures and

get the new pattern to recognize the photo by certain criterial. Let the

machine to identify the photo quality by itself. This also help us deeply

understand what the relationship between our data and model is. How could

we extract the data from the image and build our own model to identify the

new picture. Our project initially needs large data sets to train the model to

improve the accuracy.

2.4 Why other approach is no good?

There are certain simple techniques we can think of now: First of all, using

the one to one function to directly match the same name tag which already

was already uploaded in YELP database and return to the user when they

are clicking on the word in the sentence. This approach is quite simple.

Since previous users are lazy or forget to put name tag for every picture, it

cannot guarantee that there is a corresponding name tag in the database. On

 8

the other hand, some new restaurant doesn’t even have that many pictures

yet. Second technique is that using the online searching tool, like google,

searches the food photo. This may sound like most efficient way to do it but

there are still many disadvantages. Firstly, As I mentioned before that

costumers are more interested in the pictures of restaurant where they may

eat at, original restaurant pictures should be always considered at the first to

display. Secondly, online searching tool may return many unrelated pictures,

which may confuse the user to recognize the food.

2.5 Why you think your approach is better?

We combine these two simple ways together and add our own approach to

better solve this problem. Our simple ideal is that if there is name tag on the

Yelp photo dataset, we will automatically give the certain pictures by

looking for the previous picture with the same or similar name tag. This

could be simply achieved by linear searching. We add CNNs training model

to generate the name tag for these pictures that don’t have name tag on them.

If there are no photos matching the query in the restaurant of yelp datasets,

we will look up our own database and retrieve the most similar photo back

to the users. At the end, instead of giving random qualified food picture

back, the query may pick up multiply candidates at the waiting pool first,

then our CNNs model will select the most delicate photo by comparing the

other quality of pictures.

 9

3. Theoretical bases and literature review

3.1 Our Solution:

3.1.1 Fine-tuned DCNN model trained on food image datasets

Google Inception DCNN is an architecture for image recognition,

specifically, classification. A model called GoogLeNet won the Imagenet

Large Scale Visual Recognition Challenge in 2014, in which models were

asked to identify about 1000 different classes of objects after have been

trained on 1.2 million images across 1000 categories. It was able to and

reach an unprecedentedly high level of performance in general object

recognition, thanks to the introduction of Inception. The release of Inception

by the end of 2015 has made it greatly convenient to get a high performance

as well as a high accuracy on object recognition, because instead of building

our own convolutional neural network (CNN) and training it through many

epochs, we can take advantage of this suitable pre-trained model and

slightly modify it to make it meet our goals.

Inception-ResNet-V3 Architecture

 10

Our solution to food image recognition problem is to use a pre-trained

Inception V3 network as the starting point, playing a role of priori

knowledge, and then fine-tune it by adjusting the architecture in the output

layer (classification layer) of the network, to adapt it to the food image

datasets to be able to classify different food properly.

Our food image datasets include three parts: ETH Food-101, UEC

FOOD 100 and UEC FOOD 256. These three datasets have 101 food

categories with 101,000 images, 100 food categories with 14,000 images

and 256 categories with 32,000 images respectively.

A few examples of the test datasets images (a) UEC FOOD 100 and UEC

FOOD 256 and (b) ETH FOOD-101

3.1.2 Intelligent & Interactive matching method of food

information-displaying to enhance user experience on YELP

The objective of deciding to implement a model to classify food

images is to enhance the experience when a user is going through the

reviews of a specific restaurant on YELP. Instead of knowing only names of

some dishes mentioned in the reviews, users would be able to find a much

more useful set of information, which includes not only the name, but also

corresponding images, ingredients and the cooking method of selected

dishes.

The way we implementing it is to detect if users’ are selecting key

words (the name of a dish) in a review, and then bind to selecting event a

handler that displays the information about the dish. The data needed in part

2 is based on part 1, in which most of the food has been classified into

 11

different categories and got at least one tag. We match the key words

selected by users with tags already existed in our database to decide which

row of information about the food to display.

3.2 Differences from others’ solution:

3.2.1 Differences between DCNN and other image recognition

methods

Several studies have been focusing on food image recognition.

Bag of words (BoW) treats image features as words. In document

classification, a bag of words is a sparse vector of occurrence counts of

words; that is, a sparse histogram over the vocabulary. In computer vision,

a bag of visual words is a vector of occurrence counts of a vocabulary of

local image features. SIFT is a popular model with BoW approaches.

Fisher kernel, named after Ronald Fisher, is a function that measures

the similarity of two objects on the basis of sets of measurements for each

object and a statistical model. In a classification procedure, the class for a

new object (whose real class is unknown) can be estimated by minimizing,

across classes, an average of the Fisher kernel distance from the new object

to each known member of the given class.

KNN is a type of instance-based learning, or lazy learning, where the

function is only approximated locally and all computation is deferred until

classification. The k-NN algorithm is among the simplest of all machine

learning algorithms.

In machine learning, support vector machines are supervised learning

models with associated learning algorithms that analyze data used for

classification and regression analysis. Given a set of training examples, each

marked as belonging to one or the other of two categories, an SVM training

algorithm builds a model that assigns new examples to one category or the

 12

other, making it a non-probabilistic binary linear classifier.

 An SVM model is a representation of the examples as points in space,

mapped so that the examples of the separate categories are divided by a

clear gap that is as wide as possible. New examples are then mapped into

that same space and predicted to belong to a category based on which side

of the gap they fall.

One major difference between DCNN and above mentioned

approaches is that good features are learned automatically using a general-

purpose procedure in DCNN, while not in other approaches. It’s the key

advantage of DCNN.

Another difference is whether a model has a priori knowledge or not.

Since a model is designed to recognize images and it cannot learn

everything from scratch and need some knowledge to be in its structure

directly. Google Inception DCNN is such a model because as mentioned

above, it has been already trained on a datasets which contain 1.2 million

images across 1000 categories. While many other models need to be trained

from scratch.

3.2.2 Differences on information displaying about food key words

in users’ reviews on website YELP

The conventional way for a user of YELP who is gathering

information from other users is to read the reviews posted by them. If lucky

enough, the text goes with some pictures, but not always in this way. If not,

the user would probably get confused by the name of some dishes, which

lead to a bad experience. Even though restaurants on YELP always display

some pictures of food, they can’t do it in a customizing way. Specifically,

all the pictures are displayed in a certain region and have no connections

with user reviews. The way our team is going to implement is to build a

connection between user reviews and food images. In this way, when user is

 13

reading a review which contains a key word of food name, he or she can

easily get more information about it by select the key word, which leads to a

much better user experience.

3.3 Why our solution is better

3.3.1 Food image recognition solution

1. Less overfitting

The straightforward way of improving the performance of networks

is to increasing the size of them,

which always leads to overfitting and

time consuming problems. However,

Google Inception uses a method

called network-in-network, which

was first proposed by Lin et al, to

address overfitting problem. In

conventional convolutional layers,

the input is collected and processed

using different kernels which

represent different features. Instead,

network-in-network builds smaller neural networks with more

complex structures to abstract the data falling within local receptive

field. In this way, overfitting problem could be avoided to the utmost

extent.

2. Less training time

Since fully-connected layers will lead to a dense computation,

Google Inception replace them with sparsely-connected ones, not

only implement in this way in the main modules, but even within

micro-networks. Another main idea of Inception is to think about

 14

approximating the optimal, sparse structure of a convolutional vision

network by readily available dense components. In this way, Google

Inception is faster than many other models when getting trained.

3. More accuracy

By fine-tuning the classification layers of Google Inception, our

model will get a more suitable categories on food. Along with

training on datasets ETH Food-101, UEC FOOD 100 and UEC

FOOD 256, it’ll provide a more accurate recognition on food images.

3.3.2 User experience enhancing solution

1. Saving time and enhancing experience

Without recognizing and searching pictures by themselves, users who

are reading reviews can get all the relevant information of a food with

ease. All the information will be recognized and matched by our

model automatically. It will save much time and enhance experience

greatly for users.

2. Showing detailed information

Not only knowing the name of some food from other users reviews,

user can get more information about the food. Our implementation

would extract tags of a specific food, along with ingredients and

cooking method, in which users could be very interested.

 15

4. Goals

While textual reviews have become prominent element for potential

customers to learn relevant information about the restaurant in Yelp, the

inclusion of images can significantly increase the effectiveness of a review.

The main goal of our project is to implement a food-recognition-based

information displaying system to enhance the review.

The system consisting of three main components: 1) a food recognition or

food classifier to predict a tag for each image, 2) a mechanism to map a

food name in a review to the most relevant image, 3) a chrome extension,

by which user can view what one food looks like while a food name in

customers’ review list is selected.

4.1 Image recognition or image classifier

 16

Figure 4-1 Image classifier

We use an image recognition or image classifier to classify all the food

images shown in a Yelp restaurant into different categories and then predict

a tag for each of them as shown in Figure 1. Once a person selects a dish

name in this restaurant, we can match this dish name with a certain image.

4.2 A mechanism to map review to image

When user is looking through a webpage, he might select many words, our

mechanism should detect whether current selected words are components of

a food name. For example, if the word “Tiramisu” has been selected, we

should say “Okay, it is a desert”. When it occurs to “Tirana”, we should

know “it is not a food name”.

After a valid food name is selected, we will use it as keyword to find related

image.

 17

Figure 4-2 Preview Image for selected dish name “Tuna tartar” in a review

4.3 Chrome extension for Yelp

Our prototype is shown in Figure 4-2, when user is looking review list in

Yelp, a food name “Tuna Tartar” is highlighted, then the image of it will

pop up.

4.4 Two other optional goals

There are two other goals we want to achieve if we have enough time: 1) a

food ingredient recognition to retrieve recipes 2) and image quality scoring

algorithm. We can get food ingredient from image by CNN, and when user

selects the dish name, an image and its ingredient will be displayed on the

screen. Since there are a lot of pictures containing same tag in some

restaurants, the results of a food name may contain more than one picture.

Image quality scoring algorithm is designed to figure out which picture is

Figure 4-2 Preview Image for selected dish name “Tuna tartar” in a review

 18

best among these candidates as shown in Figure 4-3. We will prefer to

choosing the first picture as final result.

 19

5. Methodology

5.1 Methodology for building Chrome extension for Yelp

● how to collect input data?

Input data contains two parts, the first one is current restaurant id and

the image urls in current restaurant. Web app can access it through Yelp

API and send the restaurant id and image urls to our backend.

The second one is the words selected by the user. They can be collect

through JavaScript.

● how to solve the problem?

● algorithm design

Extensions are made of different, but cohesive, components.

Components can include background scripts, content scripts, an options

page, UI elements and various logic files. The processing flow of typical

usage is as follows:

1. User opens a page in Yelp.

2. Web app collect current restaurant information through Yelp API

and send it to backend.

3. When user highlight some words, send these words as a query to

backend.

4. Displaying the results from backend in a popup view.

● language used

JavaScript

HTML 5

● Tool

Atom

● How to generate output

 20

Once the words are selected, they will become highlighted and the

result image will be shown in a popup view.

● How to test against hypotheses

Test Case for Web Extension:

Test

Case ID

Test Scenario Test Steps Expected

Results

TU01 Check result with

invalid food name.

1.Select some words that

can not form a food

name by mouse.

Nothing will

happen

TU02 Check result with

valid food name and

the category of food

is NOT in database.

1. Select some words

that can form a food

name by mouse.

A popup view

will show but

does not

display any

image.

TU03 Check result with

valid food name and

the category of food

is IN our database.

 1. Find a food which

doesn’t exit in our

database.

 2. Select this food name

in a review by mouse.

A popup view

will show and

display the

image of this

food.

TU04 Check result with a

food name which

matches no image in

current restaurant.

1. Find a food which

image is not IN current

restaurant.

 2. Select this food name

in a review by mouse.

A popup view

will show and

display the

image which

is exiting in

our database.

TU05 Check result with a

food name which

matches only one

image in current

restaurant.

1. Find a food and make

sure there is only one

image in current

restaurant

 2. Select this food name

in a review by mouse

A popup view

will show and

display the

only image.

 21

TU06 Check result with a

food name which

matches more than

one image in current

restaurant.

1. Find a food and make

sure there are more than

one image in current

restaurant

 2. Select this food name

in a review by mouse

A popup view

will show and

display the

best one

among all the

images

TU07 Network error

handling

1. Disconnect Wi-Fi

2. Find a valid food

name and select it

A popup view

will show and

display the

network error

message

5.2 Methodology for mapping review to image

5.2.1 how to generate/collect input data

5.2.1.1 Food dataset

There are some public food datasets for food-related applications such as

dietary assessment, computational cooking, food recipe retrieval and so on.

We have listed below the famous food datasets available and their

characteristics.
Table 1 Public food datasets

Dataset Image/Category Comments

PFID dataset

(Pittsburgh Food

Image Dataset)

4,556 fast food images/

PFID contains only standardized fast

food images taken under laboratory

conditions.

ChineseFoodNet

dataset

185,628 /208 food categories

ChineseFoodNet covers most of

popular Chinese food, and these images

include web images and photos taken in

real world under unconstrained

conditions

VIREO-172 a total of 353 ingredient labels

and 110,241 images

Chinese Food dataset

 22

ETHZ-FOOD-101

101’000 images/101 food

categories

UPMC-FOOD-101

Same 101 food categories as

ETHZFOOD-101 but with

different images

The images of UPMCFOOD-101 are

recipe images, in which each has the

additional textual information

UNICT-FD889 3,583 images / 889 distinct

dishes

The UNICT-FD889 dataset are used for

Near Duplicate Image retrieval (NDIR)

UEC-Food100 100 categories Japanese food dataset

UEC-Food256 256 categories Japanese food dataset

Indian Food

Dataset_1,2,3,4

100 categories each 2000

images

Indian food dataset

To train our food classification algorithm, we use the well-known

dataset ETHZ-Food-101. It is a public dataset of 101 food categories, with

101’000 images. However, for Chinese dishes, Food-101 is not sufficient

due to its limited categories classification. Compared to other types of food

such as American fast food and Italian food, it is more difficult to recognize

the images of Chinese dish. First, the images of the same Chinese dish may

appear differently as different ingredients and cooking method make it hard

to differentiate even for human vision. Second, the noise of images of

Chinese dishes is hard to model because of complex noise and a variety of

backgrounds, for example dim light, vapor environment, strong reflection,

various utensils of Chinese dishes such as color, shape. Thus, as

compliment to Food-101 dataset, we use ChineseFoodNet, Indian food

dataset_1,2,3,4 to train our classification algorithm specifically regarding to

Chinese restaurant (Yelp has restaurant label such as Chinese,

American(New), Indian and Mediterranean etc.).

 23

5.2.2 how to solve the problem

5.2.2.1 algorithml2

The pictures on the restaurant webpage are pic-comment pairs. For

example, a picture of garlic fries with comment “Garlic Fries”, a picture of

mushroom swiss burger with comment “Mushroom Swiss Burger (bun is a

bit dry. Its meat and mushrooms were good”. Under most circumstance,

pictures are uploaded by contributors without a comment. We make them

into a Hashmap for certain restaurant with the picture the comment<String>

as the key and ID<Integer> as the value. As mentioned above, quite a few

of the comments are empty. Even if not empty, a picture and the comment

may have not substantially correlated. For example, a comment “Hurrah it’s

my birthday” for a picture of a pasta dish only increases the noise-level

rather than providing informative features.

In a review

without picture,

the Words<String>

is Cobb Salad

 24

Our framework addresses the problem of recommending images for each

review in three major steps.

First, we collect the words<String> which the user thinks would be a dish

name in a review. we iterate through the Hashmap to check which comment

contains the words<String>. There might be several hits. We rank the

corresponding pictures using certain criteria.

Second, we select the best pictures among which whose comments all

contain the words<String>. Here we have two criteria to implement: (1) the

pictures with highest quality in terms of field depth, contrast and alignment;

(2) the comments have the most relevant topic terms with the review.

Third, if no existing comment contains the words<String>, we generate

name tag for each picture using food recognition techniques until the

classification coincides with the words<String>.

Forth, we retrieve ingredients for the words<String> using food ingredient

recognition techniques.

Below is the road map for our methodology.

Comment attached to a picture: My

Colorful Cobb Salad was perfect!

 25

a. Image classification

We use a Convolutional Neural Network (CNN) image classifier to obtain

class probabilities for all images in the test set (all images in a certain

restaurant).

Convolutional Neural Network algorithms require that all of the images

have the same dimension and are shaped as a square. We will resize the

images so that the smallest dimension of the image is 64 or 224 pixels, and

then crop the image in the other dimension to obtain a 64-by-64-pixel or

User clicks

the dish

name (The

Word)

Search

Hashmap

No existing

comments

contain the

Word

Several

hits

Using CNN to

select the best

quality picture

Or

Using LDA to

select the picture

with the most

relevant comment

Using CNN to

recognize the dish

image

and

Using CNN to

retrieve the

ingredients

 26

224-by-224-pixel image. We will test and implement CNN models using

two Python libraries based on the Theano deep-learning library: Keras, and

Lasagne. Keras and Lasagne provide high-level functions

for deep learning algorithms, including convolution, pooling, and fully-

connected layers, as well as backpropagation and optimization routines,

whereas Theano provides the back- end of the computation and includes

GPU support.

We will use a number of different CNN models to evaluate their

accuracy. One of these models was based on the CIFAR10 data while the

others were designed to work with the ImageNet data: VGG-16, VGG-19

and GoogleNet. The CIFAR10 model is relatively simple, with only 11

layers. The VGG-16 model adds four convolutional layers and one fully-

connected layer, which significantly increases the complexity of the model.

The VGG-19 and GoogleNet models add even a larger number of layers,

consisting of 19 and 22, respectively. We also used MATLAB ’s Bag-of-

Features with SVM classification algorithm as a baseline. We used six-fold

cross-validation for evaluation of all these approaches.

b. Image quality scoring model

The three most important features of a photo are depth of field, color

contrast and alignment. The depth of field measures how much of the image

is in focus. Using a “shallow” depth of field can be an excellent way to

distinguish the subject of an image from its background. In many cases, the

most beautiful images of a given restaurant were very sharply focused on a

specific entrée.

 27

In particular, we found that a good proxy for quality is whether a photo

was taken by a digital single-lens reflex camera, or DSLR. These cameras

give the photographer more control over which parts of the image are in

focus, by adjusting the lens type and aperture size. Further, DSLR sensors

are larger and more sensitive to light, allowing great photos to be taken in

even very dim situations. Finally, people who regularly use DSLR cameras

may have more experience and skill in capturing higher quality images.

Training our model on such photos allows it to learn important photo

features and recognize great photos even when they are not taken by a

DSLR camera.

We will try several methods of training this model. Initially, we will

collect 100,000 DSLR and non-DSLR images to use as positive and

negative labels, respectively, and feed these into a model known

as AlexNet, which was created by researchers at the University of Toronto

in 2012. To improve the accuracy of this model, we will train an additional

model with more than ten times the previous amount of training data.

Finally, we will test a model called GoogLeNet, which was developed by

researchers at Google in 2014 and achieved state of the art performance by

having significantly deeper layers than previous top-of-the-line models.

In each of these cases, we will further evaluate the model against a

dataset of thousands of images manually evaluated by Yelp engineers,

which consisted of only those images which we could confidently say were

 28

very good or very bad. We assume that with each iteration, our ability to

correctly identify good and bad photos will improve.

c. Topic modeling and review enhancement

We leverage Latent Dirichlet Allocation (LDA) to model the topics of

the reviews. We obtain the topic with the highest probability and select the

top t representative terms of that topic, regardless if they appear on the

review or not. For each review, we recommend the top φ images based on

the presence of the t representative terms in the review and in the comments

of the subset of images available only for the business for which the review

was written. An image is ranked higher for a particular review if a

representative term is present both in the image comment and in the review,

compared to an image which contains the representative term only in its

comment.

We start by selecting images using representative terms that are present

in both the review and the image comment. If φ images cannot be found, we

select images for which comment contain representative terms but the

review does not. This process ensures that the image selection is not solely

driven by overlaps between a review and a comment, rather reviews and

image comment without any overlap may become candidates for potential

mapping due to the use of topical terms during the ranking.

d. Ingredient recognition model

We will build the ingredient recognition model based on our dataset,

because it has clean recipe information. For ingredient information, we will

manually filter out stop words and commonly used units like spoon and jar.

5.2.2.2 language used

To perform the image recognition the language used here is Python library

Keras and Lasagne. Keras and Lasagne are high-level neural network API

which is capable of running on top of TensorFlow. It supports

 29

Convolutional network. The only difference between them is Keras is less

flexible and less extensible than Lasagne.

 30

6. Implementation

6.1 Code

6.1.1 Food image category and quality recognition

1) download Python module: pillow, h5py, scipy, matplotlib, haul,

tensorflow (1.2.0), keras(1.2.2). The last two has strict version

requirement.

2) make sure the following file is properly stored: food_classes.txt,

model4b.10-0.68.hdf5 and model68-2.7.hdf5. The latter two are

ready-trained classification model to be implemented.

3) Run imageDownLoader.py, it will call imageRecognition.py and

qualityRecognition.py.

4) The result will give the URL of the image, the classification of

the image and the quality index. The classification and quality

index will directly stored in the database, instead of been

printed.

6.1.2 Chrome extension

1. upload extension package

1) open “chrome://extensions”

2) load unpacked “preview”

 31

this icon next to url bar shows that the extension is installed

properly.

2. open http://yelp.com and click into a restaurant, then select any

dish name in review area, then the corresponding image shows up.

6.1.3 Image preprocess

import scipy.misc

 32

from scipy.misc import imresize

scipy.misc.Imresize(*args, ** kwds)

6.1.4 Database and Server

To run web crawl, fetch haul with pip:

pip install haul

Type below command in the terminal

python imageDownLoader.py

To run server, fetch these libraries with pip:

pip flask

pip dataset

Type below command in the terminal

python app.py

6.1.5 Mapping

We defined a function called text_matching, which takes the text

selected by the user as input, and map it into(output) one of the 101

classes in food-101 dataset.

6.2 Design document and flowchart
Following is the design and flowchart of our whole project:

we have 4 modules in the first part: Web Crawler, Food image recognition, food

image quality recognition and Data Base. When the URL of a specific restaurant is

provided, the web crawler will connect the web page and crawl all the pics in the

 33

restaurant image reservoir. Then, our food image recognition and food image quality

recognition system will recognize their classes and quality one by one. Afterwards, all

the information about the pic such as: restaurant business id, image id, image URL,

image category and quality rate are installed in the database. This process should be

done before the users get access to the restaurant page because the process takes very

long time to accomplish.

The second part has 3 module: Chrome extension, Server and DataBase. When a users

selects a dish name in his Chrome, the plugin will send the request to the server. The

server responds by searching the business ID in Yelp and using the business ID to check

the database of certain restaurant with the business ID. From the database, we find the

category that mapping the dish name. From that category we find the best quality image

and return that image to the users.

 34

 35

7. Data analysis and discussion

7.1 Output generation

7.1.1 Food image recognition
We tried to retrain the Google InceptionV3 model, it is pretrained on ImageNet.

We want to train it on the Food-101 data. However, due to the limit of computer

hardware, instead of training 101 classes, we tried to train 10 classes (1000 pics for each

class and total 10,000 pics). We use 10 crops per example and taking the most frequent

predicted class. We use Stochastic Gradient Descent (SGD) with a quickly decreasing

learning schedule. The hardware condition is Nvidia GeForce GTX 1080/8 GB of

memory, 16 GB of system RAM, as well as a 6-core Intel Core i7. It is running 64-bit

Ubuntu 16.04 and using the Anaconda Python distribution.

However, each epoch (32) of training went 50 minutes, and it is too long for the

repetitive work. We decide to borrow an InceptionV3 model pretrained on Food-101

data to recognize the food image. The training source code is on the website:

http://blog.stratospark.com/creating-a-deep-learning-ios-app-with-keras-and-

tensorflo.html . The trained model is available at following website.

https://s3.amazonaws.com/stratospark/food-101/model4b.10-0.68.hdf5

We only list the code we call the model to do the recognition work in Appendices

10.1.1.

The version requirement of the recognition process is as follows:

● Tensorflow 1.2.0 (Strict)

● Keras 1.2.2 (Strict)

● h5py

● scipy

● matplotlib

● haul

We are able to achieve 86.97% Top-1 Accuracy and 97.42% Top-5 Accuracy

 36

7.1.2 Food image quality recognition

7.1.2.1 Food image quality model training
As food image quality recognition is quite a new idea, we want to train our own quality

recognition model. We retrain the Google InceptionV3 model which is pretrained on

ImageNet. The logic behind it is that we use the weights and bias parameters got from

training ImageNet as initial value and train most of the layers all over again. It is a

solution of transfer learning.

In terms of image preprocessing, for each picture with .jpg suffix, either smaller

than (299, 299, 3) or larger than (299, 299, 3), we resize the shortest edge to 299, and

adjust the other edge proportional accordingly. We use 10 crops per image with each

cropped image with size (299, 299, 3), because InceptionV3 model only accepts image

size (299, 299, 3). The crop method is get 10 (299,299,3) images from the position of

upper left, upper right, lower left, lower right, center, etc of the original image. Among

the 10 images, we obtain the average of the probability that the image is belong to a

good pic and using this average as the Goodness Index of the photo.

We create our own image quality dataset with 100 good photos and 100 bad photos.

The selection is inevitably subjective, so we ask other friends to trim our selection.

Normally speaking, the good food images are those of shallow field of depth, good

color contrast and good alignment. The bad food images are those of characteristics such

as out of focus, blur or dim background.

We set the training set to be 80% of the total image, test set to be the rest 20%. We are

able to achieve 68% Accuracy. 5 total epochs of training went 30 minutes. The version

requirement of the image quality training process is as follows:

● Python 3.6

● Tensorflow 1.2.0

● Keras 1.2.2

 37

Following is the result of the training process and we only load the model of

accuracy 68% after epoch 3/5 to use in our following image quality recognition process.

7.1.2.2 Food image quality recognition

We generate of the recognition model in the file of model68-2.7.hdf5, We only list

the code we call the model to do the recognition work in Appendices 10.1.2.

7.1.3 Food image Pre Processing
In order to feed our images to Google Inception, we need to preprocess the

images to optimize size first. There are a lot of ways to resize the photo by

299 * 299. One of the most simple ways is to call the preprocessing_funtion

which is directly provided by Keras library. However, simply resizing the

photo may make photo to be cropped out directly or distort the shape of the

original image during the preprocessing process. In order to get rid of these

negative factors, we wrote our own resizing function to process the photos.

In this case, we have used the scipy.misc.imresize which is provided by

matlab open library to resize the image. The scipy.misc. library provide the

shape function to directly access the width and height of each image. After

we got the width and height of the image, the easiest way is to

 38

proportionally enlarge the image when the size of image does not satisfy the

minimal size 299 * 299.

At the beginning, we would iterate the every sub folders under the food 101

directory. Resizing function load every image from each sub folder and

check each of them by single time. The function appends every image

which is already processed and load to the memory for training the model at

the end.

Any photos of width or height smaller than min_size will be resized. We

could take proper-sized crops during image augmentation. The function will

iterate every image under the subfolder within food 101 dataset and check if

the size of photo smaller than the 299, then it enlarges the photo by getting

the ratio of the proportion of width or height which not satisfy the minimal

size 299 first. Then we multiply this ratio to unchosen height or width. Later,

we assume that every image of width and height are above or at least equal

 39

to 299. Since google inception v3 only accepts 299 * 299. We still need to

crop the photo to feed to our model. So we decide to crop the image to

following crops : Upper Left, Upper Right, Lower Right, Lower Left,

Lower Right, Center. Using the CNN model, it gives each tag to each crop

image. we count the total high frequency index by the count. We will get

the most frequent tag from these ten photos and decide which this photo

belongs to which tag. We will see these ten photos here by processing the

single photo.

7.2 Output analysis

7.2.1 Food recognition output analysis

We have already discussed the output of the training part in above paragraphs.

Here we discuss about the output in the recognition process.

 The recognition process receives a local path of a image and output a 101

classification to be stored in the database. Normally, the result is shown as following:
array([91, 90, 91, 90, 91, 91, 91, 91, 91, 91]))

8 out of the 10 sub-images give the classification as spaghetti_carbonara, 2

out of the 10 sub-images give the classification as spaghetti_bolognese. So the final

 40

classification of the image belongs to spaghetti_carbonara which is quite right and

shown in the last line of the output.

7.2.2 Food image quality recognition output analysis
 The recognition process receives a local path of the image and output a pic goodness

index to be stored in the database. Normally, the result is shown as following:

We can see the probability being a good photo of the 10 crops are as follows, the

average is 0.97, so the output gives the goodness index as an integer 97.0.
0.91845584

 41

0.9870161
0.91845584
0.9870161
0.917644
0.99285686
0.9953826
0.99285686
0.9953826
0.976757

We can see a bad photo as comparison,

We can see the probability of being a good photo of the 10 crops are as follows,

the average is 0.45, so the output gives the goodness index as an integer 45.0. which

according to our criteria is a bad photo.
0.8128084
0.15784839
0.8128084
0.15784839
0.5346108
0.078899056
0.70456874
0.078899056
0.70456845
0.44813347
45.0

 42

7.3 Compare output against hypothesis

 The various hypothesis or assumptions made initially are validated

against the output generated. The model is tested against two basic test cases as

shown below:

TEST CASE

NO:

TEST CASE

EXPLANATION

EXPECTED OUTPUT OUTPUT

OBTAINED

1 Selected word

doesn’t match

with the words

in database.

Nothing will be
displayed.

Nothing is

displayed.

2 Selected word

maps with the

words in the

database.

A pop-up displaying
the image of the
food.

A pop-up
displays
the image
of the
food.

When there is no map between the selected word and the words in the database

the model doesn’t display any images. There will be no map mainly due to two sub-

cases:

a. When the selected word is not a food

b.When the food name is not in the Food-101 dataset.

In both the above cases the designed model will not display any images to the user. The

first sub-case may arise if the user selects a word which is not a food at all. For example,

the user might select the word “student” which is not a food name. The second sub-case

arises if the user selects a word which is not in the Food-101 dataset. For example, some

of the indian foods aren’t included in the Food-101 dataset when they are selected it will

result in zero mapping and will result in no image.

In case of testcase 2, when there is a map between the selected word and the

words in the database either partially or completely, the model will display the image

corresponding to that word from the database. The map function will product a

complete mapping when the word selected exactly matches with the word in the

database, For example, if the selected word is chicken wings which exactly matches with

the word in the database. The map function will result in partial mapping when the word

 43

selected matches partially. For example, if the selected word is “orange chicken wings”,

only chicken wings are mapped and will result in displaying the image of chicken wings

and not exact image of “orange chicken wings”.

When we compare the last two columns of the table we can conclude that the

designed model is able to meet the hypothesis stated before designing the model.

7.4 Abnormal case explanation

We will encounter such cases that the input image is not about a dish. if we don’t

handle this exception, the recognition model will give the pic a food classification even

if the probability is very low. so we set a threshold value. if the probability is lower than

the threshold, we don’t reckon that it is a pic about food and return the classification as

“Unknown”.
 y_pred = model.predict(np.array(crops))
 predsprob = np.max(y_pred,axis = 1)
 preds = np.argmax(y_pred, axis=1)
 for a in range(0,10):
 if predsprob[a] <= 0.3:
 preds[a] = -1

The code shows that if the probability of a subimage most likely belong to certain

classification is lower than 0.3, we says the subimage belongs to the classification -1. So

if the majority of the 10 subimages belongs to -1, we can claim the image is not about

food. The demo shows a image about tractor. Even 2 out of 10 subimage claim it is a

garlic-bread, 8 out of 10 subimages claims it is not about food. So our error handler

returns error message to say it is not about food.

 44

 45

8. Conclusions and recommendations

8.1 Summary and conclusions

 The designed model basically assists the user in knowing how the food

will look like by just selecting the food image name. This model basically

consists of two parts. The first part involves image recognition and determining

the good quality photos,The image recognition model used here is inceptionV3

which has been borrowed by the opensource and the model also includes CNN

model for determining good quality photos from bad quality photos to display

good photos. the second part is the chrome extension which is basically the front

end of the designed model. The user selects the name of the food from this UI

created.

8.2 Recommendations for future studies
1. This model can be further developed in many ways such as:

2. One can include ingredient recognition along with image

recognition.

3. One can include information about other restaurants where similar

kind of food is served.

4. The UI can be made even more beautiful.

5. One can extend the model that recognizes more food categories

apart from Food-101.

6. One can extend the model to improve the mapping issues.

7. One can ask help from Yelp system to further develop the model.

8. One can also use map reduce to scrawl pictures then classify and

qualify them.

 46

9. Bibliography
1. Chu W T, Lin J H. Food image description based on deep-based joint food category,

ingredient, and cooking method recognition[C]//Multimedia & Expo Workshops

(ICMEW), 2017 IEEE International Conference on. IEEE, 2017: 109-114.

2. Chu W T, Lin J H. Food image description based on deep-based joint food category,

ingredient, and cooking method recognition[C]//Multimedia & Expo Workshops

(ICMEW), 2017 IEEE International Conference on. IEEE, 2017: 109-114.

3. Bossard L, Guillaumin M, Van Gool L. Food-101–mining discriminative components

with random forests[C]//European Conference on Computer Vision. Springer, Cham,

2014: 446-461.

4. Barranco R C, Rodriguez L M, Urbina R, et al. Enhancing Yelp Data with Deep

Learning and Information Reuse[C]//Information Reuse and Integration (IRI), 2017

IEEE International Conference on. IEEE, 2017: 452-461.

5. Chen X, Zhu Y, Zhou H, et al. ChineseFoodNet: A large-scale Image Dataset for

Chinese Food Recognition[J]. arXiv preprint arXiv:1705.02743, 2017.

6.https://engineeringblog.yelp.com/2016/11/finding-beautiful-yelp-photos-using-deep-

learning.html

7. Hassannejad, Hamid, et al. "Food image recognition using very deep convolutional

networks." Proceedings of the 2nd International Workshop on Multimedia Assisted

Dietary Management. ACM, 2016.

 47

8. O'Hara, Stephen, and Bruce A. Draper. "Introduction to the bag of features paradigm

for image classification and retrieval." arXiv preprint arXiv:1101.3354 (2011).

9. Nielsen, Michael A. Neural networks and deep learning. Determination Press, 2015.

10. Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification

with deep convolutional neural networks." Advances in neural information

processing systems. 2012.

11. Bag of Words, Wikipedia

12. Support Vector Machine, Wikipedia

13. Y. LeCun, Y. Bengio, and G.Hinton. Deep learning. Nature, 521(7533):436-444,

2015.

14..https://www.quora.com/What-are-the-differences-between-Keras-and-Lasagne-in-

detail

15..https://keras.io/

16..http://lasagne.readthedocs.io/en/latest/modules/layers.html

17.http://blog.stratospark.com/deep-learning-applied-food-classification-deep-learning-

keras.html

 48

10. Appendices

10.1 Program source code with documentation

food image recognition model
implementation
import matplotlib.image as img
import numpy as np
from scipy.misc import imresize
import collections
from keras.applications.inception_v3 import preprocess_input
from keras.models import load_model

model = load_model(filepath='./model4b.10-0.68.hdf5')

def center_crop(x, center_crop_size, **kwargs):
 centerw, centerh = x.shape[0]//2, x.shape[1]//2
 halfw, halfh = center_crop_size[0]//2, center_crop_size[1]//2
 return x[centerw-halfw:centerw+halfw+1,centerh-
halfh:centerh+halfh+1, :]

def predict_10_crop(img, ix, top_n=5, plot=False, preprocess=True,
debug=False):
 flipped_X = np.fliplr(img)
 crops = [
 img[:299,:299, :], # Upper Left
 img[:299, img.shape[1]-299:, :], # Upper Right
 img[img.shape[0]-299:, :299, :], # Lower Left
 img[img.shape[0]-299:, img.shape[1]-299:, :], # Lower Right
 center_crop(img, (299, 299)),

 flipped_X[:299,:299, :],
 flipped_X[:299, flipped_X.shape[1]-299:, :],
 flipped_X[flipped_X.shape[0]-299:, :299, :],
 flipped_X[flipped_X.shape[0]-299:, flipped_X.shape[1]-299:, :],
 center_crop(flipped_X, (299, 299))
]
 if preprocess:
 crops = [preprocess_input(x.astype('float32')) for x in crops]

 y_pred = model.predict(np.array(crops))
 predsprob = np.max(y_pred,axis = 1)
 preds = np.argmax(y_pred, axis=1)

 49

 for a in range(0,10):
 if predsprob[a] <= 0.3:
 preds[a] = -1
 top_n_preds= np.argpartition(y_pred, -top_n)[:,-top_n:]
 return preds, top_n_preds

class_to_ix = {}
ix_to_class = {}
with open('./food_classes.txt', 'r') as txt:
 classes = [l.strip() for l in txt.readlines()]
 class_to_ix = dict(zip(classes, range(len(classes))))
 ix_to_class = dict(zip(range(len(classes)), classes))
 class_to_ix = {v: k for k, v in ix_to_class.items()}
sorted_class_to_ix =
collections.OrderedDict(sorted(class_to_ix.items()))

def resize_img(img_path, min_side=299):
 pic = img.imread(img_path)
 w, h, _ = pic.shape
 if w < min_side:
 wpercent = (min_side/float(w))
 hsize = int((float(h)*float(wpercent)))
 pic = imresize(pic, (min_side, hsize))
 elif h < min_side:
 hpercent = (min_side/float(h))
 wsize = int((float(w)*float(hpercent)))
 pic = imresize(pic, (wsize, min_side))

 elif w > min_side:
 wpercent = (min_side/float(w))
 hsize = int((float(h)*float(wpercent)))
 pic = imresize(pic, (min_side, hsize))
 elif h > min_side:
 hpercent = (min_side/float(h))
 wsize = int((float(w)*float(hpercent)))
 pic = imresize(pic, (wsize, min_side))

 return pic

def recognize(pic_path):
 pic = resize_img(pic_path)
 preds = predict_10_crop(np.array(pic), 0)[0]
 best_pred = collections.Counter(preds).most_common(1)[0][0]
 if best_pred == -1:
 return "Unknown"
 else:

 50

 return ix_to_class[best_pred]

food image quality recognition
implementation

import matplotlib.image as img
import numpy as np
from scipy.misc import imresize
import collections
from keras.applications.inception_v3 import preprocess_input
from keras.models import load_model

model = load_model(filepath='./model4b.10-0.68.hdf5')

def center_crop(x, center_crop_size, **kwargs):
 centerw, centerh = x.shape[0]//2, x.shape[1]//2
 halfw, halfh = center_crop_size[0]//2, center_crop_size[1]//2
 return x[centerw-halfw:centerw+halfw+1,centerh-
halfh:centerh+halfh+1, :]

def predict_10_crop(img, ix, top_n=5, plot=False,
preprocess=True, debug=False):
 flipped_X = np.fliplr(img)
 crops = [
 img[:299,:299, :], # Upper Left
 img[:299, img.shape[1]-299:, :], # Upper Right
 img[img.shape[0]-299:, :299, :], # Lower Left
 img[img.shape[0]-299:, img.shape[1]-299:, :], # Lower Right
 center_crop(img, (299, 299)),

 flipped_X[:299,:299, :],
 flipped_X[:299, flipped_X.shape[1]-299:, :],
 flipped_X[flipped_X.shape[0]-299:, :299, :],
 flipped_X[flipped_X.shape[0]-299:, flipped_X.shape[1]-
299:, :],
 center_crop(flipped_X, (299, 299))
]
 if preprocess:
 crops = [preprocess_input(x.astype('float32')) for x in

 51

crops]

 y_pred = model.predict(np.array(crops))
 predsprob = np.max(y_pred,axis = 1)
 preds = np.argmax(y_pred, axis=1)
 for a in range(0,10):
 if predsprob[a] <= 0.3:
 preds[a] = -1
 top_n_preds= np.argpartition(y_pred, -top_n)[:,-top_n:]
 return preds, top_n_preds

class_to_ix = {}
ix_to_class = {}
with open('./food_classes.txt', 'r') as txt:
 classes = [l.strip() for l in txt.readlines()]
 class_to_ix = dict(zip(classes, range(len(classes))))
 ix_to_class = dict(zip(range(len(classes)), classes))
 class_to_ix = {v: k for k, v in ix_to_class.items()}
sorted_class_to_ix =
collections.OrderedDict(sorted(class_to_ix.items()))

def resize_img(img_path, min_side=299):
 pic = img.imread(img_path)
 w, h, _ = pic.shape
 if w < min_side:
 wpercent = (min_side/float(w))
 hsize = int((float(h)*float(wpercent)))
 pic = imresize(pic, (min_side, hsize))
 elif h < min_side:
 hpercent = (min_side/float(h))
 wsize = int((float(w)*float(hpercent)))
 pic = imresize(pic, (wsize, min_side))

 elif w > min_side:
 wpercent = (min_side/float(w))
 hsize = int((float(h)*float(wpercent)))
 pic = imresize(pic, (min_side, hsize))
 elif h > min_side:
 hpercent = (min_side/float(h))
 wsize = int((float(w)*float(hpercent)))
 pic = imresize(pic, (wsize, min_side))

 52

 return pic

def recognize(pic_path):
 pic = resize_img(pic_path)
 preds = predict_10_crop(np.array(pic), 0)[0]
 best_pred = collections.Counter(preds).most_common(1)[0][0]
 if best_pred == -1:
 return "Unknown"
 else:
 return ix_to_class[best_pred]

food image recognition model training

import matplotlib.pyplot as plt
import matplotlib.image as img
import numpy as np
from scipy.misc import imresize

%matplotlib inline

import os
from os import listdir
from os.path import isfile, join
import shutil
import stat
import collections
from collections import defaultdict

from ipywidgets import interact, interactive, fixed
import ipywidgets as widgets

import h5py
from keras.utils.np_utils import to_categorical
from keras.applications.inception_v3 import preprocess_input
from keras.models import load_model

from keras.applications.inception_v3 import InceptionV3
from keras.applications.inception_v3 import preprocess_input,
decode_predictions
from keras.preprocessing import image
from keras.layers import Input

import tools.image_gen_extended as T

 53

import multiprocessing as mp

num_processes = 6
pool = mp.Pool(processes=num_processes)

class_to_ix = {}
ix_to_class = {}
with open('good-bad-food/meta/classes-2.txt', 'r') as txt:
 classes = [l.strip() for l in txt.readlines()]
 class_to_ix = dict(zip(classes, range(len(classes))))
 ix_to_class = dict(zip(range(len(classes)), classes))
 class_to_ix = {v: k for k, v in ix_to_class.items()}
sorted_class_to_ix =
collections.OrderedDict(sorted(class_to_ix.items()))

print(class_to_ix)
print(ix_to_class)

if not os.path.isdir('./good-bad-food/test') and not
os.path.isdir('./good-bad-food/train'):

 def copytree(src, dst, symlinks = False, ignore = None):
 if not os.path.exists(dst):
 os.makedirs(dst)
 shutil.copystat(src, dst)
 lst = os.listdir(src)
 if ignore:
 excl = ignore(src, lst)
 lst = [x for x in lst if x not in excl]
 for item in lst:
 s = os.path.join(src, item)
 d = os.path.join(dst, item)
 if symlinks and os.path.islink(s):
 if os.path.lexists(d):
 os.remove(d)
 os.symlink(os.readlink(s), d)
 try:
 st = os.lstat(s)
 mode = stat.S_IMODE(st.st_mode)
 os.lchmod(d, mode)
 except:
 pass # lchmod not available
 elif os.path.isdir(s):
 copytree(s, d, symlinks, ignore)
 else:
 shutil.copy2(s, d)

 54

 def generate_dir_file_map(path):
 dir_files = defaultdict(list)
 with open(path, 'r') as txt:
 files = [l.strip() for l in txt.readlines()]
 for f in files:
 dir_name, id = f.split('/')
 dir_files[dir_name].append(id + '.jpg')
 return dir_files

 train_dir_files = generate_dir_file_map('good-bad-
food/meta/train.txt')
 test_dir_files = generate_dir_file_map('good-bad-
food/meta/test.txt')

 def ignore_train(d, filenames):
 print(d)
 subdir = d.split('/')[-1]
 to_ignore = train_dir_files[subdir]
 return to_ignore

 def ignore_test(d, filenames):
 print(d)
 subdir = d.split('/')[-1]
 to_ignore = test_dir_files[subdir]
 return to_ignore

 copytree('good-bad-food/images', 'good-bad-food/test',
ignore=ignore_train)
 copytree('good-bad-food/images', 'good-bad-food/train',
ignore=ignore_test)

else:
 print('Train/Test files already copied into separate folders.')

%%time

Load dataset images and resize to meet minimum width and height
pixel size
def load_images(root, min_side=299):
 all_imgs = []
 all_classes = []
 resize_count = 0
 invalid_count = 0
 for i, subdir in enumerate(listdir(root)):

 55

 imgs = listdir(join(root, subdir))
 class_ix = class_to_ix[subdir]
 print(i, class_ix, subdir)
 for img_name in imgs:
 img_arr = img.imread(join(root, subdir, img_name))
 img_arr_rs = img_arr
 try:
 w, h, _ = img_arr.shape
 if w <= h and w < min_side:
 wpercent = (min_side/float(w))
 hsize = int((float(h)*float(wpercent)))
 #print('new dims:', min_side, hsize)
 img_arr_rs = imresize(img_arr, (min_side, hsize))
 resize_count += 1
 elif h <= w and h < min_side:
 hpercent = (min_side/float(h))
 wsize = int((float(w)*float(hpercent)))
 #print('new dims:', wsize, min_side)
 img_arr_rs = imresize(img_arr, (wsize, min_side))
 resize_count += 1
 elif w <= h and w > 400:
 wpercent = (400/float(w))
 hsize = int((float(h)*float(wpercent)))
 #print('new dims:', min_side, hsize)
 img_arr_rs = imresize(img_arr, (400, hsize))
 resize_count += 1
 elif h <= w and h > 400:
 hpercent = (400/float(h))
 wsize = int((float(w)*float(hpercent)))
 #print('new dims:', wsize, min_side)
 img_arr_rs = imresize(img_arr, (wsize, 400))
 resize_count += 1
 all_imgs.append(img_arr_rs)
 all_classes.append(class_ix)
 except:
 print('Skipping bad image: ', subdir, img_name)
 invalid_count += 1
 print(len(all_imgs), 'images loaded')
 print(resize_count, 'images resized')
 print(invalid_count, 'images skipped')
 return np.array(all_imgs), np.array(all_classes)

X_test, y_test = load_images('good-bad-food/test', min_side=299)

%%time
X_train, y_train = load_images('good-bad-food/train', min_side=299)

 56

from keras.utils.np_utils import to_categorical

n_classes = 2
y_train_cat = to_categorical(y_train, nb_classes=n_classes)
y_test_cat = to_categorical(y_test, nb_classes=n_classes)

%%time

this is the augmentation configuration we will use for training
train_datagen = T.ImageDataGenerator(
 featurewise_center=False, # set input mean to 0 over the dataset
 samplewise_center=False, # set each sample mean to 0
 featurewise_std_normalization=False, # divide inputs by std of
the dataset
 samplewise_std_normalization=False, # divide each input by its
std
 zca_whitening=False, # apply ZCA whitening
 rotation_range=0, # randomly rotate images in the range
(degrees, 0 to 180)
 width_shift_range=0.2, # randomly shift images horizontally
(fraction of total width)
 height_shift_range=0.2, # randomly shift images vertically
(fraction of total height)
 horizontal_flip=True, # randomly flip images
 vertical_flip=False, # randomly flip images
 zoom_range=[.8, 1],
 channel_shift_range=30,
 fill_mode='reflect')
train_datagen.config['random_crop_size'] = (299, 299)
train_datagen.set_pipeline([T.random_transform, T.random_crop,
T.preprocess_input])
train_generator = train_datagen.flow(X_train, y_train_cat,
batch_size=32, seed=11, pool=pool)

test_datagen = T.ImageDataGenerator()
test_datagen.config['random_crop_size'] = (299, 299)
test_datagen.set_pipeline([T.random_transform, T.random_crop,
T.preprocess_input])
test_generator = test_datagen.flow(X_test, y_test_cat, batch_size=32,
seed=11, pool=pool)

def reverse_preprocess_input(x0):
 x = x0 / 2.0
 x += 0.5
 x *= 255.

 57

 return x

%%time
@interact()
def show_images(unprocess=True):
 for x in test_generator:
 fig, axes = plt.subplots(nrows=8, ncols=4)
 fig.set_size_inches(8, 8)
 page = 0
 page_size = 32
 start_i = page * page_size
 for i, ax in enumerate(axes.flat):
 img = x[0][i+start_i]
 if unprocess:
 im =
ax.imshow(reverse_preprocess_input(img).astype('uint8'))
 else:
 im = ax.imshow(img)
 ax.set_axis_off()
 ax.title.set_visible(False)
 ax.xaxis.set_ticks([])
 ax.yaxis.set_ticks([])
 for spine in ax.spines.values():
 spine.set_visible(False)

 plt.subplots_adjust(left=0, wspace=0, hspace=0)
 plt.show()
 break
X_test.shape[0]
X_train.shape[0]
%%time

from keras.models import Sequential, Model
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Convolution2D, MaxPooling2D, ZeroPadding2D,
GlobalAveragePooling2D, AveragePooling2D
from keras.layers.normalization import BatchNormalization
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import ModelCheckpoint, CSVLogger,
LearningRateScheduler, ReduceLROnPlateau
from keras.optimizers import SGD
from keras.regularizers import l2
import keras.backend as K
import math

K.clear_session()

 58

base_model = InceptionV3(weights='imagenet', include_top=False,
input_tensor=Input(shape=(299, 299, 3)))
x = base_model.output
x = AveragePooling2D(pool_size=(8, 8))(x)
x = Dropout(.4)(x)
x = Flatten()(x)
predictions = Dense(n_classes, init='glorot_uniform',
W_regularizer=l2(.0005), activation='softmax')(x)

model = Model(input=base_model.input, output=predictions)

opt = SGD(lr=.01, momentum=.9)
model.compile(optimizer=opt, loss='categorical_crossentropy',
metrics=['accuracy'])

checkpointer = ModelCheckpoint(filepath='model4.{epoch:02d}-
{val_loss:.2f}.hdf5', verbose=1, save_best_only=True)
csv_logger = CSVLogger('model4.log')

def schedule(epoch):
 if epoch < 10:
 return .01
 elif epoch < 28:
 return .002
 else:
 return .0004
lr_scheduler = LearningRateScheduler(schedule)

model.fit_generator(train_generator,
 validation_data=test_generator,
 nb_val_samples=X_test.shape[0],
 samples_per_epoch=X_train.shape[0],
 nb_epoch=5,
 verbose=2,
 callbacks=[lr_scheduler, csv_logger,
checkpointer])

chrome extension front-end

function getSelected() {
 if (window.getSelection) {
 return window.getSelection();
 } else if (document.getSelection) {

 59

 return document.getSelection();
 } else {
 var selection = document.selection &&
document.selection.createRange();
 if (selection.text) {
 return selection.text;
 }
 return false;
 }
 return false;
}

function textSelectedHandler() {
 var txt;
 if (document.selection) {
 txt = document.selection.createRange().text
 } else {
 txt = window.getSelection() + '';
 }
 if (txt) {
 console.log(txt);
 document.getElementById('')
 }
}

var lastX = 0;
var lastY = 0;

function initContentScript() {
 var feeds = document.getElementsByClassName("review-list");
 if (feeds.length > 0) {
 console.log("load feed success");
 } else {
 console.log("load feed failed");
 }

 $(document).ready(function() {
 $popup = $('');
 $popup.append('')
 .append('');
 $mask = $('');
 $('.review-list').prepend($popup).prepend($mask);

 function setStyle() {
 $popup.removeClass('hidden').animate({
 opacity: 1

 60

 }, function() {});
 $mask.removeClass('hidden').animate({
 opacity: 0.7
 }, function() {});
 H = $(window).height();
 W = $(window).width();
 $popup.css({
 'left': (W - $popup.width()) / 2,
 'top': (H - $popup.height()) / 2,
 });
 }

 function postData(text) {
 phoneNumber = $.trim($('.biz-phone').text());
 url = 'http://127.0.0.1:5000/recognize';
 data = {
 'phone_number': phoneNumber,
 'text': text
 }
 $.post(url, data, function(res) {
 var img_url = res.result[0].image_url ||
res.result[0].default_url;
 var dish_name = res.result[0].dish_name;
 $('#dish-info').attr('src', img_url);
 $('#dish-name').text(dish_name);
 });
 }

 $(document).on('click', function(e) {
 var text = $.trim(getSelected());
 if (text == '' && e.target ==
document.getElementById('mask')) {
 $popup.animate({
 opacity: 0
 }, function() {
 $(this).addClass('hidden');
 });
 $mask.animate({
 opacity: 0
 }, function() {
 $(this).addClass('hidden');
 });
 // $('#dish-info').attr('src', '');
 }
 });

 61

 $('.review-list').on('mouseup', function(e) {
 var text = $.trim(getSelected());
 if (text != '') {
 setStyle();
 postData(text);
 }
 });
 });

 // $('.review-list').mousedown(function(event) {
 // lastX = event.clientX;
 // lastY = event.clientY;
 // console.log(lastX);
 // console.log(lastY);
 // });

 $('.review-list').mouseup(function(event) {
 var selection = getSelected();
 selection = $.trim(selection);
 if (selection != '') {
 var offset = $('.review-list').offset();
 console.log(event);
 console.log(JSON.stringify(offset));
 var top = offset.top;
 var left = offset.left;
 console.log(event.clientY);
 console.log(event.clientX);
 $("span.popup-tag").css("display", "block");
 $("span.popup-tag").css("top", event.clientY +
event.offsetY);
 $("span.popup-tag").css("left", event.clientX - left);
 $("span.popup-tag").text(selection);
 } else {
 $("span.popup-tag").css("display", "none");
 }
 });

 //
 // document.addEventListener('mouseup', textSelectedHandler);
 // document.addEventListener('dbclick', textSelectedHandler);
}

initContentScript();

text matching/mapping

 62

def text_matching(user_text, class_list=classes):
 print(type(user_text))
 user_text = user_text.split(' ')
 for item in class_list:
 class_name = item.split('_')
 for word1 in user_text:
 for word2 in class_name:
 if word1 == word2:
 return item
 return ''

DataBase manager

import dataset

DATABASE_URL = 'sqlite:///DataSet/DataBase/Photos.db'

class DbManager(object):

 def __init__(self):
 self.db = dataset.connect(DATABASE_URL)
 self.tbl = self.db.get_table('photos')

 def connect(self, url=DATABASE_URL):
 self.db = dataset.connect(url)
 return self.db

 def get_table(self, table_name):
 table = self.db.get_table(table_name)
 return table

 def update_or_insert(self, key, business_id, url, category,
rate):
 data = dict(pic_id=key, business_id=business_id,
url=url, category=category, rate=rate)
 self.tbl.upsert(data, ['pic_id'])

 def find_with_business(self, business_id):
 results = self.tbl.find(business_id=business_id)
 return list(results)

 63

 def find_with_category(self, business_id, category):
 results = self.tbl.find(business_id=business_id,
category=category, order_by='-rate')
 return list(results)

 def find_one(self, key):
 result = self.tbl.find_one(pic_id=key)
 return result

 def insert(self, key, business_id, url, category, rate):
 data = dict(pic_id=key, business_id=business_id,
url=url, category=category, rate=rate)
 self.tbl.insert(data, ['pic_id'])

Web Crawler

import haul
import requests
import os
import re
import imageRecognition
from dbmanager import DbManager
import shutil
import qualityRecognition

root = 'DataSet/Images'

root_url = 'https://www.yelp.com/biz_photos/a-bellagio-italian-
restaurant-campbell-2?'
tab = '&tab=food'
business_id = 'O0R8TkEE2eWDnp9xOOjHBQ'

cursor = 30
total_page = 1

db_manager = DbManager()

def load_image():
 for i in range(0, total_page):
 start = cursor * i

 64

 page_url = root_url + 'start=' + str(start) + tab
 result = haul.find_images(page_url)
 image_paths = []
 for i, url in enumerate(result.image_urls):
 if not os.path.exists(root):
 os.mkdir(root)
 if not re.match(r'^https?:/{2}\w.+$', url):
 continue
 components = url.split("/")
 last_component = components[-1].split('.')
 pic_id = components[-2]
 extension = last_component[-1]
 if extension != 'jpg':
 continue
 r = requests.get(url)
 r.raise_for_status()
 parent_path = root + '/' + pic_id
 if not os.path.exists(parent_path):
 os.mkdir(parent_path)
 path = root + '/' + pic_id + '/' + components[-1]
 image_paths.append(path)
 with open(path, "wb") as f:
 f.write(r.content)
 food_class = imageRecognition.recognize(path)
 rate = qualityRecognition.recognize(path)
 # print('image_url :' + url)
 # print('food class: ' + food_class)
 # print('rate: ' + str(rate))
 db_manager.update_or_insert(pic_id, business_id,
url, food_class, rate)

def delete_cache():
 file_list = os.listdir(root)
 for f in file_list:
 file_path = os.path.join(root, f)
 if os.path.isfile(file_path):
 os.remove(file_path)
 print file_path + " removed!"
 elif os.path.isdir(file_path):
 shutil.rmtree(file_path, True)
 print "dir " + file_path + " removed!"

 65

load_image()
delete_cache()

Server

from flask import Flask, request, jsonify
from dbmanager import DbManager
from yelp import Yelp
import re

app = Flask(__name__)
default_url = 'https://www.yelpblog.com/wp-
content/themes/yelpblog/images/yelp-avatar.png';

empty_result = [
 {
 'status': 200,
 'id': '',
 'image_url': '',
 'dish_name': '',
 'default_url': default_url
 },
]

yelp = Yelp()
db_manager = DbManager()
classes = []

with open('./food_classes.txt', 'r') as txt:
 classes = [l.strip() for l in txt.readlines()]

@app.route('/')
def hello_world():
 return jsonify('hello, how are u')

@app.route('/recognize', methods=['POST'])
def response():
 phone_number = request.form.get('phone_number', '')

 66

 food_name = request.form.get('text', '')
 phone = convert(phone_number)
 business = yelp.search_business(phone)
 business_id = business['id']
 category = find_category(food_name)
 if category == '':
 return jsonify({'result': empty_result})
 photos = db_manager.find_with_category(business_id,
category)
 if len(photos) == 0:
 return jsonify({'result': empty_result})
 return json_response(photos[0], food_name)

def convert(phone_number):
 res = re.sub('[()-]', '', phone_number)
 return '+1' + res

def json_response(photo, dish_name):
 result = [
 {
 'status': 200,
 'id': photo['pic_id'],
 'image_url': photo['url'],
 'dish_name': dish_name,
 'default_url': default_url
 },

]
 return jsonify({'result': result})

def find_category(food_name):
 name_str = food_name.lower()
 return text_matching(name_str)

def text_matching(user_text, class_list=classes):
 print(type(user_text))
 user_text = user_text.split(' ')
 for item in class_list:

 67

 class_name = item.split('_')
 for word1 in user_text:
 for word2 in class_name:
 if word1 == word2:
 return item
 return ''

if __name__ == '__main__':
 app.run()

Yelp

import requests
import json
from urllib.parse import quote

API_KEY =
"uPwnMrsg1PknTUUG8j3e0wjGdb2Cec0Zh1Y8Hc6mSEDSZVvDTc295dbfS9uOa9
oHyFUia0qTHJ8stBKHvKg93jtumdEkKjExJxfPykhb1G3q8jf2k0xFDFm2AF8WW
3Yx"
API_HOST = 'https://api.yelp.com'
SEARCH_PATH = '/v3/businesses/search/phone'

class Yelp(object):
 @staticmethod
 def request(host, path, api_key, url_params=None):

 url_params = url_params or {}
 url = '{0}{1}'.format(host, quote(path.encode('utf8')))
 headers = {
 'Authorization': 'Bearer %s' % api_key,
 }

 print(u'Querying {0} ...'.format(url))
 response = requests.request('GET', url, headers=headers,
params=url_params)
 return response

 def search_business(self, phone_number):
 url_parameters = {

 68

 'phone': phone_number
 }

 response = self.request(API_HOST, SEARCH_PATH, API_KEY,
url_parameters)
 if not response.ok:
 return ""
 content = json.loads(response.text)
 business = content['businesses'][0]
 return business

 69

10.2 Input/output listing

food_classes.txt

apple_pie eggs_benedict onion_rings

baby_back_ribs escargots oysters

baklava falafel pad_thai

beef_carpaccio filet_mignon paella

beef_tartare fish_and_chips pancakes

beet_salad foie_gras panna_cotta

beignets french_fries peking_duck

bibimbap french_onion_soup pho

bread_pudding french_toast pizza

breakfast_burrito fried_calamari pork_chop

bruschetta fried_rice poutine

caesar_salad frozen_yogurt prime_rib

cannoli garlic_bread pulled_pork_sandwich

caprese_salad gnocchi ramen

carrot_cake greek_salad ravioli

ceviche grilled_cheese_sandwich red_velvet_cake

cheesecake grilled_salmon risotto

cheese_plate guacamole samosa

chicken_curry gyoza sashimi

chicken_quesadilla hamburger scallops

chicken_wings hot_and_sour_soup seaweed_salad

chocolate_cake hot_dog shrimp_and_grits

chocolate_mousse huevos_rancheros spaghetti_bolognese

churros hummus spaghetti_carbonara

clam_chowder ice_cream spring_rolls

club_sandwich lasagna steak

crab_cakes lobster_bisque strawberry_shortcake

creme_brulee lobster_roll_sandwich sushi

croque_madame macaroni_and_cheese tacos

cup_cakes macarons takoyaki

deviled_eggs miso_soup tiramisu

donuts mussels tuna_tartare

dumplings nachos waffles

edamame omelette

model4b.10-0.68.hdf5

 70

Model of food image recognition

model68-2.7.hdf5

Model of food image quality recognition

