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2. Introduction 

2.1 Objective  

As recent years, YELP has become the dominated reviewing website to help 

the customers to choose the right restaurant. Customers like taking other 

people’s opinions if they decide to go eat at this restaurant or not. Helping 

the user efficiently to identify the photo is critical part to improve the user’s 

experience.  

We will build the application to recognize the food name in the sentence 

and return back the food image corresponding to the same name with food 

ingredients, cooking method, and nutrition. 

2.2 What is the problem? 

When users are reading the comment on yelp, a lot of times they are curious  
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what type of the food looks like in this restaurant. I clipped two comments 

which reviews the local Japanese food restaurant and makes some 

recommendations from YELP. As we can see, a lot of recommended food 

names are Japanese, ultimately this would take long time to do your own 

research to find out the what the food looks like. Since they are directly 

translated from Japanese, you have no clues what are them or maybe food 

have different names and you cannot remember each of them. Nowadays, 

more and more people care about the fitness, they also would like to know 

the specific nutritional parts of the selected food. We can provide the 

ingredient parts and create the nutrition label for this chosen food. Such as 
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protein, carbs, sugar, fat and so on.  We understand that the most appealing 

part is picture which you can actually see corresponding to the menu. 

However, we need carefully to think of how to choose the most qualified 

photo for the user, instead of dragging the random picture from the internet, 

user actually prefer to see the real one directly from this restaurant that they 

are interested in.  In another scenario, when foreigners come to visit another 

country, it is very difficult for them to order right food because of lacking 

the local culture and language barrier.  If there is a tool which could 

accurately help users to identify the food immediately, when users are 

reading the comments online, this would definitely improve the user 

experience a lot. Users can simply click the food name in the sentence and 

there will be small window indicating the related food, ingredients, cooking 

direction and calories popped out.  Finding the correct picture sounds 

straightforward. If there is existed corresponding name tag for this kind of 

food on the yelp, we only need to do one to one function matching. 

  
 



 6 

 
However, some people forget to describe their food pictures when they 

uploaded to the YELP and there are a lot of photos don’t come with name 

tag. As we can see these two photos come from YELP which not include 

name tag on them.  So, even the original restaurant does have the existed 

photos, there is still high probability that user could not accurately find food 

pictures on the YELP. At this time, we could not use the one to one function 

to simply match the food name.  At this scenario, developing the application 

to recognize these pictures without name tag is very necessary for helping 

the user. Our training model will identify these pictures under the different 

food categories. Lately, all these unnamed photos will be assigned name tag 

by our application and it will prioritize the original photos will be chosen 

from the same restaurant which user queries for.  Moreover, there may be 

another case that new restaurant has just opened, there are not many 

customer pictures on YELP database yet and it is frequently to see that user 

write the comment, rather than uploading images to the YELP. We can only 

recognize the food name first and find similar picture through our database.  
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2.3 Why this is a project related to this class? 

According to the Oracle webpage. The definition of Data mining is the 

practice of automatically searching large stores of data to discover patterns 

and trends that go beyond simple analysis. Data mining uses sophisticated 

mathematical algorithms to segment the data and evaluate the probability of 

future events. Data mining is also known as Knowledge Discovery in 

Data(KDD) 

They key properties of data mining are: 

● Automatic discovery of patterns 

● Prediction of likely outcomes  

● Creation of actionable information 

● Focus on large data sets and database 

we collect a lot of food photos as the training data to predict the food 

category.  Also, we use the CNNs model to train these sample pictures and 

get the new pattern to recognize the photo by certain criterial. Let the 

machine to identify the photo quality by itself. This also help us deeply 

understand what the relationship between our data and model is. How could 

we extract the data from the image and build our own model to identify the 

new picture.  Our project initially needs large data sets to train the model to 

improve the accuracy.  

2.4 Why other approach is no good? 

There are certain simple techniques we can think of now:  First of all, using 

the one to one function to directly match the same name tag which already 

was already uploaded in YELP database and return to the user when they 

are clicking on the word in the sentence. This approach is quite simple. 

Since previous users are lazy or forget to put name tag for every picture, it 

cannot guarantee that there is a corresponding name tag in the database.  On 
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the other hand, some new restaurant doesn’t even have that many pictures 

yet.  Second technique is that using the online searching tool, like google, 

searches the food photo. This may sound like most efficient way to do it but 

there are still many disadvantages. Firstly, As I mentioned before that 

costumers are more interested in the pictures of restaurant where they may 

eat at, original restaurant pictures should be always considered at the first to 

display. Secondly, online searching tool may return many unrelated pictures, 

which may confuse the user to recognize the food.  

2.5 Why you think your approach is better? 

We combine these two simple ways together and add our own approach to 

better solve this problem. Our simple ideal is that if there is name tag on the 

Yelp photo dataset, we will automatically give the certain pictures by 

looking for the previous picture with the same or similar name tag. This 

could be simply achieved by linear searching. We add CNNs training model 

to generate the name tag for these pictures that don’t have name tag on them.  

If there are no photos matching the query in the restaurant of yelp datasets, 

we will look up our own database and retrieve the most similar photo back 

to the users.  At the end, instead of giving random qualified food picture 

back, the query may pick up multiply candidates at the waiting pool first, 

then our CNNs model will select the most delicate photo by comparing the 

other quality of pictures.   
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3. Theoretical bases and literature review 

3.1 Our Solution:  

3.1.1 Fine-tuned DCNN model trained on food image datasets 

Google Inception DCNN is an architecture for image recognition, 

specifically, classification. A model called GoogLeNet won the Imagenet 

Large Scale Visual Recognition Challenge in 2014, in which models were 

asked to identify about 1000 different classes of objects after have been 

trained on 1.2 million images across 1000 categories. It was able to and 

reach an unprecedentedly high level of performance in general object 

recognition, thanks to the introduction of Inception. The release of Inception 

by the end of 2015 has made it greatly convenient to get a high performance 

as well as a high accuracy on object recognition, because instead of building 

our own convolutional neural network (CNN) and training it through many 

epochs, we can take advantage of this suitable pre-trained model and 

slightly modify it to make it meet our goals. 

Inception-ResNet-V3 Architecture 
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Our solution to food image recognition problem is to use a pre-trained 

Inception V3 network as the starting point, playing a role of priori 

knowledge, and then fine-tune it by adjusting the architecture in the output 

layer (classification layer) of the network, to adapt it to the food image 

datasets to be able to classify different food properly. 

Our food image datasets include three parts: ETH Food-101, UEC 

FOOD 100 and UEC FOOD 256. These three datasets have 101 food 

categories with 101,000 images, 100 food categories with 14,000 images 

and 256 categories with 32,000 images respectively.  

A few examples of the test datasets images (a) UEC FOOD 100 and UEC 

FOOD 256 and (b) ETH FOOD-101 

3.1.2 Intelligent & Interactive matching method of food 

information-displaying to enhance user experience on YELP 

The objective of deciding to implement a model to classify food 

images is to enhance the experience when a user is going through the 

reviews of a specific restaurant on YELP. Instead of knowing only names of 

some dishes mentioned in the reviews, users would be able to find a much 

more useful set of information, which includes not only the name, but also 

corresponding images, ingredients and the cooking method of selected 

dishes. 

The way we implementing it is to detect if users’ are selecting key 

words (the name of a dish) in a review, and then bind to selecting event a 

handler that displays the information about the dish. The data needed in part 

2 is based on part 1, in which most of the food has been classified into 
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different categories and got at least one tag. We match the key words 

selected by users with tags already existed in our database to decide which 

row of information about the food to display. 

3.2 Differences from others’ solution: 

3.2.1 Differences between DCNN and other image recognition 

methods 

Several studies have been focusing on food image recognition.  

Bag of words (BoW) treats image features as words. In document 

classification, a bag of words is a sparse vector of occurrence counts of 

words; that is, a sparse histogram over the vocabulary. In computer vision, 

a bag of visual words is a vector of occurrence counts of a vocabulary of 

local image features. SIFT is a popular model with BoW approaches.  

Fisher kernel, named after Ronald Fisher, is a function that measures 

the similarity of two objects on the basis of sets of measurements for each 

object and a statistical model. In a classification procedure, the class for a 

new object (whose real class is unknown) can be estimated by minimizing, 

across classes, an average of the Fisher kernel distance from the new object 

to each known member of the given class.  

KNN is a type of instance-based learning, or lazy learning, where the 

function is only approximated locally and all computation is deferred until 

classification. The k-NN algorithm is among the simplest of all machine 

learning algorithms. 

In machine learning, support vector machines are supervised learning 

models with associated learning algorithms that analyze data used for 

classification and regression analysis. Given a set of training examples, each 

marked as belonging to one or the other of two categories, an SVM training 

algorithm builds a model that assigns new examples to one category or the 
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other, making it a non-probabilistic binary linear classifier. 

 An SVM model is a representation of the examples as points in space, 

mapped so that the examples of the separate categories are divided by a 

clear gap that is as wide as possible. New examples are then mapped into 

that same space and predicted to belong to a category based on which side 

of the gap they fall. 

One major difference between DCNN and above mentioned 

approaches is that good features are learned automatically using a general-

purpose procedure in DCNN, while not in other approaches. It’s the key 

advantage of DCNN. 

Another difference is whether a model has a priori knowledge or not. 

Since a model is designed to recognize images and it cannot learn 

everything from scratch and need some knowledge to be in its structure 

directly. Google Inception DCNN is such a model because as mentioned 

above, it has been already trained on a datasets which contain 1.2 million 

images across 1000 categories. While many other models need to be trained 

from scratch. 

3.2.2 Differences on information displaying about food key words 

in users’ reviews on website YELP 

The conventional way for a user of YELP who is gathering 

information from other users is to read the reviews posted by them. If lucky 

enough, the text goes with some pictures, but not always in this way. If not, 

the user would probably get confused by the name of some dishes, which 

lead to a bad experience. Even though restaurants on YELP always display 

some pictures of food, they can’t do it in a customizing way. Specifically, 

all the pictures are displayed in a certain region and have no connections 

with user reviews. The way our team is going to implement is to build a 

connection between user reviews and food images. In this way, when user is 
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reading a review which contains a key word of food name, he or she can 

easily get more information about it by select the key word, which leads to a 

much better user experience. 

3.3 Why our solution is better 

3.3.1 Food image recognition solution 

1. Less overfitting 

The straightforward way of improving the performance of networks 

is to increasing the size of them, 

which always leads to overfitting and 

time consuming problems. However, 

Google Inception uses a method 

called network-in-network, which 

was first proposed by Lin et al, to 

address overfitting problem. In 

conventional convolutional layers, 

the input is collected and processed 

using different kernels which 

represent different features. Instead, 

network-in-network builds smaller neural networks with more 

complex structures to abstract the data falling within local receptive 

field. In this way, overfitting problem could be avoided to the utmost 

extent. 

2. Less training time 

Since fully-connected layers will lead to a dense computation, 

Google Inception replace them with sparsely-connected ones, not 

only implement in this way in the main modules, but even within 

micro-networks. Another main idea of Inception is to think about 
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approximating the optimal, sparse structure of a convolutional vision 

network by readily available dense components. In this way, Google 

Inception is faster than many other models when getting trained.  

3. More accuracy 

By fine-tuning the classification layers of Google Inception, our 

model will get a more suitable categories on food. Along with 

training on datasets ETH Food-101, UEC FOOD 100 and UEC 

FOOD 256, it’ll provide a more accurate recognition on food images. 

3.3.2 User experience enhancing solution 

1. Saving time and enhancing experience 

Without recognizing and searching pictures by themselves, users who 

are reading reviews can get all the relevant information of a food with 

ease. All the information will be recognized and matched by our 

model automatically. It will save much time and enhance experience 

greatly for users. 

2. Showing detailed information 

Not only knowing the name of some food from other users reviews, 

user can get more information about the food. Our implementation 

would extract tags of a specific food, along with ingredients and 

cooking method, in which users could be very interested. 
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4. Goals 

While textual reviews have become prominent element for potential 

customers to learn relevant information about the restaurant in Yelp, the 

inclusion of images can significantly increase the effectiveness of a review. 

The main goal of our project is to implement a food-recognition-based 

information displaying system to enhance the review. 

The system consisting of three main components: 1) a food recognition or 

food classifier to predict a tag for each image, 2) a mechanism to map a 

food name in a review to the most relevant image, 3) a chrome extension, 

by which user can view what one food looks like while a food name in 

customers’ review list is selected. 

4.1 Image recognition or image classifier 
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Figure 4-1 Image classifier 

We use an image recognition or image classifier to classify all the food 

images shown in a Yelp restaurant into different categories and then predict 

a tag for each of them as shown in Figure 1. Once a person selects a dish 

name in this restaurant, we can match this dish name with a certain image.  
 

4.2 A mechanism to map review to image 

When user is looking through a webpage, he might select many words, our 

mechanism should detect whether current selected words are components of 

a food name. For example, if the word “Tiramisu” has been selected, we 

should say “Okay, it is a desert”. When it occurs to “Tirana”, we should 

know “it is not a food name”. 

After a valid food name is selected, we will use it as keyword to find related 

image. 
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Figure 4-2 Preview Image for selected dish name “Tuna tartar” in a review 

4.3 Chrome extension for Yelp 

Our prototype is shown in Figure 4-2, when user is looking review list in 

Yelp, a food name “Tuna Tartar” is highlighted, then the image of it will 

pop up.  

4.4 Two other optional goals 

There are two other goals we want to achieve if we have enough time: 1) a 

food ingredient recognition to retrieve recipes 2) and image quality scoring 

algorithm. We can get food ingredient from image by CNN, and when user 

selects the dish name, an image and its ingredient will be displayed on the 

screen. Since there are a lot of pictures containing same tag in some 

restaurants, the results of a food name may contain more than one picture. 

Image quality scoring algorithm is designed to figure out which picture is 

Figure 4-2 Preview Image for selected dish name “Tuna tartar” in a review 
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best among these candidates as shown in Figure 4-3. We will prefer to 

choosing the first picture as final result. 
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5. Methodology  

5.1 Methodology for building Chrome extension for Yelp 

● how to collect input data? 

Input data contains two parts, the first one is current restaurant id and 

the image urls in current restaurant. Web app can access it through Yelp 

API and send the restaurant id and image urls to our backend. 

The second one is the words selected by the user. They can be collect 

through JavaScript. 

● how to solve the problem?  

● algorithm design 

Extensions are made of different, but cohesive, components. 

Components can include background scripts, content scripts, an options 

page, UI elements and various logic files. The processing flow of typical 

usage is as follows: 

1. User opens a page in Yelp. 

2. Web app collect current restaurant information through Yelp API 

and send it to backend. 

3. When user highlight some words, send these words as a query to 

backend. 

4. Displaying the results from backend in a popup view. 

● language used 

JavaScript 

HTML 5 

● Tool 

Atom 

● How to generate output 
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Once the words are selected, they will become highlighted and the 

result image will be shown in a popup view. 

● How to test against hypotheses 

Test Case for Web Extension: 
 

Test 

Case ID 

Test Scenario Test Steps Expected 

Results 

TU01 Check result with 

invalid food name. 

1.Select some words that 

can not form a food 

name by mouse. 

Nothing will 

happen 

TU02 Check result with 

valid food name and 

the category of food 

is NOT in database.  

1. Select some words 

that can form a food 

name by mouse. 

A popup view 

will show but 

does not  

display any 

image. 

TU03 Check result with 

valid food name and 

the category of food 

is IN our database. 

 1. Find a food which 

doesn’t exit in our 

database. 

 2. Select this food name 

in a review by mouse. 

A popup view 

will show and 

display the 

image of this 

food.  

TU04 Check result with a 

food name which 

matches no image in 

current restaurant. 

1. Find a food which 

image is not IN current 

restaurant. 

 2. Select this food name 

in a review by mouse. 

A popup view 

will show and 

display the 

image which 

is exiting in 

our database. 

TU05 Check result with a 

food name which 

matches only one 

image in current 

restaurant. 

1. Find a food and make 

sure there is only one 

image in current 

restaurant  

 2. Select this food name 

in a review by mouse 

A popup view 

will show and 

display the 

only image. 
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TU06 Check result with a 

food name which 

matches more than 

one image in current 

restaurant. 

1. Find a food and make 

sure there are more than 

one image in current 

restaurant  

 2. Select this food name 

in a review by mouse 

A popup view 

will show and 

display the 

best one 

among all the 

images 

TU07 Network error 

handling 

1. Disconnect Wi-Fi 

2. Find a valid food 

name and select it 

A popup view 

will show and 

display the 

network error 

message 

  

5.2 Methodology for mapping review to image 

5.2.1 how to generate/collect input data  

5.2.1.1 Food dataset 

There are some public food datasets for food-related applications such as 

dietary assessment, computational cooking, food recipe retrieval and so on. 

We have listed below the famous food datasets available and their 

characteristics.  
Table 1 Public food datasets 

Dataset Image/Category Comments 

PFID dataset 

(Pittsburgh Food 

Image Dataset) 

4,556 fast food images/ 

 

PFID contains only standardized fast 

food images taken under laboratory 

conditions. 

ChineseFoodNet 

dataset 

 

185,628 /208 food categories  

 

ChineseFoodNet covers most of 

popular Chinese food, and these images 

include web images and photos taken in 

real world under unconstrained 

conditions 

VIREO-172  a total of 353 ingredient labels 

and 110,241 images 

Chinese Food dataset 
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ETHZ-FOOD-101 

 

101’000 images/101 food 

categories 

 

UPMC-FOOD-101 

 

Same 101 food categories as 

ETHZFOOD-101 but with 

different images 

 

The images of UPMCFOOD-101 are 

recipe images, in which each has the 

additional textual information 

UNICT-FD889 3,583 images / 889 distinct 

dishes 

The UNICT-FD889 dataset are used for 

Near Duplicate Image retrieval (NDIR) 

UEC-Food100  100 categories  Japanese food dataset 

UEC-Food256 256 categories Japanese food dataset 

Indian Food 

Dataset_1,2,3,4 

100 categories each 2000 

images 

Indian food dataset 

 

To train our food classification algorithm, we use the well-known 

dataset ETHZ-Food-101. It is a public dataset of 101 food categories, with 

101’000 images. However, for Chinese dishes, Food-101 is not sufficient 

due to its limited categories classification. Compared to other types of food 

such as American fast food and Italian food, it is more difficult to recognize 

the images of Chinese dish. First, the images of the same Chinese dish may 

appear differently as different ingredients and cooking method make it hard 

to differentiate even for human vision. Second, the noise of images of 

Chinese dishes is hard to model because of complex noise and a variety of 

backgrounds, for example dim light, vapor environment, strong reflection, 

various utensils of Chinese dishes such as color, shape. Thus, as 

compliment to Food-101 dataset, we use ChineseFoodNet, Indian food 

dataset_1,2,3,4 to train our classification algorithm specifically regarding to 

Chinese restaurant (Yelp has restaurant label such as Chinese, 

American(New), Indian and Mediterranean etc.).  
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5.2.2 how to solve the problem  

5.2.2.1 algorithml2 

The pictures on the restaurant webpage are pic-comment pairs. For 

example, a picture of garlic fries with comment “Garlic Fries”, a picture of 

mushroom swiss burger with comment “Mushroom Swiss Burger (bun is a 

bit dry. Its meat and mushrooms were good”. Under most circumstance, 

pictures are uploaded by contributors without a comment. We make them 

into a Hashmap for certain restaurant with the picture the comment<String> 

as the key and ID<Integer> as the value. As mentioned above, quite a few 

of the comments are empty. Even if not empty, a picture and the comment 

may have not substantially correlated. For example, a comment “Hurrah it’s 

my birthday” for a picture of a pasta dish only increases the noise-level 

rather than providing informative features. 

 

 

 
 

 

In a review 

without picture, 

the Words<String> 

is Cobb Salad 
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Our framework addresses the problem of recommending images for each 

review in three major steps.  

First, we collect the words<String> which the user thinks would be a dish 

name in a review. we iterate through the Hashmap to check which comment 

contains the words<String>. There might be several hits. We rank the 

corresponding pictures using certain criteria.  

Second, we select the best pictures among which whose comments all 

contain the words<String>. Here we have two criteria to implement: (1) the 

pictures with highest quality in terms of field depth, contrast and alignment; 

(2) the comments have the most relevant topic terms with the review. 

Third, if no existing comment contains the words<String>, we generate 

name tag for each picture using food recognition techniques until the 

classification coincides with the words<String>.  

Forth, we retrieve ingredients for the words<String> using food ingredient 

recognition techniques.  

 

Below is the road map for our methodology. 

Comment attached to a picture: My 

Colorful Cobb Salad was perfect! 
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a. Image classification 

We use a Convolutional Neural Network (CNN) image classifier to obtain 

class probabilities for all images in the test set (all images in a certain 

restaurant). 

Convolutional Neural Network algorithms require that all of the images 

have the same dimension and are shaped as a square. We will resize the 

images so that the smallest dimension of the image is 64 or 224 pixels, and 

then crop the image in the other dimension to obtain a 64-by-64-pixel or 

  

User clicks 

the dish 

name (The 

Word) 

Search 

Hashmap 

 

No existing 

comments 

contain the 

Word 

Several 

hits 
 

Using CNN to 

select the best 

quality picture 

Or 

Using LDA to 

select the picture 

with the most 

relevant comment 

 

Using CNN to 

recognize the dish 

image 

and 

Using CNN to 

retrieve the 

ingredients 
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224-by-224-pixel image. We will test and implement CNN models using 

two Python libraries based on the Theano deep-learning library: Keras, and 

Lasagne. Keras and Lasagne provide high-level functions 

for deep learning algorithms, including convolution, pooling, and fully-

connected layers, as well as backpropagation and optimization routines, 

whereas Theano provides the back- end of the computation and includes 

GPU support. 

We will use a number of different CNN models to evaluate their 

accuracy. One of these models was based on the CIFAR10 data while the 

others were designed to work with the ImageNet data: VGG-16, VGG-19 

and GoogleNet. The CIFAR10 model is relatively simple, with only 11 

layers. The VGG-16 model adds four convolutional layers and one fully-

connected layer, which significantly increases the complexity of the model. 

The VGG-19 and GoogleNet models add even a larger number of layers, 

consisting of 19 and 22, respectively. We also used MATLAB ’s Bag-of-

Features with SVM classification algorithm as a baseline. We used six-fold 

cross-validation for evaluation of all these approaches. 

b. Image quality scoring model 

The three most important features of a photo are depth of field, color 

contrast and alignment. The depth of field measures how much of the image 

is in focus. Using a “shallow” depth of field can be an excellent way to 

distinguish the subject of an image from its background. In many cases, the 

most beautiful images of a given restaurant were very sharply focused on a 

specific entrée. 
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In particular, we found that a good proxy for quality is whether a photo 

was taken by a digital single-lens reflex camera, or DSLR. These cameras 

give the photographer more control over which parts of the image are in 

focus, by adjusting the lens type and aperture size. Further, DSLR sensors 

are larger and more sensitive to light, allowing great photos to be taken in 

even very dim situations. Finally, people who regularly use DSLR cameras 

may have more experience and skill in capturing higher quality images. 

Training our model on such photos allows it to learn important photo 

features and recognize great photos even when they are not taken by a 

DSLR camera. 

We will try several methods of training this model. Initially, we will 

collect 100,000 DSLR and non-DSLR images to use as positive and 

negative labels, respectively, and feed these into a model known 

as AlexNet, which was created by researchers at the University of Toronto 

in 2012. To improve the accuracy of this model, we will train an additional 

model with more than ten times the previous amount of training data. 

Finally, we will test a model called GoogLeNet, which was developed by 

researchers at Google in 2014 and achieved state of the art performance by 

having significantly deeper layers than previous top-of-the-line models. 

In each of these cases, we will further evaluate the model against a 

dataset of thousands of images manually evaluated by Yelp engineers, 

which consisted of only those images which we could confidently say were 
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very good or very bad. We assume that with each iteration, our ability to 

correctly identify good and bad photos will improve. 

c. Topic modeling and review enhancement 

We leverage Latent Dirichlet Allocation (LDA) to model the topics of 

the reviews. We obtain the topic with the highest probability and select the 

top t representative terms of that topic, regardless if they appear on the 

review or not. For each review, we recommend the top φ images based on 

the presence of the t representative terms in the review and in the comments 

of the subset of images available only for the business for which the review 

was written. An image is ranked higher for a particular review if a 

representative term is present both in the image comment and in the review, 

compared to an image which contains the representative term only in its 

comment. 

We start by selecting images using representative terms that are present 

in both the review and the image comment. If φ images cannot be found, we 

select images for which comment contain representative terms but the 

review does not. This process ensures that the image selection is not solely 

driven by overlaps between a review and a comment, rather reviews and 

image comment without any overlap may become candidates for potential 

mapping due to the use of topical terms during the ranking. 

d. Ingredient recognition model 

We will build the ingredient recognition model based on our dataset, 

because it has clean recipe information. For ingredient information, we will 

manually filter out stop words and commonly used units like spoon and jar.  

5.2.2.2 language used  

To perform the image recognition the language used here is Python library 

Keras and Lasagne. Keras and Lasagne are high-level neural network API 

which is capable of running on top of TensorFlow. It supports 
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Convolutional network. The only difference between them is Keras is less 

flexible and less extensible than Lasagne. 
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6. Implementation 

6.1 Code 

6.1.1 Food image category and quality recognition  

1) download Python module: pillow, h5py, scipy, matplotlib, haul, 

tensorflow (1.2.0), keras(1.2.2). The last two has strict version 

requirement. 

2) make sure the following file is properly stored: food_classes.txt, 

model4b.10-0.68.hdf5 and model68-2.7.hdf5. The latter two are 

ready-trained classification model to be implemented.  

3) Run imageDownLoader.py, it will call imageRecognition.py and 

qualityRecognition.py. 

4) The result will give the URL of the image, the classification of 

the image and the quality index. The classification and quality 

index will directly stored in the database, instead of been 

printed.  

6.1.2 Chrome extension 

1. upload extension package 

1) open “chrome://extensions” 

 
2) load unpacked “preview” 
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this icon next to url bar shows that the extension is installed 

properly. 

2. open http://yelp.com and click into a restaurant, then select any 

dish name in review area, then the corresponding image shows up. 

 

6.1.3 Image preprocess 

import scipy.misc 
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from scipy.misc import imresize 

scipy.misc.Imresize(*args, ** kwds) 

 

6.1.4 Database and Server 

To run web crawl, fetch haul with pip: 

pip install haul  

Type below command in the terminal 

python imageDownLoader.py 

 

To run server, fetch these libraries with pip: 

pip flask 

pip dataset 

 

Type below command in the terminal 

python app.py 

 

6.1.5 Mapping  

We defined a function called text_matching, which takes the text 

selected by the user as input, and map it into(output) one of the 101 

classes in food-101 dataset. 

 

 

6.2 Design document and flowchart 
Following is the design and flowchart of our whole project: 

we have 4 modules in the first part: Web Crawler, Food image recognition, food 

image quality recognition and Data Base. When the URL of a specific restaurant is 

provided, the web crawler will connect the web page and crawl all the pics in the 
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restaurant image reservoir. Then, our food image recognition and food image quality 

recognition system will recognize their classes and quality one by one. Afterwards, all 

the information about the pic such as: restaurant business id, image id, image URL, 

image category and quality rate are installed in the database.  This process should be 

done before the users get access to the restaurant page because the process takes very 

long time to accomplish.  

 

 

 
 

 
The second part has 3 module: Chrome extension, Server and DataBase. When a users 

selects a dish name in his Chrome, the plugin will send the request to the server. The 

server responds by searching the business ID in Yelp and using the business ID to check 

the database of certain restaurant with the business ID.  From the database, we find the 

category that mapping the dish name. From that category we find the best quality image 

and return that image to the users.   



 34 

 
 

 

 

 

 

 

 

 

 
  



 35 

7.  Data analysis and discussion  

7.1 Output generation  

7.1.1 Food image recognition 
We tried to retrain the Google InceptionV3 model, it is pretrained on ImageNet. 

We want to train it on the Food-101 data. However, due to the limit of computer 

hardware, instead of training 101 classes, we tried to train 10 classes (1000 pics for each 

class and total 10,000 pics). We use 10 crops per example and taking the most frequent 

predicted class. We use Stochastic Gradient Descent (SGD) with a quickly decreasing 

learning schedule. The hardware condition is Nvidia GeForce GTX 1080/8 GB of 

memory, 16 GB of system RAM, as well as a 6-core Intel Core i7. It is running 64-bit 

Ubuntu 16.04 and using the Anaconda Python distribution.  

However, each epoch (32) of training went 50 minutes, and it is too long for the 

repetitive work. We decide to borrow an InceptionV3 model pretrained on Food-101 

data to recognize the food image. The training source code is on the website: 

http://blog.stratospark.com/creating-a-deep-learning-ios-app-with-keras-and-

tensorflo.html . The trained model is available at following website.  

https://s3.amazonaws.com/stratospark/food-101/model4b.10-0.68.hdf5 

We only list the code we call the model to do the recognition work in Appendices 

10.1.1.  

The version requirement of the recognition process is as follows:  

● Tensorflow 1.2.0 (Strict) 

● Keras 1.2.2 (Strict) 

● h5py 

● scipy 

● matplotlib 

● haul 

We are able to achieve 86.97% Top-1 Accuracy and 97.42% Top-5 Accuracy 
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7.1.2 Food image quality recognition 

7.1.2.1 Food image quality model training  
As food image quality recognition is quite a new idea, we want to train our own quality 

recognition model. We retrain the Google InceptionV3 model which is pretrained on 

ImageNet. The logic behind it is that we use the weights and bias parameters got from 

training ImageNet as initial value and train most of the layers all over again. It is a 

solution of transfer learning.   

In terms of image preprocessing, for each picture with .jpg suffix, either smaller 

than (299, 299, 3) or larger than (299, 299, 3), we resize the shortest edge to 299, and 

adjust the other edge proportional accordingly. We use 10 crops per image with each 

cropped image with size (299, 299, 3), because InceptionV3 model only accepts image 

size (299, 299, 3). The crop method is get 10 (299,299,3) images from the position of 

upper left, upper right, lower left, lower right, center, etc of the original image.  Among 

the 10 images, we obtain the average of the probability that the image is belong to a 

good pic and using this average as the Goodness Index of the photo.  

We create our own image quality dataset with 100 good photos and 100 bad photos. 

The selection is inevitably subjective, so we ask other friends to trim our selection.   

 
Normally speaking, the good food images are those of shallow field of depth, good 

color contrast and good alignment. The bad food images are those of characteristics such 

as out of focus, blur or dim background.  

We set the training set to be 80% of the total image, test set to be the rest 20%. We are 

able to achieve 68% Accuracy. 5 total epochs of training went 30 minutes. The version 

requirement of the image quality training process is as follows: 

● Python 3.6 

● Tensorflow 1.2.0 

● Keras 1.2.2 



 37 

Following is the result of the training process and we only load the model of 

accuracy 68% after epoch 3/5 to use in our following image quality recognition process. 

 

 

7.1.2.2 Food image quality recognition  

We generate of the recognition model in the file of model68-2.7.hdf5, We only list 

the code we call the model to do the recognition work in Appendices 10.1.2.  

7.1.3 Food image Pre Processing  
In order to feed our images to Google Inception, we need to preprocess the 

images to optimize size first. There are a lot of ways to resize the photo by 

299 * 299. One of the most simple ways is to call the preprocessing_funtion 

which is directly provided by Keras library. However, simply resizing the 

photo may make photo to be cropped out directly or distort the shape of the 

original image during the preprocessing process.  In order to get rid of these 

negative factors, we wrote our own resizing function to process the photos.  

In this case, we have used the scipy.misc.imresize which is provided by 

matlab open library to resize the image. The scipy.misc. library provide the 

shape function to directly access the width and height of each image.  After 

we got the width and height of the image, the easiest way is to 
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proportionally enlarge the image when the size of image does not satisfy the 

minimal size  299 * 299. 

 

 

 
At the beginning, we would iterate the every sub folders under the food 101 

directory. Resizing function load every image from each sub folder and 

check each of them by single time.  The function appends every image 

which is already processed and load to the memory for training the model at 

the end.   

 

Any photos of width or height smaller than min_size will be resized. We 

could take proper-sized crops during image augmentation. The function will 

iterate every image under the subfolder within food 101 dataset and check if 

the size of photo smaller than the 299, then it enlarges the photo by getting 

the ratio of  the proportion of width or height which not satisfy the minimal 

size 299 first. Then we multiply this ratio to unchosen height or width. Later, 

we assume that every image of width and height are above or at least  equal 



 39 

to 299. Since google inception v3 only accepts 299 * 299. We still need to 

crop the photo to feed to our model. So we decide to crop the image to 

following crops : Upper Left, Upper Right, Lower Right, Lower Left, 

Lower Right, Center. Using the CNN model, it gives each tag to each crop 

image. we count the total high frequency index by the count. We will get 

the most frequent tag from these ten photos and decide which this photo 

belongs to which tag.  We will see these ten photos here by processing the 

single photo. 

 

7.2 Output analysis  

7.2.1 Food recognition output analysis  

We have already discussed the output of the training part in above paragraphs. 

Here we discuss about the output in the recognition process.  

 The recognition process receives a local path of a image and output a 101    

classification to be stored in the database. Normally, the result is shown as following:  
array([91, 90, 91, 90, 91, 91, 91, 91, 91, 91])) 

8 out of the 10 sub-images give the classification as spaghetti_carbonara, 2 

out of the 10 sub-images give the classification as spaghetti_bolognese. So the final 
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classification of the image belongs to spaghetti_carbonara which is quite right and 

shown in the last line of the output. 
 

 

7.2.2 Food image quality recognition output analysis  
 The recognition process receives a local path of the image and output a pic goodness 

index  to be stored in the database. Normally, the result is shown as following: 

 
 

We can see the probability being a good photo of the 10 crops are as follows, the 

average is 0.97, so the output gives the goodness index as an integer 97.0. 
0.91845584 
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0.9870161 
0.91845584 
0.9870161 
0.917644 
0.99285686 
0.9953826 
0.99285686 
0.9953826 
0.976757 

 

We can see a bad photo as comparison, 

 
We can see the probability of being a good photo of the 10 crops are as follows, 

the average is 0.45, so the output gives the goodness index as an integer 45.0. which 

according to our criteria is a bad photo.  
0.8128084 
0.15784839 
0.8128084 
0.15784839 
0.5346108 
0.078899056 
0.70456874 
0.078899056 
0.70456845 
0.44813347 
45.0 
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7.3 Compare output against hypothesis  

 The various hypothesis or assumptions made initially are validated 

against the output generated. The model is tested against two basic test cases as 

shown below: 

 

TEST CASE 

NO: 

TEST CASE 

EXPLANATION 

EXPECTED OUTPUT OUTPUT 

OBTAINED 

1 Selected word 

doesn’t match 

with the words 

in database. 

Nothing will be 
displayed. 

Nothing is 

displayed. 

2 Selected word 

maps with the 

words in the 

database. 

A pop-up displaying 
the image of the 
food. 

A pop-up 
displays 
the image 
of the 
food. 

 
When there is no map between the selected word and the words in the database 

the model doesn’t display any images. There will be no map mainly due to two sub-

cases: 

a. When the selected word is not a food 

b.When the food name is not in the Food-101 dataset. 

In both the above cases the designed model will not display any images to the user. The 

first sub-case may arise if the user selects a word which is not a food at all. For example, 

the user might select the word “student” which is not a food name. The second sub-case 

arises if the user selects a word which is not in the Food-101 dataset. For example, some 

of the indian foods aren’t included in the Food-101 dataset when they are selected it will 

result in zero mapping and will result in no image. 

In case of testcase 2, when there is a map between the selected word and the 

words in the database either partially or completely, the model will display the image 

corresponding to that word from the database.  The map function will product a 

complete mapping when the word selected exactly matches with the word in the 

database, For example, if the selected word is chicken wings which exactly matches with 

the word in the database. The map function will result in partial mapping when the word 
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selected matches partially. For example, if the selected word is “orange chicken wings”, 

only chicken wings are mapped and will result in displaying the image of chicken wings 

and not exact image of “orange chicken wings”. 

When we compare the last two columns of the table we can conclude that the 

designed model is able to meet the hypothesis stated before designing the model. 

7.4 Abnormal case explanation  

We will encounter such cases that the input image is not about a dish. if we don’t 

handle this exception, the recognition model will give the pic a food classification even 

if the probability is very low. so we set a threshold value. if the probability is lower than 

the threshold, we don’t reckon that it is a pic about food and return the classification as 

“Unknown”.  
 y_pred = model.predict(np.array(crops)) 
 predsprob = np.max(y_pred,axis = 1) 
 preds = np.argmax(y_pred, axis=1) 
 for a in range(0,10): 
   if predsprob[a] <= 0.3: 
     preds[a] = -1 
 

The code shows that if the probability of a subimage most likely belong to certain 

classification is lower than 0.3, we says the subimage belongs to the classification -1. So 

if the majority of the 10 subimages belongs to -1, we can claim the image is not about 

food.  The demo shows a image about tractor. Even 2 out of 10 subimage claim it is a 

garlic-bread, 8 out of 10 subimages claims it is not about food. So our error handler 

returns error message to say it is not about food.  
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8. Conclusions and recommendations  

8.1 Summary and conclusions 

 The designed model basically assists the user in knowing how the food 

will look like by just selecting the food image name. This model basically 

consists of two parts. The first part involves image recognition and determining 

the good quality photos,The image recognition model used here is inceptionV3 

which has been borrowed by the opensource and the model also includes CNN 

model for determining good quality photos from bad quality photos to display 

good photos. the second part is the chrome extension which is basically the front 

end of the designed model. The user selects the name of the food from this UI 

created.  

8.2 Recommendations for future studies 
1. This model can be further developed in many ways such as: 

2. One can include ingredient recognition along with image 

recognition. 

3. One can include information about other restaurants where similar 

kind of food is served. 

4. The UI can be made even more beautiful. 

5. One can extend the model that recognizes more food categories 

apart from Food-101. 

6. One can extend the model to improve the mapping issues. 

7. One can ask help from Yelp system to further develop the model. 

8. One can also use map reduce to scrawl pictures then classify and 

qualify them. 
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10. Appendices 

10.1 Program source code with documentation  

food image recognition model 
implementation  
import matplotlib.image as img 
import numpy as np 
from scipy.misc import imresize 
import collections 
from keras.applications.inception_v3 import preprocess_input 
from keras.models import load_model 
 
model = load_model(filepath='./model4b.10-0.68.hdf5') 
 
def center_crop(x, center_crop_size, **kwargs): 
 centerw, centerh = x.shape[0]//2, x.shape[1]//2 
 halfw, halfh = center_crop_size[0]//2, center_crop_size[1]//2 
 return x[centerw-halfw:centerw+halfw+1,centerh-
halfh:centerh+halfh+1, :] 
 
def predict_10_crop(img, ix, top_n=5, plot=False, preprocess=True, 
debug=False): 
 flipped_X = np.fliplr(img) 
 crops = [ 
   img[:299,:299, :], # Upper Left 
   img[:299, img.shape[1]-299:, :], # Upper Right 
   img[img.shape[0]-299:, :299, :], # Lower Left 
   img[img.shape[0]-299:, img.shape[1]-299:, :], # Lower Right 
   center_crop(img, (299, 299)), 
 
   flipped_X[:299,:299, :], 
   flipped_X[:299, flipped_X.shape[1]-299:, :], 
   flipped_X[flipped_X.shape[0]-299:, :299, :], 
   flipped_X[flipped_X.shape[0]-299:, flipped_X.shape[1]-299:, :], 
   center_crop(flipped_X, (299, 299)) 
 ] 
 if preprocess: 
   crops = [preprocess_input(x.astype('float32')) for x in crops] 
 
 y_pred = model.predict(np.array(crops)) 
 predsprob = np.max(y_pred,axis = 1) 
 preds = np.argmax(y_pred, axis=1) 



 49 

 for a in range(0,10): 
   if predsprob[a] <= 0.3: 
     preds[a] = -1 
 top_n_preds= np.argpartition(y_pred, -top_n)[:,-top_n:] 
 return preds, top_n_preds 
 
class_to_ix = {} 
ix_to_class = {} 
with open('./food_classes.txt', 'r') as txt: 
 classes = [l.strip() for l in txt.readlines()] 
 class_to_ix = dict(zip(classes, range(len(classes)))) 
 ix_to_class = dict(zip(range(len(classes)), classes)) 
 class_to_ix = {v: k for k, v in ix_to_class.items()} 
sorted_class_to_ix = 
collections.OrderedDict(sorted(class_to_ix.items())) 
 
def resize_img(img_path, min_side=299): 
 pic = img.imread(img_path) 
 w, h, _ = pic.shape 
 if w < min_side: 
   wpercent = (min_side/float(w)) 
   hsize = int((float(h)*float(wpercent))) 
   pic = imresize(pic, (min_side, hsize)) 
 elif h < min_side: 
   hpercent = (min_side/float(h)) 
   wsize = int((float(w)*float(hpercent))) 
   pic = imresize(pic, (wsize, min_side)) 
 
 elif w > min_side: 
   wpercent = (min_side/float(w)) 
   hsize = int((float(h)*float(wpercent))) 
   pic = imresize(pic, (min_side, hsize)) 
 elif h > min_side: 
   hpercent = (min_side/float(h)) 
   wsize = int((float(w)*float(hpercent))) 
   pic = imresize(pic, (wsize, min_side)) 
 
 return pic 
 
def recognize(pic_path): 
 pic = resize_img(pic_path) 
 preds = predict_10_crop(np.array(pic), 0)[0] 
 best_pred = collections.Counter(preds).most_common(1)[0][0] 
 if best_pred == -1: 
   return "Unknown" 
 else: 
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   return ix_to_class[best_pred] 
 

 
food image quality recognition 
implementation 

import matplotlib.image as img 
import numpy as np 
from scipy.misc import imresize 
import collections 
from keras.applications.inception_v3 import preprocess_input 
from keras.models import load_model 
 
model = load_model(filepath='./model4b.10-0.68.hdf5') 
 
def center_crop(x, center_crop_size, **kwargs): 
 centerw, centerh = x.shape[0]//2, x.shape[1]//2 
 halfw, halfh = center_crop_size[0]//2, center_crop_size[1]//2 
 return x[centerw-halfw:centerw+halfw+1,centerh-
halfh:centerh+halfh+1, :] 
 
def predict_10_crop(img, ix, top_n=5, plot=False, 
preprocess=True, debug=False): 
 flipped_X = np.fliplr(img) 
 crops = [ 
   img[:299,:299, :], # Upper Left 
   img[:299, img.shape[1]-299:, :], # Upper Right 
   img[img.shape[0]-299:, :299, :], # Lower Left 
   img[img.shape[0]-299:, img.shape[1]-299:, :], # Lower Right 
   center_crop(img, (299, 299)), 
 
   flipped_X[:299,:299, :], 
   flipped_X[:299, flipped_X.shape[1]-299:, :], 
   flipped_X[flipped_X.shape[0]-299:, :299, :], 
   flipped_X[flipped_X.shape[0]-299:, flipped_X.shape[1]-
299:, :], 
   center_crop(flipped_X, (299, 299)) 
 ] 
 if preprocess: 
   crops = [preprocess_input(x.astype('float32')) for x in 
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crops] 
 
 y_pred = model.predict(np.array(crops)) 
 predsprob = np.max(y_pred,axis = 1) 
 preds = np.argmax(y_pred, axis=1) 
 for a in range(0,10): 
   if predsprob[a] <= 0.3: 
     preds[a] = -1 
 top_n_preds= np.argpartition(y_pred, -top_n)[:,-top_n:] 
 return preds, top_n_preds 
 
class_to_ix = {} 
ix_to_class = {} 
with open('./food_classes.txt', 'r') as txt: 
 classes = [l.strip() for l in txt.readlines()] 
 class_to_ix = dict(zip(classes, range(len(classes)))) 
 ix_to_class = dict(zip(range(len(classes)), classes)) 
 class_to_ix = {v: k for k, v in ix_to_class.items()} 
sorted_class_to_ix = 
collections.OrderedDict(sorted(class_to_ix.items())) 
 
def resize_img(img_path, min_side=299): 
 pic = img.imread(img_path) 
 w, h, _ = pic.shape 
 if w < min_side: 
   wpercent = (min_side/float(w)) 
   hsize = int((float(h)*float(wpercent))) 
   pic = imresize(pic, (min_side, hsize)) 
 elif h < min_side: 
   hpercent = (min_side/float(h)) 
   wsize = int((float(w)*float(hpercent))) 
   pic = imresize(pic, (wsize, min_side)) 
 
 elif w > min_side: 
   wpercent = (min_side/float(w)) 
   hsize = int((float(h)*float(wpercent))) 
   pic = imresize(pic, (min_side, hsize)) 
 elif h > min_side: 
   hpercent = (min_side/float(h)) 
   wsize = int((float(w)*float(hpercent))) 
   pic = imresize(pic, (wsize, min_side)) 
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 return pic 
 
def recognize(pic_path): 
 pic = resize_img(pic_path) 
 preds = predict_10_crop(np.array(pic), 0)[0] 
 best_pred = collections.Counter(preds).most_common(1)[0][0] 
 if best_pred == -1: 
   return "Unknown" 
 else: 
   return ix_to_class[best_pred] 

 

food image recognition model training 

import matplotlib.pyplot as plt 
import matplotlib.image as img 
import numpy as np 
from scipy.misc import imresize 
 
%matplotlib inline 
 
import os 
from os import listdir 
from os.path import isfile, join 
import shutil 
import stat 
import collections 
from collections import defaultdict 
 
from ipywidgets import interact, interactive, fixed 
import ipywidgets as widgets 
 
import h5py 
from keras.utils.np_utils import to_categorical 
from keras.applications.inception_v3 import preprocess_input 
from keras.models import load_model 
 
from keras.applications.inception_v3 import InceptionV3 
from keras.applications.inception_v3 import preprocess_input, 
decode_predictions 
from keras.preprocessing import image 
from keras.layers import Input 
 
import tools.image_gen_extended as T 
 



 53 

import multiprocessing as mp 
 
num_processes = 6 
pool = mp.Pool(processes=num_processes) 
 
class_to_ix = {} 
ix_to_class = {} 
with open('good-bad-food/meta/classes-2.txt', 'r') as txt: 
    classes = [l.strip() for l in txt.readlines()] 
    class_to_ix = dict(zip(classes, range(len(classes)))) 
    ix_to_class = dict(zip(range(len(classes)), classes)) 
    class_to_ix = {v: k for k, v in ix_to_class.items()} 
sorted_class_to_ix = 
collections.OrderedDict(sorted(class_to_ix.items())) 
 
print(class_to_ix) 
print(ix_to_class) 
 
if not os.path.isdir('./good-bad-food/test') and not 
os.path.isdir('./good-bad-food/train'): 
 
    def copytree(src, dst, symlinks = False, ignore = None): 
        if not os.path.exists(dst): 
            os.makedirs(dst) 
            shutil.copystat(src, dst) 
        lst = os.listdir(src) 
        if ignore: 
            excl = ignore(src, lst) 
            lst = [x for x in lst if x not in excl] 
        for item in lst: 
            s = os.path.join(src, item) 
            d = os.path.join(dst, item) 
            if symlinks and os.path.islink(s): 
                if os.path.lexists(d): 
                    os.remove(d) 
                os.symlink(os.readlink(s), d) 
                try: 
                    st = os.lstat(s) 
                    mode = stat.S_IMODE(st.st_mode) 
                    os.lchmod(d, mode) 
                except: 
                    pass # lchmod not available 
            elif os.path.isdir(s): 
                copytree(s, d, symlinks, ignore) 
            else: 
                shutil.copy2(s, d) 
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    def generate_dir_file_map(path): 
        dir_files = defaultdict(list) 
        with open(path, 'r') as txt: 
            files = [l.strip() for l in txt.readlines()] 
            for f in files: 
                dir_name, id = f.split('/') 
                dir_files[dir_name].append(id + '.jpg') 
        return dir_files 
 
    train_dir_files = generate_dir_file_map('good-bad-
food/meta/train.txt') 
    test_dir_files = generate_dir_file_map('good-bad-
food/meta/test.txt') 
 
 
    def ignore_train(d, filenames): 
        print(d) 
        subdir = d.split('/')[-1] 
        to_ignore = train_dir_files[subdir] 
        return to_ignore 
 
    def ignore_test(d, filenames): 
        print(d) 
        subdir = d.split('/')[-1] 
        to_ignore = test_dir_files[subdir] 
        return to_ignore 
 
    copytree('good-bad-food/images', 'good-bad-food/test', 
ignore=ignore_train) 
    copytree('good-bad-food/images', 'good-bad-food/train', 
ignore=ignore_test) 
     
else: 
    print('Train/Test files already copied into separate folders.') 
 
%%time 
 
# Load dataset images and resize to meet minimum width and height 
pixel size 
def load_images(root, min_side=299): 
    all_imgs = [] 
    all_classes = [] 
    resize_count = 0 
    invalid_count = 0 
    for i, subdir in enumerate(listdir(root)): 
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        imgs = listdir(join(root, subdir)) 
        class_ix = class_to_ix[subdir] 
        print(i, class_ix, subdir) 
        for img_name in imgs: 
            img_arr = img.imread(join(root, subdir, img_name)) 
            img_arr_rs = img_arr 
            try: 
                w, h, _ = img_arr.shape 
                if w <= h and w < min_side: 
                    wpercent = (min_side/float(w)) 
                    hsize = int((float(h)*float(wpercent))) 
                    #print('new dims:', min_side, hsize) 
                    img_arr_rs = imresize(img_arr, (min_side, hsize)) 
                    resize_count += 1 
                elif h <= w and h < min_side: 
                    hpercent = (min_side/float(h)) 
                    wsize = int((float(w)*float(hpercent))) 
                    #print('new dims:', wsize, min_side) 
                    img_arr_rs = imresize(img_arr, (wsize, min_side)) 
                    resize_count += 1 
                elif w <= h and w > 400: 
                    wpercent = (400/float(w)) 
                    hsize = int((float(h)*float(wpercent))) 
                    #print('new dims:', min_side, hsize) 
                    img_arr_rs = imresize(img_arr, (400, hsize)) 
                    resize_count += 1 
                elif h <= w and h > 400: 
                    hpercent = (400/float(h)) 
                    wsize = int((float(w)*float(hpercent))) 
                    #print('new dims:', wsize, min_side) 
                    img_arr_rs = imresize(img_arr, (wsize, 400)) 
                    resize_count += 1 
                all_imgs.append(img_arr_rs) 
                all_classes.append(class_ix) 
            except: 
                print('Skipping bad image: ', subdir, img_name) 
                invalid_count += 1 
    print(len(all_imgs), 'images loaded') 
    print(resize_count, 'images resized') 
    print(invalid_count, 'images skipped') 
    return np.array(all_imgs), np.array(all_classes) 
     
X_test, y_test = load_images('good-bad-food/test', min_side=299) 
 
%%time 
X_train, y_train = load_images('good-bad-food/train', min_side=299) 
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from keras.utils.np_utils import to_categorical 
 
n_classes = 2 
y_train_cat = to_categorical(y_train, nb_classes=n_classes) 
y_test_cat = to_categorical(y_test, nb_classes=n_classes) 
 
%%time 
 
# this is the augmentation configuration we will use for training 
train_datagen = T.ImageDataGenerator( 
    featurewise_center=False,  # set input mean to 0 over the dataset 
    samplewise_center=False,  # set each sample mean to 0 
    featurewise_std_normalization=False,  # divide inputs by std of 
the dataset 
    samplewise_std_normalization=False,  # divide each input by its 
std 
    zca_whitening=False,  # apply ZCA whitening 
    rotation_range=0,  # randomly rotate images in the range 
(degrees, 0 to 180) 
    width_shift_range=0.2,  # randomly shift images horizontally 
(fraction of total width) 
    height_shift_range=0.2,  # randomly shift images vertically 
(fraction of total height) 
    horizontal_flip=True,  # randomly flip images 
    vertical_flip=False, # randomly flip images 
    zoom_range=[.8, 1], 
    channel_shift_range=30, 
    fill_mode='reflect') 
train_datagen.config['random_crop_size'] = (299, 299) 
train_datagen.set_pipeline([T.random_transform, T.random_crop, 
T.preprocess_input]) 
train_generator = train_datagen.flow(X_train, y_train_cat, 
batch_size=32, seed=11, pool=pool) 
 
test_datagen = T.ImageDataGenerator() 
test_datagen.config['random_crop_size'] = (299, 299) 
test_datagen.set_pipeline([T.random_transform, T.random_crop, 
T.preprocess_input]) 
test_generator = test_datagen.flow(X_test, y_test_cat, batch_size=32, 
seed=11, pool=pool) 
 
def reverse_preprocess_input(x0): 
    x = x0 / 2.0 
    x += 0.5 
    x *= 255. 
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    return x 
 
%%time 
@interact() 
def show_images(unprocess=True): 
    for x in test_generator: 
        fig, axes = plt.subplots(nrows=8, ncols=4) 
        fig.set_size_inches(8, 8) 
        page = 0 
        page_size = 32 
        start_i = page * page_size 
        for i, ax in enumerate(axes.flat): 
            img = x[0][i+start_i] 
            if unprocess: 
                im = 
ax.imshow( reverse_preprocess_input(img).astype('uint8') ) 
            else: 
                im = ax.imshow(img) 
            ax.set_axis_off() 
            ax.title.set_visible(False) 
            ax.xaxis.set_ticks([]) 
            ax.yaxis.set_ticks([]) 
            for spine in ax.spines.values(): 
                spine.set_visible(False) 
 
        plt.subplots_adjust(left=0, wspace=0, hspace=0) 
        plt.show() 
        break 
X_test.shape[0] 
X_train.shape[0] 
%%time 
 
from keras.models import Sequential, Model 
from keras.layers import Dense, Dropout, Activation, Flatten 
from keras.layers import Convolution2D, MaxPooling2D, ZeroPadding2D, 
GlobalAveragePooling2D, AveragePooling2D 
from keras.layers.normalization import BatchNormalization 
from keras.preprocessing.image import ImageDataGenerator 
from keras.callbacks import ModelCheckpoint, CSVLogger, 
LearningRateScheduler, ReduceLROnPlateau 
from keras.optimizers import SGD 
from keras.regularizers import l2 
import keras.backend as K 
import math 
 
K.clear_session() 
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base_model = InceptionV3(weights='imagenet', include_top=False, 
input_tensor=Input(shape=(299, 299, 3))) 
x = base_model.output 
x = AveragePooling2D(pool_size=(8, 8))(x) 
x = Dropout(.4)(x) 
x = Flatten()(x) 
predictions = Dense(n_classes, init='glorot_uniform', 
W_regularizer=l2(.0005), activation='softmax')(x) 
 
model = Model(input=base_model.input, output=predictions) 
 
opt = SGD(lr=.01, momentum=.9) 
model.compile(optimizer=opt, loss='categorical_crossentropy', 
metrics=['accuracy']) 
 
checkpointer = ModelCheckpoint(filepath='model4.{epoch:02d}-
{val_loss:.2f}.hdf5', verbose=1, save_best_only=True) 
csv_logger = CSVLogger('model4.log') 
 
def schedule(epoch): 
    if epoch < 10: 
        return .01 
    elif epoch < 28: 
        return .002 
    else: 
        return .0004 
lr_scheduler = LearningRateScheduler(schedule) 
 
model.fit_generator(train_generator, 
                    validation_data=test_generator, 
                    nb_val_samples=X_test.shape[0], 
                    samples_per_epoch=X_train.shape[0], 
                    nb_epoch=5, 
                    verbose=2, 
                    callbacks=[lr_scheduler, csv_logger, 
checkpointer]) 

 
 

chrome extension front-end 

function getSelected() { 
    if (window.getSelection) { 
        return window.getSelection(); 
    } else if (document.getSelection) { 
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        return document.getSelection(); 
    } else { 
        var selection = document.selection && 
document.selection.createRange(); 
        if (selection.text) { 
            return selection.text; 
        } 
        return false; 
    } 
    return false; 
} 
 
function textSelectedHandler() { 
    var txt; 
    if (document.selection) { 
        txt = document.selection.createRange().text 
    } else { 
        txt = window.getSelection() + ''; 
    } 
    if (txt) { 
        console.log(txt); 
        document.getElementById('') 
    } 
} 
 
var lastX = 0; 
var lastY = 0; 
 
function initContentScript() { 
    var feeds = document.getElementsByClassName("review-list"); 
    if (feeds.length > 0) { 
        console.log("load feed success"); 
    } else { 
        console.log("load feed failed"); 
    } 
 
    $(document).ready(function() { 
        $popup = $('<span class="popup-tag hidden"></span>'); 
        $popup.append('<img id="dish-info" />') 
            .append('<span id="dish-name"></span>'); 
        $mask = $('<span id="mask" class="hidden"></span>'); 
        $('.review-list').prepend($popup).prepend($mask); 
 
        function setStyle() { 
            $popup.removeClass('hidden').animate({ 
                opacity: 1 
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            }, function() {}); 
            $mask.removeClass('hidden').animate({ 
                opacity: 0.7 
            }, function() {}); 
            H = $(window).height(); 
            W = $(window).width(); 
            $popup.css({ 
                'left': (W - $popup.width()) / 2, 
                'top': (H - $popup.height()) / 2, 
            }); 
        } 
 
        function postData(text) { 
            phoneNumber = $.trim($('.biz-phone').text()); 
            url = 'http://127.0.0.1:5000/recognize'; 
            data = { 
                'phone_number': phoneNumber, 
                'text': text 
            } 
            $.post(url, data, function(res) { 
                var img_url = res.result[0].image_url || 
res.result[0].default_url; 
                var dish_name = res.result[0].dish_name; 
                $('#dish-info').attr('src', img_url); 
                $('#dish-name').text(dish_name); 
            }); 
        } 
 
        $(document).on('click', function(e) { 
            var text = $.trim(getSelected()); 
            if (text == '' && e.target == 
document.getElementById('mask')) { 
                $popup.animate({ 
                    opacity: 0 
                }, function() { 
                    $(this).addClass('hidden'); 
                }); 
                $mask.animate({ 
                    opacity: 0 
                }, function() { 
                    $(this).addClass('hidden'); 
                }); 
                // $('#dish-info').attr('src', ''); 
            } 
        }); 
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        $('.review-list').on('mouseup', function(e) { 
            var text = $.trim(getSelected()); 
            if (text != '') { 
                setStyle(); 
                postData(text); 
            } 
        }); 
    }); 
 
    // $('.review-list').mousedown(function(event) { 
    //   lastX = event.clientX; 
    //   lastY = event.clientY; 
    //   console.log(lastX); 
    //   console.log(lastY); 
    // }); 
 
    $('.review-list').mouseup(function(event) { 
        var selection = getSelected(); 
        selection = $.trim(selection); 
        if (selection != '') { 
            var offset = $('.review-list').offset(); 
            console.log(event); 
            console.log(JSON.stringify(offset)); 
            var top = offset.top; 
            var left = offset.left; 
            console.log(event.clientY); 
            console.log(event.clientX); 
            $("span.popup-tag").css("display", "block"); 
            $("span.popup-tag").css("top", event.clientY + 
event.offsetY); 
            $("span.popup-tag").css("left", event.clientX - left); 
            $("span.popup-tag").text(selection); 
        } else { 
            $("span.popup-tag").css("display", "none"); 
        } 
    }); 
 
    // 
    // document.addEventListener('mouseup', textSelectedHandler); 
    // document.addEventListener('dbclick', textSelectedHandler); 
} 
 
initContentScript(); 

 

text matching/mapping 
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def text_matching(user_text, class_list=classes): 
   print(type(user_text)) 
   user_text = user_text.split(' ') 
   for item in class_list: 
       class_name = item.split('_') 
       for word1 in user_text: 
           for word2 in class_name: 
               if word1 == word2: 
                   return item 
   return '' 

 
DataBase manager 
 

import dataset 
 

DATABASE_URL = 'sqlite:///DataSet/DataBase/Photos.db' 
 
 
class DbManager(object): 
 
   def __init__(self): 
       self.db = dataset.connect(DATABASE_URL) 
       self.tbl = self.db.get_table('photos') 
 
   def connect(self, url=DATABASE_URL): 
       self.db = dataset.connect(url) 
       return self.db 
 
   def get_table(self, table_name): 
       table = self.db.get_table(table_name) 
       return table 
 
   def update_or_insert(self, key, business_id, url, category, 
rate): 
       data = dict(pic_id=key, business_id=business_id, 
url=url, category=category, rate=rate) 
       self.tbl.upsert(data, ['pic_id']) 
 
   def find_with_business(self, business_id): 
       results = self.tbl.find(business_id=business_id) 
       return list(results) 
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   def find_with_category(self, business_id, category): 
       results = self.tbl.find(business_id=business_id, 
category=category, order_by='-rate') 
       return list(results) 
 
   def find_one(self, key): 
       result = self.tbl.find_one(pic_id=key) 
       return result 
 
   def insert(self, key, business_id, url, category, rate): 
       data = dict(pic_id=key, business_id=business_id, 
url=url, category=category, rate=rate) 
       self.tbl.insert(data, ['pic_id']) 

 

Web Crawler 

import haul 
import requests 
import os 
import re 
import imageRecognition 
from dbmanager import DbManager 
import shutil 
import qualityRecognition 
 
root = 'DataSet/Images' 
 
root_url = 'https://www.yelp.com/biz_photos/a-bellagio-italian-
restaurant-campbell-2?' 
tab = '&tab=food' 
business_id = 'O0R8TkEE2eWDnp9xOOjHBQ' 
 
cursor = 30 
total_page = 1 
 
db_manager = DbManager() 
 
 
def load_image(): 
   for i in range(0, total_page): 
       start = cursor * i 
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       page_url = root_url + 'start=' + str(start) + tab 
       result = haul.find_images(page_url) 
       image_paths = [] 
       for i, url in enumerate(result.image_urls): 
           if not os.path.exists(root): 
               os.mkdir(root) 
           if not re.match(r'^https?:/{2}\w.+$', url): 
               continue 
           components = url.split("/") 
           last_component = components[-1].split('.') 
           pic_id = components[-2] 
           extension = last_component[-1] 
           if extension != 'jpg': 
               continue 
           r = requests.get(url) 
           r.raise_for_status() 
           parent_path = root + '/' + pic_id 
           if not os.path.exists(parent_path): 
               os.mkdir(parent_path) 
           path = root + '/' + pic_id + '/' + components[-1] 
           image_paths.append(path) 
           with open(path, "wb") as f: 
               f.write(r.content) 
           food_class = imageRecognition.recognize(path) 
           rate = qualityRecognition.recognize(path) 
           # print('image_url :' + url) 
           # print('food class:  ' + food_class) 
           # print('rate: ' + str(rate)) 
           db_manager.update_or_insert(pic_id, business_id, 
url, food_class, rate) 
 
 
def delete_cache(): 
   file_list = os.listdir(root) 
   for f in file_list: 
       file_path = os.path.join(root, f) 
       if os.path.isfile(file_path): 
           os.remove(file_path) 
           print file_path + " removed!" 
       elif os.path.isdir(file_path): 
           shutil.rmtree(file_path, True) 
           print "dir " + file_path + " removed!" 
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load_image() 
delete_cache() 

 

Server 

from flask import Flask, request, jsonify 
from dbmanager import DbManager 
from yelp import Yelp 
import re 
 
app = Flask(__name__) 
default_url = 'https://www.yelpblog.com/wp-
content/themes/yelpblog/images/yelp-avatar.png'; 
 
empty_result = [ 
   { 
       'status': 200, 
       'id': '', 
       'image_url': '', 
       'dish_name': '', 
       'default_url': default_url 
   }, 
] 
 
yelp = Yelp() 
db_manager = DbManager() 
classes = [] 
 
with open('./food_classes.txt', 'r') as txt: 
   classes = [l.strip() for l in txt.readlines()] 
 
 
@app.route('/') 
def hello_world(): 
   return jsonify('hello, how are u') 
 
 
@app.route('/recognize',  methods=['POST']) 
def response(): 
   phone_number = request.form.get('phone_number', '') 
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   food_name = request.form.get('text', '') 
   phone = convert(phone_number) 
   business = yelp.search_business(phone) 
   business_id = business['id'] 
   category = find_category(food_name) 
   if category == '': 
       return jsonify({'result': empty_result}) 
   photos = db_manager.find_with_category(business_id, 
category) 
   if len(photos) == 0: 
       return jsonify({'result': empty_result}) 
   return json_response(photos[0], food_name) 
 
 
def convert(phone_number): 
   res = re.sub('[ ()-]', '', phone_number) 
   return '+1' + res 
 
 
def json_response(photo, dish_name): 
   result = [ 
       { 
           'status': 200, 
           'id': photo['pic_id'], 
           'image_url': photo['url'], 
           'dish_name': dish_name, 
           'default_url': default_url 
       }, 
 
   ] 
   return jsonify({'result': result}) 
 
 
def find_category(food_name): 
   name_str = food_name.lower() 
   return text_matching(name_str) 
 
 
def text_matching(user_text, class_list=classes): 
   print(type(user_text)) 
   user_text = user_text.split(' ') 
   for item in class_list: 
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       class_name = item.split('_') 
       for word1 in user_text: 
           for word2 in class_name: 
               if word1 == word2: 
                   return item 
   return '' 
 
 
if __name__ == '__main__': 
   app.run() 

 

Yelp 

import requests 
import json 
from urllib.parse import quote 
 
API_KEY = 
"uPwnMrsg1PknTUUG8j3e0wjGdb2Cec0Zh1Y8Hc6mSEDSZVvDTc295dbfS9uOa9
oHyFUia0qTHJ8stBKHvKg93jtumdEkKjExJxfPykhb1G3q8jf2k0xFDFm2AF8WW
3Yx" 
API_HOST = 'https://api.yelp.com' 
SEARCH_PATH = '/v3/businesses/search/phone' 
 
 
class Yelp(object): 
   @staticmethod 
   def request(host, path, api_key, url_params=None): 
 
       url_params = url_params or {} 
       url = '{0}{1}'.format(host, quote(path.encode('utf8'))) 
       headers = { 
           'Authorization': 'Bearer %s' % api_key, 
       } 
 
       print(u'Querying {0} ...'.format(url)) 
       response = requests.request('GET', url, headers=headers, 
params=url_params) 
       return response 
 
   def search_business(self, phone_number): 
       url_parameters = { 
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           'phone': phone_number 
       } 
 
       response = self.request(API_HOST, SEARCH_PATH, API_KEY, 
url_parameters) 
       if not response.ok: 
           return "" 
       content = json.loads(response.text) 
       business = content['businesses'][0] 
       return business 
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10.2 Input/output listing 

food_classes.txt 

apple_pie     eggs_benedict      onion_rings 

baby_back_ribs     escargots       oysters 

baklava      falafel       pad_thai 

beef_carpaccio     filet_mignon      paella 

beef_tartare     fish_and_chips      pancakes 

beet_salad     foie_gras       panna_cotta 

beignets     french_fries      peking_duck 

bibimbap     french_onion_soup      pho 

bread_pudding     french_toast      pizza 

breakfast_burrito   fried_calamari      pork_chop 

bruschetta     fried_rice       poutine 

caesar_salad     frozen_yogurt      prime_rib 

cannoli      garlic_bread      pulled_pork_sandwich 

caprese_salad     gnocchi       ramen 

carrot_cake     greek_salad       ravioli 

ceviche      grilled_cheese_sandwich  red_velvet_cake 

cheesecake     grilled_salmon      risotto 

cheese_plate     guacamole       samosa 

chicken_curry     gyoza       sashimi 

chicken_quesadilla  hamburger       scallops 

chicken_wings     hot_and_sour_soup      seaweed_salad 

chocolate_cake     hot_dog       shrimp_and_grits 

chocolate_mousse    huevos_rancheros      spaghetti_bolognese 

churros      hummus       spaghetti_carbonara 

clam_chowder     ice_cream       spring_rolls 

club_sandwich     lasagna       steak 

crab_cakes     lobster_bisque      strawberry_shortcake 

creme_brulee     lobster_roll_sandwich    sushi 

croque_madame     macaroni_and_cheese      tacos 

cup_cakes     macarons       takoyaki 

deviled_eggs     miso_soup       tiramisu 

donuts      mussels       tuna_tartare 

dumplings     nachos       waffles 

edamame      omelette 

 

model4b.10-0.68.hdf5 
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Model of food image recognition 

 

model68-2.7.hdf5 

Model of food image quality recognition  

 

 


