

IMAGE BASED PRODUCT
RECOMMENDATION SYSTEM

(PROJECT REPORT)

Team Members
Khetanshu chauhan

Uma Surakod
Vamshik Bellur Dayanand

Karthik Basavaraju
Sushruth Radhakrishna

Image Based Product Recommendation System

Page 1 of 53

Table of Contents

INTRODUCTION .. 3
OBJECTIVE ... 3
WHAT IS THE PROBLEM   .. 3
WHY THIS IS A PROJECT RELATED TO THIS CLASS   .. 3
WHY OTHER APPROACH IS NO GOOD .. 4
WHY YOU THINK YOUR APPROACH IS BETTER  .. 4

THEORETICAL BASES AND LITERATURE REVIEW ... 5
DEFINITION OF THE PROBLEM ... 5
THEORETICAL BACKGROUND OF THE PROBLEM .. 5
K-MEANS CLUSTERING ... 5

Algorithm .. 6
Choosing K ... 6

RELATED RESEARCH TO SOLVE THE PROBLEM   ... 9
ADVANTAGE/DISADVANTAGE OF THOSE RESEARCH ... 9
YOUR SOLUTION TO SOLVE THIS PROBLEM ... 10
WHERE YOUR SOLUTION DIFFERENT FROM OTHERS .. 10
  .. 10
WHY YOUR SOLUTION IS BETTER   .. 11

HYPOTHESIS (OR GOALS) .. 11
SINGLE/MULTIPLE HYPOTHESIS ... 11
POSITIVE OR NEGATIVE (ONLY FOR PROOF CORRECTNESS) HYPOTHESIS .. 11

METHODOLOGY ... 12
HOW TO GENERATE/COLLECT INPUT DATA ... 12
HOW TO SOLVE THE PROBLEM ... 12
ALGORITHM DESIGN ... 13
LANGUAGE USED.. 15

PANDAS ... 15
WHY USE PANDAS? .. 15

Library Highlights .. 16
Numpy .. 16
OpenCV-Python .. 18

TOOLS USED ... 19
HOW TO GENERATE OUTPUT.. 19
HOW TO TEST AGAINST HYPOTHESES ... 20

DESIGN DOCUMENT AND FLOWCHART ... 21
PRODUCT CLASSIFICATION SYSTEM IMPLEMENTATION .. 21

KERAS NETWORK ARCHITECTURE FOR PRODUCT CLASSIFICATION .. 21
IMPLEMENTING OUR KERAS MODEL FOR MULTI-LABEL PRODUCT CLASSIFICATION .. 23
TRAINING A KERAS NETWORK FOR MULTI-LABEL CLASSIFICATION ... 28
APPLIED KERAS MULTI-LABEL CLASSIFICATION TO NEW IMAGES .. 29
COMMAND TO GET THE CLASSIFICATION OUTPUT: ... 31

RECOMMENDATION SYSTEM IMPLEMENTATION .. 31
OUTCOME .. 49

KNOWN PRODUCT SCENARIO .. 49
UNKNOWN PRODUCT SCENARIO .. 51

Image Based Product Recommendation System

Page 2 of 53

CONCLUSIONS AND RECOMMENDATION .. 53
SUMMARY AND CONCLUSIONS .. 53
RECOMMENDATIONS FOR FUTURE WORK .. 53

BIBLIOGRAPHY .. 53

Image Based Product Recommendation System

Page 3 of 53

Introduction

Objective

Most on-line shopping search engines are still largely depending on knowledge base and use
key word matching as their search strategy to find the most likely product that consumers want
to buy. This is inefficient in a way that the description of products can vary a lot from the
seller’s side to the buyer’s side. we proposed an interactive product recommendation method,
which considers not only the product diversity but also the visual similarity, to interactively
capture a user's real intention and refine the product recommendation result based on the user's
real product interests.

What is the problem  

Online shopping search engines use information from users' profiles (demographic filtering),
similar neighbour's (collaborative filtering), and textual description (content-based model) to
make recommendations, which easily generate irrelevant suggestions to users due to the
ignorance of users' intentions and the visual similarity among products. In this paper, we
present a smart search engine for on- line shopping. Basically, it uses images as its input, and
tries to understand the information about products from these images. We first use a neural
network to classify the input image as one of the product categories. Then use another neural
network to model the similarity score between pair images, which will be used for selecting
the closest product in our item database. We use Collaborative-filtering to calculate the
similarity score for training data.

Why this is a project related to this class  

By using the image and finding similar pattern for required search/query in the online shopping
search engine is the main idea of this project. Here we are searching for the similar item using
data mining concept of collaborative filtering, content-based filtering.
Collaborative-filtering: Collaborative filtering, also referred to as social filtering, filters
information by using the recommendations of other people. It is based on the idea that people
who agreed in their evaluation of certain items in the past are likely to agree again in the future.
A person who wants to see a movie for example, might ask for recommendations from friends.
The recommendations of some friends who have similar interests are trusted more than
recommendations from others. This information is used in the decision on which movie to see.
Content-based filtering: A content-based recommender works with data that the user provides,
either explicitly (rating) or implicitly (clicking on a link). Based on that data, a user profile is
generated, which is then used to make suggestions to the user. As the user provides more inputs
or takes actions on the recommendations, the engine becomes more and more accurate.
Technique used for Content-based filtering is concepts of Term Frequency (TF) and Inverse
Document Frequency (IDF) are used in information retrieval system and also content-based
filtering mechanisms (such as a content-based recommender). They are used to determine the
relative importance of a document / article / news item / movie etc.

Image Based Product Recommendation System

Page 4 of 53

Why other approach is no good

Existing recommender systems use information from users' profiles (demographic filtering).
Recommendation systems have been used tremendously academically and commercially,
recommendations generated by these systems aim to offer relevant interesting items to users.
Several approaches have been suggested for providing users with recommendations using their
rating history, most of these approaches suffer from new user problem (cold-start) which is the
initial lack of items ratings. Where the system can't recommend any product to a new user
because of lack of user's history. The existing systems usually don’t consider the sparsity
problem when applying the Collaborative filtering. As a result, the time performance of
Collaborative filtering recommendation is, therefore, constrained.

Why you think your approach is better  

In order to better guide the user to online shopping, increasingly importance has been attached
to the research and application of e-commerce recommendation system. One of the most
successful recommender technologies for e-commerce is collaborative filtering. Collaborative
recommendation is typically based on the assumption that similar users should share similar
taste in products. The system recommends products based on item ratings explicitly delivered
by neighbours, where a new consumer is matched against the database to discover neighbours
(i.e., existing customers with similar taste and preference). Due to its simplicity, collaborative
filtering has been very successful in both research and practice.

Content-based filtering is using the technique to analyse a set of documents and descriptions
of items previously rated by a user, and then build a profile or model of the user's interests
based on the features of those rated items. Using the profile, the recommender system can filter
out the suggestions that would fit for the user.
We are using advantage of both collaborative and content-based approach in combination to
overcome the drawbacks. Also, we are availing the user to upload any image which contains
the product. The product contained in the image might not be in the ecommerce product list.
Hence other existing approaches fails to identify the related products of the given input image.
Since we are using CNN to identify the product, Content Based Filtering can be used to identify
the products which has similar attributes as that of the product in the given input image.

 Area or scope of investigation
In our approach we are using limited data to train the neural network because of limited time
we can extend it to large dataset for more flexibility. In future, we believe this opens up a
promising line of work in using recommender systems for many fields.

Image Based Product Recommendation System

Page 5 of 53

Theoretical bases and literature review

Definition of the problem

Ecommerce website is one of the fast-growing market in the world. Everybody wants to use
the internet as medium to order the products. It is important for the ecommerce websites to
provide the best user experience to attract the users to shop in their websites. One of the major
steps the ecommerce websites has taken to improve the user experience is to have a
personalized recommendation system to each of its users.

The user shows an interest to a product by either clicking an image or link related to the product.
If the user does not buy the product, in that session, then there is a high chance for the user to
buy the product in his upcoming sessions. Instead of letting user scroll through pages to find
the product, it is important for the website to provide this product in the very first page to have
a better user experience. In-order to provide a better solution, the analysis of the image or link
clicked is analysed. A proper analysis of the browsing history and finding out the link minded
people would help the ecommerce website to provide a better user experience.

Theoretical background of the problem

Ecommerce market is growing in a fast pace and various online strategies are employed to
provide relevant advertisements and products to the user. It is important to provide those
advertisements in which the user is interested than other. In-order to do so an analysis of each
user using the website needs to be done. To address this problem, Researchers and Scientists
have come up with a solution called Recommendation System to provide the users with the
essential information.

The main goal of the recommendation system is to find the interests of the user and catering
the user with his personal requirements. Recommendation System plays a major role in the
ecommerce website. It helps to build a profile to the user based on the previous purchase history
and browsing history and helps the website to better arrange the products in the website which
helps the user to make easy purchase’s and it gives better user experience. Recommendation
Systems are one of the most successful application of Data Mining and Machine Learning.

There are many different types of approaches developed to provide better Recommendation
Systems. Following diagram shown below identifies the different approaches of the
Recommendation Systems.

K-means Clustering
K-means clustering is a type of unsupervised learning, which is used when you have
unlabeled data (i.e., data without defined categories or groups). The goal of this algorithm
is to find groups in the data, with the number of groups represented by the variable K.
The algorithm works iteratively to assign each data point to one of K groups based on the
features that are provided. Data points are clustered based on feature similarity. The
results of the K-means clustering algorithm are:

1. The centroids of the K clusters, which can be used to label new data
2. Labels for the training data (each data point is assigned to a single cluster)

Image Based Product Recommendation System

Page 6 of 53

Rather than defining groups before looking at the data, clustering allows you to find and
analyze the groups that have formed organically. The "Choosing K" section below
describes how the number of groups can be determined.
Each centroid of a cluster is a collection of feature values which define the resulting
groups. Examining the centroid feature weights can be used to qualitatively interpret what
kind of group each cluster represents.

This introduction to the K-means clustering algorithm covers:

• Common business cases where K-means is used
• The steps involved in running the algorithm
• A Python example using delivery fleet data

Algorithm
The Κ-means clustering algorithm uses iterative refinement to produce a final result. The
algorithm inputs are the number of clusters Κ and the data set. The data set is a collection
of features for each data point. The algorithms starts with initial estimates for
the Κ centroids, which can either be randomly generated or randomly selected from the
data set. The algorithm then iterates between two steps:

Data assignment step:
Each centroid defines one of the clusters. In this step, each data point is assigned to its
nearest centroid, based on the squared Euclidean distance. More formally, if ci is the
collection of centroids in set C, then each data point x is assigned to a cluster based on
where dist(·) is the standard (L2) Euclidean distance. Let the set of data point
assignments for each ith cluster centroid be Si.

Centroid update step:
In this step, the centroids are recomputed. This is done by taking the mean of all data points
assigned to that centroid's cluster.

The algorithm iterates between steps one and two until a stopping criteria is met (i.e., no data
points change clusters, the sum of the distances is minimized, or some maximum number of
iterations is reached).

This algorithm is guaranteed to converge to a result. The result may be a local optimum (i.e.
not necessarily the best possible outcome), meaning that assessing more than one run of the
algorithm with randomized starting centroids may give a better outcome.
Choosing K

The algorithm described above finds the clusters and data set labels for a particular pre-
chosen K. To find the number of clusters in the data, the user needs to run the K-means
clustering algorithm for a range of K values and compare the results. In general, there is
no method for determining exact value of K, but an accurate estimate can be obtained
using the following techniques. One of the metrics that is commonly used to compare

Image Based Product Recommendation System

Page 7 of 53

results across different values of K is the mean distance between data points and their
cluster centroid. Since increasing the number of clusters will always reduce the distance
to data points, increasing K will always decrease this metric, to the extreme of reaching
zero when K is the same as the number of data points. Thus, this metric cannot be used
as the sole target. Instead, mean distance to the centroid as a function of K is plotted and
the "elbow point," where the rate of decrease sharply shifts, can be used to roughly
determine K.

A number of other techniques exist for validating K, including cross-validation,
information criteria, the information theoretic jump method, the silhouette method, and
the G-means algorithm. In addition, monitoring the distribution of data points across
groups provides insight into how the algorithm is splitting the data for each K.

Feature Engineering
Feature engineering is the process of using domain knowledge to choose which data
metrics to input as features into a machine learning algorithm. Feature engineering plays
a key role in K-means clustering; using meaningful features that capture the variability
of the data is essential for the algorithm to find all of the naturally-occurring groups.
Categorical data (i.e., category labels such as gender, country, and browser type) needs
to be encoded or separated in a way that can still work with the algorithm.

Feature transformations, particularly to represent rates rather than measurements, can
help to normalize the data. For example, in the delivery fleet example above, if total
distance driven had been used rather than mean distance per day, then drivers would have
been grouped by how long they had been driving for the company rather than rural vs.
urban.

Item Hierarchy: In this approach, association of the product is identified and is recommended
to the user. The diagram 3.1 shows that the user has bought the Printer from Best Buy in the
past. Hence the user is now shown with the items which is bought frequently along with the
Printer which in this case is the ink of the Printer.

Attribute Based Recommendations: In this approach, an analysis of the previous history is
made and a matrix is generated out of it. The matrix contains all the attributes of the product.
Now while recommending a new product, products with these attributes are chosen. In the
diagram 3.1, the user likes the action movies starring Client Eastwood. There is a high chance
that the user might like another action movie of Client Eastwood in this case “Good, Bad and
the Ugly.”

Image Based Product Recommendation System

Page 8 of 53

Figure showing the Different Approaches of Recommendation System

Collaborative Filtering Item-Item Similarity: In this approach, products are recommended
based on the similarity of the products. Products which are similar to the previous product
purchased or liked, will be recommended to the user. There is no comparison with another user
in the approach. In the diagram 3.1, the user has liked the Godfather which is a crime fiction
movie. Hence the user will be recommended with another crime fiction movie, in this case it
is Scarface.

Collaborative Filtering User-User Similarity: In this approach, products are recommended
to the user based on the similar user likings. The system identifies another user who is similar
and has same interests of the user and recommends the products which the user has not bought.
Hence the comparison involves the likings of different users with same taste. In the diagram
3.2, the user has bought the beer and is now recommended with diapers because previously
people bought beer and diaper together.

Social + Interest Graph Based Approach: In this approach, products are recommended to
users based on the interests of the user’s social network connection. People with same interests
are connected in Social Media and hence might have same likings. Therfore a product bought
by the user’s close circle will be recommended to the user, it is not bought by the user.

Model Based Approach: In this approach, different Machine Learning models such as
Support Vector Machine(SVM), Latent Dirichlet Allocation (LDA), Singular Value
Decomposition will be used identify the essential features of the previous purchased products
and a model will be constructed. This model will be used to recommend a new product to the
user.

Image Based Product Recommendation System

Page 9 of 53

Related research to solve the problem  

Many Ecommerce websites like Amazon, Netflix use the personalized recommendation system
to promote their product and to push the user to but the products such as books, movies,
clothing and other consumer goods. Typical approaches followed in the recommendations are
Content Based Filtering and Collaborative Filtering. The Content Based recommendation
systems are used in the internet to have Web Personalizer. A mixture of both Content Based
Filtering and also Collaborative Filtering is used to recommend a new product. The previous
section discusses all the different approaches that is used to efficiently recommend the related
products to the users.

 [1] The paper uses the One Class Collaborative Filtering to recommend product in the online
forum. The image features are extracted using the Deep Convolution Neural Network. Along
with the extracted features from the image, user feedback ratings and product evolution trends
are also considered to recommend products to the user. [2] The paper proposes a method to
recommend handbags to each shopper. The paper uses the Joint learning of attribute Projection
and One Class SVM classification based on the images of the shopper’s clicked images. The
features of the bag are extracted and are mapped to Projection Matrix. This projection matrix
is used in conjunction with SVM Classifier to have a new way of recommendation system. [3]
The paper proposes Image Based Recommendation System on Styles and Substitutes. A
method to identify the visually similar looking products are recommended to the users in this
paper. [4] Visual Similarity is used to recommend the products in an online shopping forum.
Along with the product diversity, visual similarity is considered to capture the intention of the
user and refine the product recommendation system.

[5] The paper discusses about the recommendation system used in the Amazon. Item-to-Item
Collaborative Filtering is used to recommend the products in the Amazon where the focus is
to find the similar items and not the customers. For each item purchased by the user and rated,
the algorithm attempts to compute the similar items associated with the item and would
recommend the same to the user. [6] The paper focuses on improving the recommendation
performance by learning ‘fashion aware’ by training the image representations and the
recommendation system jointly. The paper is similar to the work of Siamese CNNs and was
able to show improvements compared to state of the art recommendation techniques such as
BPR and the variants that make use of pre-trained visual features.

[7] The paper uses the convolution network to classify the input image to one of the product
categories. It uses another convolution network to identify the similar product of the input
image. Similarity is calculated using Jaccard Similarity. [8] The paper emphasizes the method
to improve the performance of the product recommendation with Sparse Data. Simplified
Similarity Measure (SSM) is proposed to handle the sparse data. It helps to reduce the problem
of finding the “dislike” group and thus helps in fast processing of the data. [9] The paper
proposes the Deep Learning based Large Scale Visual Recommendation. A unified Deep
Convolution Neural Network architecture VisNet is proposed in-order to learn embeddings to
capture the notion of visual similarity, across several semantic granularities.

Advantage/disadvantage of those research

Advantage: Most of the approaches followed by the papers mentioned above have proved
that their approach works better. Some of the papers proved that their work outperforms the

Image Based Product Recommendation System

Page 10 of 53

state of the art approaches in uncovering rating dimensions and modelling user item
interactions. All of the papers showed that given a large data set, the accuracy is more and
hence more efficient the recommendation system is. With CNNs, it is able to extract the
features of the image and using the suitable Machine Learning classifiers helped to achieve
the more accurate recommended system.

 Disadvantage: Most of the related works did not consider the problem of sparse data. The
approaches consider would have lot of sparse data and did not mention how they would deal
with such redundant sparse matrix. Recommendation Systems usually need a lot of data in-
order to recommend appropriately. But they did not consider the problem of Cold Start.

Your solution to solve this problem

Our approach is to provide a smart engine for online websites in-order to have better user
experience. There are 2 different scenarios possible in our approach. In first scenario, a user
can upload an image which has some product, then the system will identify the product and
would then recommend the related products to the user. In the second scenario, user is shown
the list of products. The list is arranged based on the user’s previous history with the products
browsed lately being shown in the top of the list.

In the first scenario, the user can upload any image which has some products. The image is
then passed to a Convolution Neural Network (CNN) to scan the input image and to identify
the distinct products in the image. The CNN then identifies the product and this product is
passed as an input to the Recommendation System. The recommendation system now uses this
product id and recommends the suitable products using the Content Based Filtering. The
products which have the same content as that of the given input image is recommended. This
is where our solution is different from other ecommerce websites recommendation system.

Figure showing the Flow Diagram of Scenario 1 in Image Based Product
Recommendation System.

In the second scenario, the user is presented with a list of products based on the previous
history. This is done using the identification of the positive data based on the previous history.
An image of the product clicked by the user or added to wish-list shows that the user is
interested in the product. These are the potential positive data for that user in the system. Once
the positive data is identified, the recommendation system would use the collaborative filtering
to better recommend the related products to the user. A mixture of Content based and
Collaborative filtering will be used to have a better recommendation system.

Where your solution different from others
 
In the existing ecommerce website, the user could not search based on uploading a new image
which has the product. The user can search only the products displayed in the ecommerce
website. Our approach allows the user to upload a new image. The CNN will then scan the

Image Based Product Recommendation System

Page 11 of 53

input image uploaded by the user and then identifies the products in the image. This product
info is passed to the recommendation system. The recommendation system uses the Content
Based Filtering to provide the related recommendation systems.

Why your solution is better  

In our approach, the user can upload any image which contains the product. The product
contained in the image might not be in the ecommerce product list. Hence other existing
approaches fails to identify the related products of the given input image. Since we are using
CNN to identify the product, Content Based Filtering can be used to identify the products which
has similar attributes as that of the product in the given input image.

Hypothesis (or goals)

Single/multiple hypothesis

The recommendation system should create final rules such that our function is as close as to
the true function i.e. our model should give correct output to any unseen data. In our case, it
would be a rule which would separate products the user may like from which he/she may not
like. This can be achieved by finding correlation between all users' data and generating a final
rule which would take new user's input and generates products which he/she may like.

Positive or negative (only for proof correctness) hypothesis

Positive hypothesis would be all the set of rules which are formed based on the similar user's
data. Negative hypothesis will be remaining rules. By using these rules, we can narrow down
the products which he/she may like. Positive and Negative hypothesis will be used to shrinking
the hypothesis space so that the model doesn’t recommend product which is not relevant to the
user. By this we can prove that the model's recommendation will be accurate all the time if
system has sufficient users.

Image Based Product Recommendation System

Page 12 of 53

Methodology

How to generate/collect input data

GENERATION OF DATA – WEB SCRAPING USING PYTHON

Selenium is used to send a request to the website from which the data is collected (images of
the product). Python uses a Selenium driver to open the version of the web browser (chrome,
Firefox, safari etc.)

How to solve the problem

The problem could be solved by developing a smart search engine for online shopping which
can use images as its input and tries to understand the information about products from these
images. It should first use a neural network to classify the input image as one of the product
categories. Then use another neural network to model the similarity score between pair images,
which should be used for selecting the closest product in our e-item database. It should then
use Jaccard similarity to calculate the similarity score for training data.  

Image Based Product Recommendation System

Page 13 of 53

Algorithm design

Following design represents the various modules of the project and how they are related to
each other’s through the interfaces,

Foremost all, in the beginning, we need to train our convolutional neural network with the
products dataset we have collected for the project. Data cleansing the other activities is also
required while making the dataset ready for the training. Once the training is done the model
can be used with the system to predict the product present in the images.

Image Based Product Recommendation System

Page 14 of 53

Web-portal is the main interface through which users can interact with the application. As an
input, the user can select an available product on the application (web) and get the
recommended product or they can upload a new image and get recommendations as in which
are other product that is more likely related to the product present in the image.

If a product is selected amongst the available products, then the system would pass the product
information to the “Recommendation system” and wait for the set of products with the images
those are related to the product that was selected. Here, to find the similarity relationship to the
“Recommendation system” would make use of the “Biased-Cluster-network” which would
store these relationships (as depicted below).

The “Recommendation system” is a hybrid model of Collaborative filtering and Content based
recommendation. The “Recommendation system” first finds the products which user may like
based on other user’s history (Collaborative filtering). Then these products are passed to second
sub-model i.e. Content based recommendation. This model uses the output of Collaborative
filtering as input and generates more recommendation which user may like. By incorporating
both the techniques we can make the model more accurate. In addition to this we are using both
Jaccard similarity and Pearson correlation coefficient to find similar users/products in the
system. Since our model uses both models, it will give better recommendation accuracy when
compared to other models. And while sending the information back to the “Web-portal” it
would also pass the image files from the database of the recommended products through the
FTP. There would be a web-service interface between the “Web-portal” and the
“Recommendation system”.

Image Based Product Recommendation System

Page 15 of 53

However, in the other scenarios where the user would upload a product image file, there the
“Web-portal” would first pass the image to the “Product-Classification-system” to understand
which products are present in the image. To process this “Product-Classification-system”
would pre-process the image to the required format before passing it to the CNN
(Convolutional Neural Network).

As a result, CNN would give a text output describing which all products are present in the
image and share it with “Web-portal” and “Mapper-Logic” system. Now, if the products exist
in the system, then there won’t be any update made to the “Biased-Cluster-Network” and the
databased. However, if the product is new, the “Mapper-Logic” would find its “Similarity-
Score” with the existing “Biased-Cluster-Network” and save it in the related cluster for future
recommendation. In parallel, for these kinds of scenarios after receiving the product details
from the “Product-Classification-system” the “Web-portal” would ask for the related products
from the “Recommendation system”. Here, the “Recommendation system” would internally
generate an “Approximate similarity score” and share the products as a recommendation which
has a high probability of being related to the new product.

Language used

• For Convolutional Neural Network development and training
o Python 3
o Libraries like

§ Keras 1.2.2+
§ TensorFlow R1.5
§ Pandas
§ NumPy

• For Recommendation System, Mapper-Logic and Biased-Clustering Network
development

o Python 3
o Java 8
o C++ 11

• For Web-Portal development
o HTML
o Bootstrap
o Angular JS

Pandas

Why use Pandas?
Python has long been great for data munging and preparation, but less so for data analysis and
modeling. Pandas helps fill this gap, enabling you to carry out your entire data analysis
workflow in Python without having to switch to a more domain specific language like R.

Combined with the excellent IPython toolkit and other libraries, the environment for doing data
analysis in Python excels in performance, productivity, and the ability to collaborate.

Image Based Product Recommendation System

Page 16 of 53

Pandas does not implement significant modeling functionality outside of linear and panel
regression; for this, look to stats models and scikit-learn. More work is still needed to make
Python a first class statistical modeling environment, but we are well on our way toward that
goal.

Library Highlights
§ A fast and efficient DataFrame object for data manipulation with integrated indexing;
§ Tools for reading and writing data between in-memory data structures and different

formats: CSV and text files, Microsoft Excel, SQL databases, and the fast HDF5
format;

§ Intelligent data alignment and integrated handling of missing data: gain automatic
label-based alignment in computations and easily manipulate messy data into an orderly
form;

§ Flexible reshaping and pivoting of data sets;
§ Intelligent label-based slicing, fancy indexing, and subsetting of large data sets;
§ Columns can be inserted and deleted from data structures for size mutability;
§ Aggregating or transforming data with a powerful group by engine allowing split-

apply-combine operations on data sets;
§ High performance merging and joining of data sets;
§ Hierarchical axis indexing provides an intuitive way of working with high-dimensional

data in a lower-dimensional data structure;
§ Time series-functionality: date range generation and frequency conversion, moving

window statistics, moving window linear regressions, date shifting and lagging. Even
create domain-specific time offsets and join time series without losing data;

§ Highly optimized for performance, with critical code paths written in Cythonor C.
§ Python with pandas is in use in a wide variety of academic and commercial domains,

including Finance, Neuroscience, Economics, Statistics, Advertising, Web Analytics,
and more.

Numpy
Numpy is the core library for scientific computing in Python. It provides a high-performance
multidimensional array object, and tools for working with these arrays. If you are already
familiar with MATLAB, you might find this tutorial useful to get started with Numpy.

Arrays
A numpy array is a grid of values, all of the same type, and is indexed by a tuple of nonnegative
integers. The number of dimensions is the rank of the array; the shape of an array is a tuple of
integers giving the size of the array along each dimension.

Array indexing
Numpy offers several ways to index into arrays.

• Slicing
o Similar to Python lists, numpy arrays can be sliced.

• Integer array indexing
o When you index into numpy arrays using slicing, the resulting array view will

always be a subarray of the original array. In contrast, integer array indexing
allows you to construct arbitrary arrays using the data from another array.

• Boolean array indexing

Image Based Product Recommendation System

Page 17 of 53

o Boolean array indexing lets you pick out arbitrary elements of an array.
Frequently this type of indexing is used to select the elements of an array that
satisfy some condition.

Datatypes

Every numpy array is a grid of elements of the same type. Numpy provides a large set of
numeric datatypes that you can use to construct arrays. Numpy tries to guess a datatype when
you create an array, but functions that construct arrays usually also include an optional
argument to explicitly specify the datatype. Here is an example:

import numpy as np

x = np.array([1, 2]) # Let numpy choose the datatype
print(x.dtype) # Prints "int64"

x = np.array([1.0, 2.0]) # Let numpy choose the datatype
print(x.dtype) # Prints "float64"

x = np.array([1, 2], dtype=np.int64) # Force a particular datatype
print(x.dtype) # Prints "int64"

Array math
Basic mathematical functions operate elementwise on arrays, and are available both as operator
overloads and as functions in the numpy module.

Apart from computing mathematical functions using arrays, we frequently need to reshape or
otherwise manipulate data in arrays. The simplest example of this type of operation is
transposing a matrix; to transpose a matrix, simply use the T attribute of an array object.

Broadcasting
Broadcasting is a powerful mechanism that allows numpy to work with arrays of different
shapes when performing arithmetic operations. Frequently we have a smaller array and a larger
array, and we want to use the smaller array multiple times to perform some operation on the
larger array.
Broadcasting two arrays together follows these rules:
1. If the arrays do not have the same rank, prepend the shape of the lower rank array with 1s

until both shapes have the same length.
2. The two arrays are said to be compatible in a dimension if they have the same size in the

dimension, or if one of the arrays has size 1 in that dimension.
3. The arrays can be broadcast together if they are compatible in all dimensions.
4. After broadcasting, each array behaves as if it had shape equal to the elementwise maximum

of shapes of the two input arrays.
5. In any dimension where one array had size 1 and the other array had size greater than 1, the

first array behaves as if it were copied along that dimension

Functions that support broadcasting are known as universal functions. Broadcasting typically
makes your code more concise and faster.

Image Based Product Recommendation System

Page 18 of 53

OpenCV-Python

Python is a general purpose programming language started by Guido van Rossum, which
became very popular in short time mainly because of its simplicity and code readability. It
enables the programmer to express his ideas in fewer lines of code without reducing any
readability.

Compared to other languages like C/C++, Python is slower. But another important feature of
Python is that it can be easily extended with C/C++. This feature helps us to write
computationally intensive codes in C/C++ and create a Python wrapper for it so that we can
use these wrappers as Python modules. This gives us two advantages: first, our code is as fast
as original C/C++ code (since it is the actual C++ code working in background) and second, it
is very easy to code in Python. This is how OpenCV-Python works, it is a Python wrapper
around original C++ implementation.

And the support of Numpy makes the task easier. Numpy is a highly optimized library for
numerical operations. It gives a MATLAB-style syntax. All the OpenCV array structures are
converted to-and-from Numpy arrays. So whatever operations you can do in Numpy, you can
combine it with OpenCV, which increases number of weapons in your arsenal. Besides that,
several other libraries like SciPy, Matplotlib which supports Numpy can be used with this.
So OpenCV-Python is an appropriate tool for fast prototyping of computer vision problems.

Machine learning: the problem setting

In general, a learning problem considers a set of n samples of data and then tries to predict
properties of unknown data. If each sample is more than a single number and, for instance, a
multi-dimensional entry (aka multivariate data), it is said to have several attributes or features.

We can separate learning problems in a few large categories:

• Supervised learning, in which the data comes with additional attributes that we want to
predict (Click here to go to the scikit-learn supervised learning page).This problem can be
either:
o Classification: samples belong to two or more classes and we want to learn from

already labelled data how to predict the class of unlabelled data. An example of
classification problem would be the handwritten digit recognition example, in which
the aim is to assign each input vector to one of a finite number of discrete categories.
Another way to think of classification is as a discrete (as opposed to continuous) form
of supervised learning where one has a limited number of categories and for each of
the n samples provided, one is to try to label them with the correct category or class.

o Regression: if the desired output consists of one or more continuous variables, then the
task is called regression. An example of a regression problem would be the prediction
of the length of a salmon as a function of its age and weight.

• Unsupervised learning, in which the training data consists of a set of input vectors x without
any corresponding target values. The goal in such problems may be to discover groups of
similar examples within the data, where it is called clustering, or to determine the
distribution of data within the input space, known as density estimation, or to project the

Image Based Product Recommendation System

Page 19 of 53

data from a high-dimensional space down to two or three dimensions for the purpose
of visualization (Click here to go to the Scikit-Learn unsupervised learning page).

Tools used

• Intelli-J
• Visual Studio
• Sublime Text
• Vi-Editor

How to Get/Generate Data

Selenium module is used to send a request to the website from which the data is collected
(images of the product). In Python, Selenium uses a driver to open the version of the web
browser (chrome, Firefox, safari etc.) that can be controlled by python itself. This sends a
request to a website and returns the response filled with HTML code which can be sorted
through to find what is needed. The images are downloaded from the Google images which is
set as the preferred website. By providing the upper limit, we download as many images from
the site. Usually training a particular product requires a huge number of images of that
particular product. We are having approximately 3000 images for each product for this
project.

How to generate output

User uploads the image of the product/similar to the product on the web portal. The website
gives him the exact match of the product he is looking for as well as the products related to
the one which he has uploaded. The user gets a number of similar products that he is looking
for which similar matched in design and styles that the system recommends him. The system
also recommends the other products that are closely related to the product, for e.g., the user
uploads a picture of the t-shirt that has a brand logo or a team logo on it, the system
recommends similar t-shirts from the same brand/team along with shorts and shoes that goes
with it.

Image Based Product Recommendation System

Page 20 of 53

How to test against hypotheses

Positive Scenarios(Hypothesis)

Negative Scenarios (Against Hypothesis)

Image Based Product Recommendation System

Page 21 of 53

Design Document and Flowchart

Product Classification System Implementation

Keras network architecture for Product classification

We import the relevant Keras modules and from there, we create our SmallerVGGNet class:

Image Based Product Recommendation System

Page 22 of 53

2
3
4
5
6
7
8
9
10

import the necessary packages
from keras.models import Sequential
from keras.layers.normalization import BatchNormalization
from keras.layers.convolutional import Conv2D
from keras.layers.convolutional import MaxPooling2D
from keras.layers.core import Activation
from keras.layers.core import Flatten
from keras.layers.core import Dropout
from keras.layers.core import Dense
from keras import backend as K

Our class is defined on Line 12. We then define the build function on Line 14, responsible
for assembling the convolutional neural network

12
13
14
15
16
17
18
19
20
21
22
23
24
25

class SmallerVGGNet:
 @staticmethod
 def build(width, height, depth, classes, finalAct="softmax"):
 # initialize the model along with the input shape to be
 # "channels last" and the channels dimension itself
 model = Sequential()
 inputShape = (height, width, depth)
 chanDim = -1

 # if we are using "channels first", update the input shape
 # and channels dimension
 if K.image_data_format() == "channels_first":
 inputShape = (depth, height, width)
 chanDim = 1

The build method requires four parameters — width , height , depth , and classes . The depth
specifies the number of channels in an input image, and classes is the number (integer) of
categories/classes (not the class labels themselves). We’ll use these parameters in our training
script to instantiate the model with a 96 x 96 x 3 input volume.

The optional argument, finalAct (with a default value of "softmax") we utilized at the end of
the network architecture. Changing this value from softmax to sigmoid will enable us to
perform multi-label classification with Keras.

From there, we enter the body of build , initializing the model (Line 17) and defaulting to
"channels_last" architecture on Lines 18 and 19 (with a convenient switch for backends that
support "channels_first" architecture on Lines 23-25).

7
28
29
30
31
32
33

 # CONV => RELU => POOL
 model.add(Conv2D(32, (3, 3), padding="same",
 input_shape=inputShape))
 model.add(Activation("relu"))
 model.add(BatchNormalization(axis=chanDim))
 model.add(MaxPooling2D(pool_size=(3, 3)))
 model.add(Dropout(0.25))

Our CONV layer has 32 filters with a 3 x 3 kernel and RELU activation (Rectified Linear
Unit). We apply batch normalization, max pooling, and 25% dropout.

Dropout is the process of randomly disconnecting nodes from the current layer to the next
layer. This process of random disconnects naturally helped the network to reduce overfitting

Image Based Product Recommendation System

Page 23 of 53

as no one single node in the layer will be responsible for predicting a certain class, object, edge,
or corner.

From there we have two sets of (CONV => RELU) * 2 => POOL blocks:

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

 # (CONV => RELU) * 2 => POOL
 model.add(Conv2D(64, (3, 3), padding="same"))
 model.add(Activation("relu"))
 model.add(BatchNormalization(axis=chanDim))
 model.add(Conv2D(64, (3, 3), padding="same"))
 model.add(Activation("relu"))
 model.add(BatchNormalization(axis=chanDim))
 model.add(MaxPooling2D(pool_size=(2, 2)))
 model.add(Dropout(0.25))

 # (CONV => RELU) * 2 => POOL
 model.add(Conv2D(128, (3, 3), padding="same"))
 model.add(Activation("relu"))
 model.add(BatchNormalization(axis=chanDim))
 model.add(Conv2D(128, (3, 3), padding="same"))
 model.add(Activation("relu"))
 model.add(BatchNormalization(axis=chanDim))
 model.add(MaxPooling2D(pool_size=(2, 2)))
 model.add(Dropout(0.25))

The changes in filters, kernels, and pool sizes in this code block which work together to
progressively reduce the spatial size but increase depth.

These blocks are followed by our only set of FC => RELU layers:

5
56
57
58
59
60
61
62
63
64
65
66
67
68

 # first (and only) set of FC => RELU layers
 model.add(Flatten())
 model.add(Dense(1024))
 model.add(Activation("relu"))
 model.add(BatchNormalization())
 model.add(Dropout(0.5))

 # use a *softmax* activation for single-label classification
 # and *sigmoid* activation for multi-label classification
 model.add(Dense(classes))
 model.add(Activation(finalAct))

 # return the constructed network architecture
 return model

Fully connected layers are placed at the end of the network (specified by Dense on Lines 57
and 64).

Line 65 is important for our multi-label classification — finalAct dictates whether we’ll use
"softmax" activation for single-label classification or "sigmoid" activation

Implementing our Keras model for multi-label product classification

Now that we have implemented SmallerVGGNet , we created train.py , the script we used to
train our Keras network for multi-label classification.

Image Based Product Recommendation System

Page 24 of 53

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

set the matplotlib backend so figures can be saved in the background
import matplotlib
matplotlib.use("Agg")

import the necessary packages
from keras.preprocessing.image import ImageDataGenerator
from keras.optimizers import Adam
from keras.preprocessing.image import img_to_array
from sklearn.preprocessing import MultiLabelBinarizer
from sklearn.model_selection import train_test_split
from cnn.smallervggnet import SmallerVGGNet
import matplotlib.pyplot as plt
from imutils import paths
import numpy as np
import argparse
import random
import pickle
import cv2
import os

On Lines 2-19 we import the packages and modules required for this script. Line 3 specifies a
matplotlib backend so that we can save our plot figure in the background.

21
22
23
24
25
26
27
28
29
30
31

construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-d", "--dataset", required=True,
 help="path to input dataset (i.e., directory of images)")
ap.add_argument("-m", "--model", required=True,
 help="path to output model")
ap.add_argument("-l", "--labelbin", required=True,
 help="path to output label binarizer")
ap.add_argument("-p", "--plot", type=str, default="plot.png",
 help="path to output accuracy/loss plot")
args = vars(ap.parse_args())

Command line arguments to a script are like parameters to a function.

Four command line arguments (Lines 23-30):

1. --dataset : The path to our dataset.
2. --model : The path to our output serialized Keras model.
3. --labelbin : The path to our output multi-label binarizer object.
4. --plot : The path to our output plot of training loss and accuracy.

Initialized some important variables that play critical roles in our training process:

3
34
35
36
37
38

initialize the number of epochs to train for, initial learning rate,
batch size, and image dimensions
EPOCHS = 75
INIT_LR = 1e-3
BS = 32
IMAGE_DIMS = (96, 96, 3)

These variables on Lines 35-38 define that:

• Our network was trained for 75 EPOCHS in order to learn patterns by incremental
improvements via backpropagation.

Image Based Product Recommendation System

Page 25 of 53

• We established an initial learning rate of 1e-3 (the default value for the Adam
optimizer).

• The batch size is 32 . we adjusted this value depending on your CPU capability but
we found a batch size of 32 works well for this project.

• As stated above, our images are 96 x 96 and contain 3 channels.

From there, the next two code blocks handle loading and preprocessing our training data:

1
42
43
44
45
46
47
48

grab the image paths and randomly shuffle them
print("[INFO] loading images...")
imagePaths = sorted(list(paths.list_images(args["dataset"])))
random.seed(42)
random.shuffle(imagePaths)

initialize the data and labels
data = []
labels = []

Here we grabbed the imagePaths and shuffling them randomly, followed by initializing data
and labels lists.

Next, we looped over the imagePaths , preprocess the image data, and extract multi-class-
labels.

2
3
4
5
6
7
8
9
10
11
12

loop over the input images
for imagePath in imagePaths:
 # load the image, pre-process it, and store it in the data list
 image = cv2.imread(imagePath)
 image = cv2.resize(image, (IMAGE_DIMS[1], IMAGE_DIMS[0]))
 image = img_to_array(image)
 data.append(image)

 # extract set of class labels from the image path and update the
 # labels list
 l = label = imagePath.split(os.path.sep)[-2].split("_")
 labels.append(l)

First, we load each image into memory (Line 53). Then, we perform preprocessing on Lines
54 and 55. We appended the image to data (Line 56).

Lines 60 and 61 handles splitting the image path into multiple labels for our multi-label
classification task. After Line 60 is executed, a 2-element list is created and is then appended
to the labels list on Line 61.

$ python
>>> import os
>>> labels = []
>>> imagePath = "dataset/red_dress/long_dress_from_macys_red.png"
>>> l = label = imagePath.split(os.path.sep)[-2].split("_")
>>> l
['red', 'dress']
>>> labels.append(l)
>>>
>>> imagePath = "dataset/blue_jeans/stylish_blue_jeans_from_your_favorite_store.png"
>>> l = label = imagePath.split(os.path.sep)[-2].split("_")
>>> labels.append(l)

Image Based Product Recommendation System

Page 26 of 53

>>>
>>> imagePath = "dataset/red_shirt/red_shirt_from_target.png"
>>> l = label = imagePath.split(os.path.sep)[-2].split("_")
>>> labels.append(l)
>>>
>>> labels
[['red', 'dress'], ['blue', 'jeans'], ['red', 'shirt']]

The labels list is a “list of lists” — each element of labels is a 2-element list. The two labels
for each list is constructed based on the file path of the input image.

64
65
66
67

scale the raw pixel intensities to the range [0, 1]
data = np.array(data, dtype="float") / 255.0
labels = np.array(labels)
print("[INFO] data matrix: {} images ({:.2f}MB)".format(
 len(imagePaths), data.nbytes / (1024 * 1000.0)))

Our data list contains images stored as NumPy arrays. In a single line of code, we converted
the list to a NumPy array and scale the pixel intensities to the range [0, 1] .

We also converted labels to a NumPy array as well.

From there, let’s binarize the labels — the below block is critical for this week’s multi-class
classification concept:

70
71
72
73
74
75
76
77

binarize the labels using scikit-learn's special multi-label
binarizer implementation
print("[INFO] class labels:")
mlb = MultiLabelBinarizer()
labels = mlb.fit_transform(labels)

loop over each of the possible class labels and show them
for (i, label) in enumerate(mlb.classes_):
 print("{}. {}".format(i + 1, label))

MultiLabelBinarizer transforms a tuple of ("red", "dress”) to a vector with six total categories:

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

$ python
>>> from sklearn.preprocessing import MultiLabelBinarizer
>>> labels = [
... ("blue", "jeans"),
... ("blue", "dress"),
... ("red", "dress"),
... ("red", "shirt"),
... ("blue", "shirt"),
... ("black", "jeans")
...]
>>> mlb = MultiLabelBinarizer()
>>> mlb.fit(labels)
MultiLabelBinarizer(classes=None, sparse_output=False)
>>> mlb.classes_
array(['black', 'blue', 'dress', 'jeans', 'red', 'shirt'], dtype=object)
>>> mlb.transform([("red", "dress")])
array([[0, 0, 1, 0, 1, 0]])

Following we constructed, the training and testing splits as well as initialize the data
augmenter:

Image Based Product Recommendation System

Page 27 of 53

80
81
82
83
84
85
86
87

partition the data into training and testing splits using 80% of
the data for training and the remaining 20% for testing
(trainX, testX, trainY, testY) = train_test_split(data,
 labels, test_size=0.2, random_state=42)

construct the image generator for data augmentation
aug = ImageDataGenerator(rotation_range=25, width_shift_range=0.1,
 height_shift_range=0.1, shear_range=0.2, zoom_range=0.2,
 horizontal_flip=True, fill_mode="nearest")

Splitting the data for training and testing is common in machine learning practice — We’ve
allocated 80% of the images for training data and 20% for testing data. This is handled by
scikit-learn on Lines 81 and 82.

Our data augmenter object is initialized on Lines 85-87. Data augmentation is a best practice
and a most-likely a “must” if you are working with less than 1,000 images per class.

Next, let’s build the model and initialize the Adam optimizer:

90
91
92
93
94
95
96
97
98

initialize the model using a sigmoid activation as the final layer
in the network so we can perform multi-label classification
print("[INFO] compiling model...")
model = SmallerVGGNet.build(
 width=IMAGE_DIMS[1], height=IMAGE_DIMS[0],
 depth=IMAGE_DIMS[2], classes=len(mlb.classes_),
 finalAct="sigmoid")

initialize the optimizer
opt = Adam(lr=INIT_LR, decay=INIT_LR / EPOCHS)

On Lines 92-95 we build our SmallerVGGNet model, noting the finalAct="sigmoid” parameter
indicating that we’ll be performing multi-label classification.

From there, we are compiling the model and kick off training:

101
102
103
104
105
106
107
108
109
110
111
112
113
114

compile the model using binary cross-entropy rather than
categorical cross-entropy -- this may seem counterintuitive for
multi-label classification

model.compile(loss="binary_crossentropy", optimizer=opt,
 metrics=["accuracy"])

train the network
print("[INFO] training network...")
H = model.fit_generator(
 aug.flow(trainX, trainY, batch_size=BS),
 validation_data=(testX, testY),
 steps_per_epoch=len(trainX) // BS,
 epochs=EPOCHS, verbose=1)

On Lines 105 and 106 we compile the model using binary cross-entropy rather than categorical
cross-entropy.

Image Based Product Recommendation System

Page 28 of 53

This may seem counterintuitive for multi-label classification; however, the goal was to treat
each output label as an independent Bernoulli distribution and we wanted to penalize each
output node independently.

From there we launch the training process with our data augmentation generator (Lines 110-
114).

After training is complete we can save our model and label binarizer to disk:

116
117
118
119
120
121
122
123
124

save the model to disk
print("[INFO] serializing network...")
model.save(args["model"])

save the multi-label binarizer to disk
print("[INFO] serializing label binarizer...")
f = open(args["labelbin"], "wb")
f.write(pickle.dumps(mlb))
f.close()

we plotted accuracy and loss:

126
127
128
129
130
131
132
133
134
135
136
137
138

plot the training loss and accuracy
plt.style.use("ggplot")
plt.figure()
N = EPOCHS
plt.plot(np.arange(0, N), H.history["loss"], label="train_loss")
plt.plot(np.arange(0, N), H.history["val_loss"], label="val_loss")
plt.plot(np.arange(0, N), H.history["acc"], label="train_acc")
plt.plot(np.arange(0, N), H.history["val_acc"], label="val_acc")
plt.title("Training Loss and Accuracy")
plt.xlabel("Epoch #")
plt.ylabel("Loss/Accuracy")
plt.legend(loc="upper left")
plt.savefig(args["plot"])

Accuracy + loss for training and validation is plotted on Lines 127-137. The plot is saved as
an image file on Line 138.

Training a Keras network for multi-label classification

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	

$	python	train.py	--dataset	dataset	--model	fashion.model	\	
	 --labelbin	mlb.pickle	
Using	TensorFlow	backend.	
[INFO]	loading	images...	
[INFO]	data	matrix:	2165	images	(467.64MB)	
[INFO]	class	labels:	
1.	black	
2.	blue	
3.	dress	
4.	jeans	
5.	red	
6.	shirt	
[INFO]	compiling	model...	
[INFO]	training	network...	
Epoch	1/75	
name:	Macbook	Pro		
54/54	[==============================]	-	4s	-	loss:	0.3503	-	acc:	0.8682	-	val_loss:	0.9417	-	val_acc:	0.6520	
Epoch	2/75	
54/54	[==============================]	-	2s	-	loss:	0.1833	-	acc:	0.9324	-	val_loss:	0.7770	-	val_acc:	0.5377	

Image Based Product Recommendation System

Page 29 of 53

20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	

Epoch	3/75	
54/54	[==============================]	-	2s	-	loss:	0.1736	-	acc:	0.9378	-	val_loss:	1.1532	-	val_acc:	0.6436	
...	
Epoch	73/75	
54/54	[==============================]	-	2s	-	loss:	0.0534	-	acc:	0.9813	-	val_loss:	0.0324	-	val_acc:	0.9888	
Epoch	74/75	
54/54	[==============================]	-	2s	-	loss:	0.0518	-	acc:	0.9833	-	val_loss:	0.0645	-	val_acc:	0.9784	
Epoch	75/75	
54/54	[==============================]	-	2s	-	loss:	0.0405	-	acc:	0.9857	-	val_loss:	0.0429	-	val_acc:	0.9842	
[INFO]	serializing	network...	
[INFO]	serializing	label	binarizer...	

we trained the network for 75 epochs, achieving:

• 98.57% multi-label classification accuracy on the training set
• 98.42% multi-label classification accuracy on the testing set

Applied Keras multi-label classification to new images

On Lines 2-9 we import the necessary packages for this script. We used Keras and OpenCV in
this script.

	
2	
3	
4	
5	
6	

#	import	the	necessary	packages	
from	keras.preprocessing.image	import	img_to_array	
from	keras.models	import	load_model	
import	numpy	as	np	
import	argparse	
import	imutils	

Image Based Product Recommendation System

Page 30 of 53

7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	

import	pickle	
import	cv2	
import	os	
		
#	construct	the	argument	parse	and	parse	the	arguments	
ap	=	argparse.ArgumentParser()	
ap.add_argument("-m",	"--model",	required=True,	
	 help="path	to	trained	model	model")	
ap.add_argument("-l",	"--labelbin",	required=True,	
	 help="path	to	label	binarizer")	
ap.add_argument("-i",	"--image",	required=True,	
	 help="path	to	input	image")	
args	=	vars(ap.parse_args())	

Then we proceeded to parse our three required command line arguments on Lines 12-19.

From there, we load and pre-process the input image:

1	
22	
23	
24	
25	
26	
27	
28	
29	

#	load	the	image	
image	=	cv2.imread(args["image"])	
output	=	imutils.resize(image,	width=400)	
		
#	pre-process	the	image	for	classification	
image	=	cv2.resize(image,	(96,	96))	
image	=	image.astype("float")	/	255.0	
image	=	img_to_array(image)	
image	=	np.expand_dims(image,	axis=0)	

	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	

#	load	the	trained	convolutional	neural	network	and	the	multi-label	
#	binarizer	
print("[INFO]	loading	network...")	
model	=	load_model(args["model"])	
mlb	=	pickle.loads(open(args["labelbin"],	"rb").read())	
		
#	classify	the	input	image	then	find	the	indexes	of	the	two	class	
#	labels	with	the	*largest*	probability	
print("[INFO]	classifying	image...")	
proba	=	model.predict(image)[0]	
idxs	=	np.argsort(proba)[::-1][:2]	

Following we prepared the class labels + associated confidence values for overlay on the
output image:

	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	

#	loop	over	the	indexes	of	the	high	confidence	class	labels	
for	(i,	j)	in	enumerate(idxs):	
	 #	build	the	label	and	draw	the	label	on	the	image	
	 label	=	"{}:	{:.2f}%".format(mlb.classes_[j],	proba[j]	*	100)	
	 cv2.putText(output,	label,	(10,	(i	*	30)	+	25),		
	 	 cv2.FONT_HERSHEY_SIMPLEX,	0.7,	(0,	255,	0),	2)	
		
#	show	the	probabilities	for	each	of	the	individual	labels	
for	(label,	p)	in	zip(mlb.classes_,	proba):	
	 print("{}:	{:.2f}%".format(label,	p	*	100))	
		
#	show	the	output	image	
cv2.imshow("Output",	output)	
cv2.waitKey(0)	

Image Based Product Recommendation System

Page 31 of 53

The loop on Lines 44-48 draws the top two multi-label predictions and corresponding
confidence values on the output image.

Finally, we show the output image on the screen (Lines 55 and 56).

Command to get the classification output:
python classify.py --model fashion.model --labelbin mlb.pickle --image \
examples/example_01.jpg

Recommendation System Implementation

To create biased clusters with set of training data

Image Based Product Recommendation System

Page 32 of 53

Image Based Product Recommendation System

Page 33 of 53

Image Based Product Recommendation System

Page 34 of 53

To get the images from the

cluster and send it to the UI.

Image Based Product Recommendation System

Page 35 of 53

Image Based Product Recommendation System

Page 36 of 53

Image Based Product Recommendation System

Page 37 of 53

Get the index from the python code and display on the UI.

Image Based Product Recommendation System

Page 38 of 53

Image Based Product Recommendation System

Page 39 of 53

Image Based Product Recommendation System

Page 40 of 53

Image Based Product Recommendation System

Page 41 of 53

Displays related products as well as recommended product.

Image Based Product Recommendation System

Page 42 of 53

Image Based Product Recommendation System

Page 43 of 53

Image Based Product Recommendation System

Page 44 of 53

Index page for outer UI

Image Based Product Recommendation System

Page 45 of 53

Image Based Product Recommendation System

Page 46 of 53

Image Based Product Recommendation System

Page 47 of 53

Image Based Product Recommendation System

Page 48 of 53

Image Based Product Recommendation System

Page 49 of 53

Outcome

Known Product Scenario

Image Based Product Recommendation System

Page 50 of 53

Image Based Product Recommendation System

Page 51 of 53

Unknown Product Scenario

Image Based Product Recommendation System

Page 52 of 53

Image Based Product Recommendation System

Page 53 of 53

Conclusions and Recommendation

Summary and Conclusions

In this project we build a smart shopping recommender for image search. We tried out different
neural network models for image classification and different ways to quantify the similarity
between two images. We are able to achieve a classification accuracy of 0.98 and recommend
products with similarity score higher than 0.98.

Recommendations for Future Work

There is over-fitting issue in our model, which can be one of the things to do in future work.
As shown in the Dataset and Features section, though we have a huge data set, due to the
limitation on time and machine memory, we only used 10,000 out of 3.5 million images. In the
next step, we can try to train our model on a larger amount of data using batches. This can
potentially increase the accuracy of the model.

Bibliography

1. T. Deselaers and V. Ferrari. Visual and semantic similar- ity in imagenet. In
Computer Vision and Pattern Recogni- tion (CVPR), 2011 IEEE Conference on,
pages 1777–1784. IEEE, 2011.

2. A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

3. M.Tan,S.-P.Yuan,andY.-X.Su.Alearning-basedapproach to text image retrieval: using
cnn features and improved sim- ilarity metrics. arXiv preprint arXiv:1703.08013,
2017.

4. Rogers and Nicewander (1988). "Thirteen Ways to Look at the Correlation
Coefficient" (PDF). The American Statistician.

5. Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks. In Proc. NIPS.

6. Greg Linden, Brent Smith, and Jeremy York. 2003. Amazon.Com Recommenda-
tions: Item-to-Item Collaborative Filtering. IEEE Internet Computing 7, 1 (Jan. 2003),
76–80.

7. S. Liu, J. Feng, C. Domokos, H. Xu, J. Huang, Z. Hu, and S. Yan. 2014. Fashion
Parsing With Weak Color-Category Labels. IEEE Transactions on Multimedia 16, 1
(Jan 2014), 253–265.

8. J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang, J. Philbin, B. Chen, and Y. Wu.
Learning fine-grained image similarity with deep ranking. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 1386–1393, 2014.

