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1.1 Abstract 

Consider a platform that wants to learn a personalized policy for each user, but the               

platform faces the risk of a user abandoning the platform if she is dissatisfied with the                

actions of the platform. For example, a platform is interested in personalizing the             

number of newsletters it sends, but faces the risk that the user unsubscribes forever.              

We propose a general thresholded learning model for scenarios like this, and discuss             

the structure of optimal policies. We describe salient features of optimal per-            

sonalization algorithms and how feedback the platform receives impacts the results.           

Furthermore, we investigate how the platform can efficiently learn heterogeneity across           

users by interacting with a population and provide performance guarantees. 

We are implementing 3 multi armed bandit strategies and they are Epsilon            

greedy,Thompson Sampling and Bayesian UCB and comparing the performances         

among these strategies by calculating their mean regrets. 
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2. Introduction 

2.1 Objective 
The objective is to generate a threshold learning model for platforms that want to learn               

a personalized policy for each user.Also , to investigate how the platform can efficiently              

learn the heterogeneity across users by interacting with a population and provide            

performance guarantees. 

 2.2 Problem- Learning With Abandonment 
If a platform wants to have a personalized policy for the user but the platform faces the                 

risk of the user abandoning the platform if dissatisfied with the actions of the platform.               

For example, a platform is interested in personalizing the number of newsletters it             

sends, but faces the risk that the user unsubscribes forever. General threshold models             

are implemented for scenarios like this. 

2.3 Reasons why the project is related to Data         

Mining class 

The goal of data mining is the extraction of patterns and knowledge from large amounts               

of data .​This ​information can be used to ​increase revenues, cut costs, improve             

customer relationships, reduce risks and more. In the project Learning with           

Abandonment we are creating three models where different properties of datasets are            
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analyzed and with the help of the result the solution is made better .It fetches the users                 

data and in order to create personalised policy for the user creates personalised policy              

generate threshold learning model.For example in one of the models with the help of              

user feedback the model is being  continuously improved. 

Also the paper was presented in ICDM 2018 in Data Mining conference. 

2.4 Why other approach is not good 
In the paper there is implementation of 3 strategies but we are exploring more              

strategies. 

We are planning to implement different strategies for Learning Threshold model .We will             

be implementing the following:- 

●  Bayesian UCB 

● Thompson Sampling 

● ε-Greedy Algorithm 

​In the UCB algorithm, we do not assume any prior on the reward distribution and                

therefore we have to rely on Hoeffding's Inequality for a very generalized estimation. In              

Bayesian UCB able to know the distribution upfront, we would be able to make better               

bound estimation.Thompson is more optimized for maximizing long-term overall payoff. 
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2.5 Why we think our approach is better 

The paper is restricted to fewer approaches for the Learning Threshold model .We are              

exploring more strategies and we will be comparing which strategy is better .  

In the UCB algorithm, we do not assume any prior on the reward distribution and               

therefore we have to rely on Hoeffding's Inequality for a very generalized estimation. In              

Bayesian UCB able to know the distribution upfront, we would be able to make better               

bound estimation. 

Epsilon Greedy algorithm is the greediest of all the multi armed bandit algorithms. We              

keep the value of epsilon between 0 and 1. The higher the value of epsilon the                

algorithm promotes more exploration. We aim to follow this strategy in the beginning to              

identify the set of actions based on the users thresholds and later on reduce the value                

of the epsilon to reduce the risk of abandonment and we aim to identify different               

structures in the personalized policies. 

The Thompson sampling is a more principled approach and helps us to yield and              

identify more optimal results in marginal cases. We sample one possible success rate             

from the beta distribution that corresponds to each variant for each new contact, and              

assign the contact to the variant with the largest sampled success rate. The more data               

points we've observed, the more confident we'll be about the true success rate, and as               

we collect more data, the sampled success rates will be increasingly close to the real               
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rate.So our aim is to explore different strategies to compare the differences among             

them. 

2.6 Area or scope of investigation 

There are directions of further research:- 

Abandonment models​- users playing a learning strategy herself, comparing this          

platform to one or multiple outside options. In this scenario, the user and platform are               

simultaneously learning about each other. 

User information​- User activity seems like an important signal of her preferences.            

Models that are able to incorporate such information and are able to infer the              

parameters from data are beyond the scope of this work but an important direction of               

further research 

Empirical analysis- This work focuses on theoretical understanding of the          

abandonment model, and thus ignores important aspects of a real world system. We             

believe there is a lot of potential to gain additional insight from an empirical perspective               

using real-world systems with abandonment risk. 
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3.Theoretical Bases And Literature 

Review  

3.1 Definition Of The Problem 

Machine learning algorithms are present in almost every area, humans are           

communicating widely with machines either knowingly or unknowingly. It is important for            

these algorithms to learn continuously and optimize themselves to provide a better            

customer experience. 

The problem we are solving is the risk of abandonment of a platform by the user, if the                  

platform is acting against the users preference. Therefore the algorithms designed by            

the platform needs to ensure that they are not losing any of its customers. 

The risk of losing customers is faced by many platform like online content creators like               

news agencies, they could lose their customers by sending way too many mails, or a               

platform that is optimizing the energy consumption can become so stringent in its             

policies so the customer might abandon the platform, so it is very important for a               

platform to optimize its learning strategies. 

We concentrate in this research on gaining insight into the structure of optimal learning              

approaches in these environments. We are particularly interested in understanding          
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when such strategies take on a “simple” structure and focus on that throughout the              

project. 

3.2 Related Research To Solve The Problem 

The learning with abandonment problem is quite unique, and we are aware of only one               

prominent work that addresses the similar scenario. Apart from this work, Lu et al. 2017               

also models the customer abandonment problem using two actions which are classified            

as the safe action and the risky action. This difference leads to different kinds of results                

as that of our work. 

Our problem appears to be related to many reinforcement learning problems due to the              

dynamic structure of both the problems. However it is to be noted that there are many                

significant differences.  

Another related work is on safe reinforcement learning, where we need to stay clear of               

catastrophic states, unlike the safe reinforcement learning, in our problem avoiding           

abandonment is not set as a hard constraint. 

3.3 Advantage/Disadvantage Of Those Research  

Those researches in the paper for finding out a set of actions that minimizes the risk of                 

users abandoning the platform are mostly focusing on UCB, MOSS index of the multi              

armed bandit strategy.  
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The advantages of those researches is that they are able to observe how constant              

policies are optimal under fixed threshold and independent threshold models, also they            

have shown that under small perturbations constant policies are more optimal. 

 

The Disadvantages of the research is that the research is only focusing on UCB, MOSS               

and explore exploit strategy. There are more multi armed bandit strategies that need to              

be explored further and we are focusing our research on Bayesian UCB, Thompson             

sampling and Epsilon Greedy sampling.  

Also,additional user information in terms of covariates is not considered in the paper For              

example, in the notification example, user activity seems like an important signal of her              

preferences 

3.4 Our Solution To Solve This Problem 

We are approaching the problem with three different models which helps us to develop insight               

into the structure of optimal learning strategies in setting up personalized policies. We are              

particularly interested in understanding when such strategies take on a “simple” structure. 

The models used are: 

3.4.1 Threshold model 

In this model we consider a platform that interacts with only a single user over time. The                 

user has a threshold θ drawn from a distribution F, and at each time t = 0, 1, 2, . . . At                       

each time t ,the platform chooses an action xt . If the chosen action xt ever exceeds the                  
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threshold θ, the user abandons the platform; otherwise, the user continues to use the              

platform , and the platform earns some reward dependent on the xt chosen by the               

platform. 

 

In this model we consider the case where the distribution F and the reward function are                

known, and the challenge is finding an optimal strategy for a given new user. For               

finding the optimal strategy we consider the problem of maximizing the expected            

discounted reward by the platform. We might expect that the optimal policy is increasing              

and depends on the discount factor: also, we might try to serve the user at increasing                

levels of input xt as long as the user does not abandon the platform .However, the main                 

result shows this is not exactly the case, the static policy of maximizing one-step reward               

is optimal for this problem. It is because the user abandons if the threshold is ever                

crossed, and then trying to actively learn the threshold is not helpful anymore. 

 

3.4.2 Learning thresholds 

In this model we consider the problem of how to adapt the results when F and/or the                 

reward function are unknown. In this case the model tries to learn the threshold over               

multiple user arrivals. 

We concentrate our attention on the fixed threshold model and consider a setting where              

n users arrive sequentially, each with a fixed threshold u (u = 1, ... ,n) from the unknown                  

distribution F with support on [0,1]. In order to highlight the importance of learning from               

13 



users over time , we find a stylised environment where the platform communicates with              

one user at a time, agreeing on all activities and monitoring the effects for that user                

before the next user arrives. We consider a proposed algorithm that uses a policy that is                

constant to each user. Additionally, we assume that the Rt(x) incentives are bounded             

between 0 and 1, but otherwise derived from an arbitrary distribution depending on x. 

We test the performance of learning algorithms against the oracle that has total             

knowledge of the threshold distribution F and the reward function r, but no access to               

random variables realizations. 

3.4.3 Feedback 

The third model is a more general model with “soft” abandonment. In this case the user                

might not abandon the platform after a negative experience, but continue with the             

platform with some probability. We characterize the structure of an optimal policy to             

maximize expected discounted reward on a per-user basis; in particular, we find that the              

policy adaptively experiments until it has sufficient confidence, and then commits to a             

static action. We empirically investigate the structure of the optimal policy as well. 

 

We are extending the concept as follows to integrate customer input. Assume that if the               

current action xt reaches the threshold (i.e., xt > t), then with probability p we obtain no                 

reward but that the user persists, and with probability 1 − p the user leaves. As before                 

the aim is to optimize discounted reward anticipated. Even when the threshold is             

reached the platform does not obtain a reward, the question is non trivial even though p                
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= 1. We limit our focus to the single threshold model, where a single one is drawn and                  

then set for all periods of time. 

3.5 Where our Solution Different From Others 

As most of the related studies are way different from our research area it is difficult to                 

exactly map the advantages and disadvantages of those works from ours. 

As the Lu et al. 2017 models the customer abandonment problem using two actions              

which are classified as the safe action and the risky action. This difference leads to               

different kinds of results as that of our work.  

Our model has many differences as that of reinforcement learning. The main focus of              

our work is developing personalized experience for each user, which when viewed            

through the perspective of reinforcement learning corresponds to having only single           

episodes or users to learn, which is independent of other users or episodes. On the               

other hand, in reinforcement learning, the learning is based on multiple episodes. These             

differences produce novel challenges in abandonment learning. 

Also our work is much different from safe reinforcement learning, where we need to stay               

clear of catastrophic states, unlike the safe reinforcement learning, in our problem            

avoiding abandonment is not set as a hard constraint. 

The paper is limited to less solutions to the learning threshold model. We are testing               

more strategies and we will be contrasting the best strategy.  
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We don't assume any prior incentive distribution in the UCB algorithm and so we have               

to rely on Hoeffding 's Inequality for a very simplified estimation. We 'd be able to make                 

better bound predictions at Bayesian UCB in order to learn the distribution beforehand. 

The Epsilon Greedy algorithm is the greediest of all algorithms for multi-armed bandit             

algorithms. We hold the value of the epsilon from 0 to 1. The higher the epsilon value                 

the algorithm supports more exploration. In the beginning, we intend to adopt this             

approach to define the collection of behaviors depending on the consumer thresholds            

and then to minimize the importance of the epsilon to reduce the probability of failure               

and we strive to identify specific mechanisms in the custom policies. 

In intermediate cases, the Thompson sampling is a more rational approach and lets one              

produce and classify more desirable tests. We sample one potential success score for             

each new contact from the beta distribution, which applies to each variant, and assign              

the contact to the variant with the lowest sampled success rate. The more data points               

we have collected, the more sure we can be regarding the actual success rate, and as                

we collect more evidence, the measured success rates will be steadily similar to the real               

result. 

3.6 Why our Solution Is Better 

Our solution is better because we are further exploring the learning strategies proposed             

in the paper by implementing more multi armed bandit strategies like epsilon greedy             

algorithm, Thompson sampling and Bayesian UCB algorithm. 
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In the UCB algorithm, we do not assume any prior on the reward distribution and               

therefore we have to rely on Hoeffding's Inequality for a very generalized estimation. In              

Bayesian UCB able to know the distribution upfront, we would be able to make better               

bound estimation 

Epsilon Greedy algorithm is the greediest of all the multi armed bandit algorithms. We              

keep the value of epsilon between 0 and 1. The higher the value of epsilon the                

algorithm promotes more exploration. We aim to follow this strategy in the beginning to              

identify the set of actions based on the users thresholds and later on reduce the value                

of the epsilon to reduce the risk of abandonment and we aim to identify different               

structures in the personalized policies. 

The Thompson sampling is a more principled approach and helps us to yield and              

identify more optimal results in marginal cases. We sample one possible success rate             

from the beta distribution that corresponds to each variant for each new contact, and              

assign the contact to the variant with the largest sampled success rate. The more data               

points we've observed, the more confident we'll be about the true success rate, and as               

we collect more data, the sampled success rates will be increasingly close to the real               

rate. 
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4. Hypothesis (or goals) 

The goal is to develop a general threshold learning model for scenarios like             

personalizing the number of newsletters it sends to customers so that the user does not               

abandon the platform  and discuss the structure of optimal policies. 

We are implementing different strategies in the model and compare the performances             

among them 

4.1  Single/multiple hypothesis 

​We are implementing different strategies in the model to develop a general threshold              

learning model for scenarios like personalizing the number of newsletters it sends to             

customers so that the user does not abandon the platform and discuss the structure of               

optimal policies. 

Three different strategies have been implemented in the paper .They are  

● UCB 

● MOSS 

● Explore exploit strategy 

We are implementing three more :- 

● Bayesian UCB 

● Thompson Sampling 
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● ε-Greedy Algorithm 

Our goal is to compare the performance of different strategies. 

and compare the performances among them. 

4.2  Positive or negative hypothesis 

As Bayesian UCB, Epsilon greedy algorithm and Thompson sampling both fall under            

multi-armed bandit problem and each of these has different rates of discovery vs             

exploitation strategy both of these algorithms would operate in the case of            

abandonment learning, but the findings could vary greatly depending on the parameter            

values and could lead to several different outcomes. However they are guaranteed to             

generate results for each learning method from which we can draw suitable conclusions             

and equate them with the implementation of the author. 

5. Methodology 

5.1 How to generate/collect input data 

The problem makes various assumptions for the input parameters like number of the             

users, the users thresholds and also about the distribution used for choosing an action              

at time t and and the reward function which produces the rewards for the platform based                
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on the actions performed by the user. All the assumptions made will be documented              

and will be added along with the code setup. 

5.2  How to solve the problem 

To solve the problem of a platform learning a set of actions and not risk the user                 

abandoning the platform we try out three multi armed bandit algorithms which are 

1. Bayesian UCB 

2. Thompson Sampling 

3. ε-Greedy Algorithm 

By applying these algorithms we are trying to identify learning strategies for the platform              

without the user abandoning the platform in between. All these algorithms are            

explained in the coming section 5.2.1 

5.2.1 Algorithm Design 

The algorithms used in the project are: 

1. Bayesian UCB 

This algorithm does not assume any prior reward functions and we depend on             

Hoeffding's Inequality for the reward function. The equation for Hoeffding’s          

Inequality is given below. 
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Let X​1​,…,X​t be i.i.d. (independent and identically distributed) random variables          

and they are all bounded by the interval [0, 1]. The sample mean is = 1/t                Xt      

 Then for u > 0, we have:∑
t

τ=1
Xt  

 
Given one target action a, let us consider: 

rt(a) as the random variables, 

Q(a) as the true mean, 

Q̂ t(a) as the sample mean, 

And u as the upper confidence bound, u=Ut(a) 

Then we have, 

 
We want to pick a bound so that with high chances the true mean is below the                 

sample mean plus the upper confidence bound. Thus e−2tUt(a)2 should be a            

small probability. Let’s say we are ok with a tiny threshold p: 

 
Thus, 
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2. Epsilon Greedy Algorithm 
Most of the time, the ​ε​-greedy algorithm takes the best action, but occasionally             

does random exploration. According to past experience, the action value is           

estimated by averaging the rewards associated with the target action a which we             

have observed to date (up to the current time step t): 

 
where , 

𝟙 is a binary indicator function 

Nt(a) shows  how many times the action a has been selected till then  

 

 
For example, if we have a problem with two actions – A and B, the epsilon                

greedy algorithm works as shown below: 
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With probability 1- epsilon,we choose action with maximum value (argmaxa          

Qt(a)) 

With probability epsilon – we randomly choose an action from a set of all actions  

 
 

3. Thompson Sampling 
 
In Thompson sampling at each time step t, we select an action a according to the                

probability that a is optimal: 

 

 
where π(a|ht) is the probability of taking action a given the history ht. 

It is normal to conclude that Q(a) follows a Beta distribution for the Bernoulli              

bandit, since Q(a) is basically the probability of success in Bernoulli distribution.            

The Beta(α, β) value is inside the interval [0 , 1] α and β refer to the counts when                   

we have successfully or failed to get a reward respectively. 

5.2.2 Language used 
 
The Language used is python 3 and above. The libraries used for the project are 

1. Matplotlib 

2. Scipy 

3. Numpy 
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4. Collections 

5. Math 

6. Random 

7. Time 

5.2.3  Tools used 

The tools used in this project are 

1. Jupyter Notebook 

2. Anaconda Navigator 

5.3 How to generate output 

The output can be generated inline by running all the blocks of code in the jupyter                

notebook one after the other after installing all the required libraries. 

The required libraries are: 

1. Matplotlib 

2. Scipy 

3. Numpy 

4. Collections 

5. Math 

6. Random 

7. Time 
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5.4 How to test against hypotheses 

We will validate the things learned from our algorithm against the authors work and              

observations. We will draw up meaningful conclusions based on our observations and            

see whether we were able to improve the learning strategies used by the platform.              

Since our model has no quantitative output we are unable to come up with exact               

quantitative measurements. 

5.5 Proof of correctness 

As Bayesian UCB, Epsilon greedy algorithm and Thompson sampling all comes under            

multi armed bandit problem and each of these has different level of exploration vs              

exploitation strategy all these algorithms will work in the case of learning with             

abandonment, however the results could vary significantly based on the parameter           

values and might lead to some different results. However they are guaranteed to             

produce patterns for each learning strategy from which we can make appropriate            

conclusions and compare it with the author's implementation​. 

6. Implementation 

6.1 Code 

Code in Appendices 10.1 
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6.2 Design Document And Flowchart 

6.2.1 Design Document 

6.2.1.1 Overview of the Design 
The learning with abandonment system is developed in python3 using the jupyter            

notebook. The project implementation tries to understand the consequences that occur           

when a user abandons a platform in between and how the platform can learn from this                

and develop a series of actions that can effectively interact with the user without              

causing any displeasure or understanding the patience level of each user. The project             

tries to implement different multi armed bandit algorithms which comes under the            

reinforcement learning strategy and tries to learn different structures observed and           

make meaningful conclusions. 

6.2.1.2 The Scope of the project 
The scope of the job lies in understanding how each multi armed algorithm, namely              

Bayesian UCB, Epsilon greedy algorithm and Thompson sampling works under the           

predefined learning scenario of Learning Threshold works and draw meaningful          

conclusions. The conclusions are drawn from mean regrets produced by each different            

algorithm and analyse which algorithm gives the best performance. 
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6.2.1.3 Deliverables 
The deliverables of our project is a jupyter notebook which shows all the             

outputs(graphs) we have generated as a part of the project implementation  

6.2.2 Flowchart 
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7. Data Analysis And Discussion 

7.1  Output Generation 

We have implemented 3 multi armed bandit strategies and used a simulation setting for              

obtaining the output. In the simulation we are computing the best action value and the               

value obtained when each of the three multi armed bandit strategies is used. We              

compare the obtained results with the best action value to calculate the mean regret              

observed for each of the strategies. 

 

We are giving the three policies as input to our abandonment simulation method and              

calculate the mean regret for each policy by comparing it with the best action value               

obtained in each of the cases. 

 

Finally to have a better visualization of the outputs we plot the mean regrets as graphs                

where the x-axis represents the time t, at which a platform performs an action and               

y-axis represents the regret obtained in each of the cases. We also output the mean               

regret observed in each of the strategies. 
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7.2  Output Analysis 

All the three graphs are analysed .Cumulative regret paths with regret on y axis and               

time on x axis are plotted . 

Out of three strategies implemented it can be seen that epsilon greedy algorithm has              

least regret of 42.9 

In the Epsilon-Greedy algorithm random selection between exploration and exploitation          

happens to balance exploration and exploitation.  

In Bayesian UCB prior information about the distribution of rewards unlike UCB            

algorithm.We are getting regret=319.3 for Bayesian UCB  . 

In Thompson sampling at each time step t, we select an action a according to the pr 

probability that a is optimal. 

We are getting regret =55.2 for Thompson Sampling. 

Out of the three strategies we have implemented ,Epsilon greedy has least regret and 

Bayesian UCB has the highest regret.  

Please find below the graphs for different strategies. 
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7.3  Compare Output Against Hypothesis 

Our hypothesis was to implement different strategies in the model and compare the             

performances among them.From the output analysis we see that epsilon greedy has            

least regret .Bayesian UCB has the highest regret of 319.3 and Thompson UCB has a               

regret of 55.2. 

 

7.4 Discussion 

The three strategies which have been mentioned in the research paper are UCB ,MOSS              

and explore exploit strategy.UCB has mean regret of 104.9,MOSS has mean regret of             

79.7 and explore exploit has mean regret of 36.4.The strategies which we have             
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implemented are Epsilon greedy with mean regret of 42.9 ,Thompson Sampling with            

mean regret of 55.2 and Bayesian UCB with mean regret of 319.3.Out of all the six                

strategies explore exploit has the least mean regret. 

 

8. Conclusions And Recommendations 

8.1 Summary And Conclusions 

Our project revolves around different multi armed bandit algorithms which come under            

the reinforcement learning algorithms to understand when a user will abandon a            

platform and how the platform should continue its learning process/optimizations for           

serving the future users better and prevent users from abandoning the platform. 

 

We have tried three multi armed bandit algorithms to understand which algorithm gives             

better performance. The performance of the algorithm is based primarily on the mean             

regret values produced by the algorithm and graphs are plotted against the mean             

regrets. 

 

From our research we came to the conclusion that Epsilon greedy algorithm produced             

the least mean regret while bayesian UCB algorithm produced the highest mean regret.             

We choose the mean regret to measure the performance of the algorithms because it              

shows how much an algorithm deviates from the actual value. 
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From the authors implementation and our own research we have come to the             

conclusion that generally the explore exploit strategy produces better results when           

compared to other strategies when performance is measured based on the least mean             

regret produced by the algorithm. 

8.2 Recommendations For Future Studies 

The recommendation for future studies which are outside the scope of our project are: 

8.2.1 Abandonment models  

Firstly, attention should be extended to more nuanced device abandonment behaviour.           

This might take several ways, including a cumulative budget for resilience that gets             

drained when the threshold is reached. Another paradigm is that of a user themselves              

performing a learning game, contrasting this method to one or more external            

alternatives. In this case, both the customer and the application think about one another              

at the same time. 

8.2.2 User information  

Second , in terms of covariates, we did not allow additional user knowledge. User              

behavior seems like a major indication of her desires in the notification case. Models              
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capable of integrating such knowledge and capable of inferring the data parameters are             

outside the scope of this study but are a significant path for future analysis. 

8.2.3 Empirical analysis  

This work focuses on the theoretical interpretation of the concept of abandonment, while             

missing essential facets of a structure in real life. We assume there is considerable              

scope to obtain more information from an observational viewpoint using real-world           

structures with possibility of abandonment. 
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10. Appendices 

10.1 Program Source Code With Documentation 

 
#!/usr/bin/env python 
# coding: utf-8 
 

# In[1]: 
 
 

import​ collections, math, random, time 
 

import​ matplotlib.pyplot ​as​ plt 
get_ipython().run_line_magic(​'matplotlib'​, ​'inline'​) 
get_ipython().run_line_magic(​'config'​, ​"InlineBackend.figure_format = 'svg'"​) 
 
 

from​ scipy.stats ​import​ norm 
 

import​ numpy ​as​ np 
 
 

# In[2]: 
 
 

def​ bernoulli(p): ​return​ ​1​*(random.random() < p) 
 

def​ plogpq(p, q): 
    ​if​ p == ​0​: 
        ​return​ ​0 
    ​if​ q == ​0​: 
        ​return​ math.inf 
    ​return​ p * math.log(p/q) 
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def​ kldiv(p, q):  
    ​return​ plogpq(p, q) + plogpq(​1​-p, ​1​-q) 
 

def​ newton(f, fp, x, eps=​1e-5​, projection=​lambda​ x: x): 
    ​while​ True: 
        xn = projection(x - f(x)/fp(x)) 
        ​print​(xn) 
        ​if​ abs(xn - x) < eps: 
            ​return​ xn 
        x = xn 
  
def​ proj_unit(x): ​return​ max(​0​, min(​1​, x)) 
def​ bisect_fn(fn, lowerbound, upperbound, eps=​1e-4​): 
    ​if​ fn(lowerbound) > ​0​: 
        ​return​ bisect_fn(​lambda​ x: -fn(x), lowerbound, upperbound) 
  
    ​assert​ fn(upperbound) > ​0​, ​"LB and UB must have opposing signs" 
  
    ​while​ abs(upperbound - lowerbound) > eps: 
        midpoint = lowerbound/​2​ + upperbound/​2 
        ​if​ fn(midpoint) > ​0​: 
            upperbound = midpoint 
        ​else​: 
            lowerbound = midpoint 
  
    ​return​ lowerbound/​2​ + upperbound/​2 
 
 

# In[3]: 
 
 

History = collections.namedtuple(​"History"​, [​'s'​,​'n'​]) 
#Our history array 
Hstry = [] 
count = [​0​] 
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def​ update_history(history, outcome): 
    Hstry.append(outcome) 
    count[​0​] += ​1 
    ​return​ History(history.s + outcome, history.n + ​1​) 
 

def​ mean(history): 
    ​if​ history.n > ​0​: 
        ​return​ history.s / history.n 
    ​return​ ​0 
 

def​ ucb_index(history, t, K, alpha=​2​): 
    ​if​ history.n == ​0​: ​return​ ​1e10​ + random.random() 
    ​return​ mean(history) + math.sqrt(alpha * math.log(t) / (​2​ * history.n)) 
 

def​ byucb_index(history, t, K, c=​1.5​,hstry=Hstry): 
    ​if​ history.n == ​0​: ​return​ ​1e10​ + random.random() 
    std = np.std(history.n) 
    ​return​ (c*std)/math.sqrt(history.n/t) 
 

def​ moss_index(history, t, K): 
    ​if​ history.n == ​0​: ​return​ ​1e10​ + random.random() 
    ​return​ mean(history) + math.sqrt(max(math.log(t/(K*history.n)), ​0​) / 
history.n) 
 

def​ greedy_index(history, t, K): 
    ​if​ history.n == ​0​: ​return​ ​1e10​ + random.random() 
    ​return​ mean(history) 
 

def​ thompson_index(history, t, K, a=​1​, b=​1​): 
    ​return​ random.betavariate(a + history.s, b + history.n - history.s) 
 
 

def​ klucb_index(history, t, K, c=​0​): 
    ​if​ history.n == ​0​: ​return​ ​1e10​ + random.random() 
    phat = mean(history) 
  
    ​if​ phat == ​1​: 
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        ​return​ ​1 
  
    f = ​lambda​ q: kldiv(phat, q) - (math.log(t) + c * math.log(math.log(t))) / 
history.n 
  
    ​# Based on bisection 
    ​return​ bisect_fn(f, phat, ​1​) 
  
    ​# Based on Newton's method 
    ​# fp = lambda q: -phat/max(1e-5, q) + (phat-1)/max(q-1, 1e-5) 
    ​# return newton(f, fp, phat/2 + 1/2, projection=proj_unit) 
  
 

def​ index_policy(histories, index, *args): 
    t = sum(history.n ​for​ history ​in​ histories) + ​1 
    K = len(histories) 
    ​return​ max(range(K), key=​lambda​ i: index(histories[i], t, K, *args)) 
 

def​ ucb(histories): ​return​ index_policy(histories, ucb_index) 
def​ moss(histories): ​return​ index_policy(histories, moss_index) 
def​ greedy(histories): ​return​ index_policy(histories, greedy_index) 
def​ thompson(histories): ​return​ index_policy(histories, thompson_index) 
def​ klucb(histories): ​return​ index_policy(histories, klucb_index) 
def​ byucb(histories): ​return​ index_policy(histories, byucb_index) 
 
 

# In[4]: 
 
 

def​ max_concave(f, xmin=​0​, xmax=​1​, eps=​1e-10​): 
    ​""" find the maximum of a 1d concave function on a bdd interval""" 
    m = xmin/​2​ + xmax/​2 
    ​if​ m - xmin < eps: 
        ​return​ m 
  
    fmin, fm, fmax = f(xmin), f(m), f(xmax) 
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    ​if​ fm > fmin ​and​ fm > fmax: 
        ​return​ max((max_concave(f, m, xmax), max_concave(f, xmin, m)),  
                   key=​lambda​ x: f(x)) 
  
    ​if​ fm < fmin: 
        ​return​ max_concave(f, xmin, m) 
 

    ​return​ max_concave(f, m, xmax) 
 
 

# In[5]: 
 
 

def​ bandit(policy, pull, K, T): 
    histories = [History(​0​, ​0​) ​for​ _ ​in​ range(K)] 
    actions = [] 
 

    ​for​ t ​in​ range(T): 
        action = policy(histories) 
        outcome = pull(action) 
        histories[action] = update_history(histories[action], outcome) 
        actions.append(action) 
  
    ​return​ actions, histories 
 

def​ best_action_value(F, r): 
    p = ​lambda​ x: r(x) * (​1​-F(x)) 
 

    xstar = max_concave(p) 
    M = p(xstar) 
    ​return​ xstar, M 
 

def​ abandonment_pulls(K, F, r): 
    ​def​ pull(action): 
        x = (action + ​1​)/K 
        ​return​ r(x) * bernoulli(​1​-F(x)) 
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    ​return​ pull 
def​ listify(gen): 
    ​"Convert a generator into a function which returns a list" 
    ​def​ patched(*args, **kwargs): 
        ​return​ list(gen(*args, **kwargs)) 
    ​return​ patched 
 

@listify 
def​ abandonment_regret(actions, F, r, M=​0​): 
    p = ​lambda​ x: r(x) * (​1​-F(x)) 
  
    R = ​0 
    ​for​ action ​in​ actions: 
        R += M - p(action) 
        ​yield​ R 
 
 

# In[6]: 
 
 

def​ plot_regrets(regrets, ax=​None​, title=​"Regret plot"​, style=​"k-"​): 
    ​if​ ax ​is​ ​None​: 
        f, ax = plt.subplots() 
  
    nrep = len(regrets) 
    T = len(regrets[​0​]) 
  
    ​for​ R ​in​ regrets: 
        line, = ax.plot(R, style, alpha=​0.2​ + ​1​/nrep) 
  
    line.set_label(title) 
  
    ax.set_title(title) 
    ax.set_xlabel(​"mean regret: {:.1f}"​.format(sum(R[​-1​] ​for​ R ​in​ regrets)/nrep)) 
    ax.set_xlim(​0​, T) 
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def​ plot_actions(actions, ax=​None​): 
    ​if​ ax ​is​ ​None​: 
        f, ax = plt.subplots() 
  
    ax.imshow(actions.T, aspect=​"auto"​) 
    ax.tick_params(axis=​'both'​, 
                which=​'both'​, 
                bottom=​'off'​, 
                top=​'off'​, 
                left=​'off'​, 
                labelbottom=​'off'​, 
                labelleft=​'off'​) 
 
 

# In[7]: 
 
 

def​ abandonment_simulation(T, K, F, r, policy, nrep=​1​, action_agg=​20​):  
    pull = abandonment_pulls(K, F, r) 
    regrets = [] 
    action_matrix = np.zeros((T//action_agg, K)) 
  
    xstar, M = best_action_value(F, r) 
  
    ​for​ _ ​in​ range(nrep): 
        actions, histories = bandit(policy, pull, K, T) 
        R = abandonment_regret([(i​+1​)/K ​for​ i ​in​ actions], F, r, M) 
  
        ​# record regret 
        regrets.append(R) 
        ​# record actions 
        ​for​ t, a ​in​ enumerate(actions): 
            action_matrix[t//action_agg][a] += ​1 
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    ​return​ regrets, action_matrix 
 
 

# In[8]: 
 
 

import​ heapq 
import​ bisect 
 

import​ numpy ​as​ np 
 
 

# In[9]: 
 
 

class​ ECDF: 
    ​def​ __init__(self): 
        self.data = [] 
  
    ​def​ observe(self, x): 
        bisect.insort(self.data, x) 
  
    ​def​ evaluate(self, x): 
        n = len(self.data) 
        ​if​ n == ​0​: 
            ​return​ ​0.5 
        ​return​ bisect.bisect(self.data, x) / n 
  
    ​def​ ecdf(self): 
        n = len(self.data) 
        ​if​ n < ​200​: 
            ​return​ ((x, i/n) ​for​ i, x ​in​ enumerate(self.data)) 
        ​return​ ((x, self.evaluate(x))  
                ​for​ x ​in​ np.linspace(self.data[​0​], self.data[​-1​], ​100​)) 
    ​def​ plot(self): 
        x, e = zip(*self.ecdf()) 
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        f, ax = plt.subplots() 
        ax.plot(x, e) 
        ax.set_title(​"Empirical CDF"​) 
        ax.set_xlabel(​r"$x$"​) 
        ax.set_ylabel(​r"$\hat F(x)$"​) 
 
 

# In[10]: 
 
 

def​ oracle(T, r, sampler=random.random): 
    ecdf = ECDF() 
    actions = [] 
    ​for​ _ ​in​ range(T): 
        action = max(np.linspace(​0​, ​1​, random.randint(​100​, ​200​)),  
                     key=​lambda​ x: r(x) * (​1​-ecdf.evaluate(x))) 
        threshold = sampler() 
 

        ​# cheat 
        ecdf.observe(threshold) 
        actions.append(action) 
  
    ​return​ actions, ecdf 
 

def​ oracle_simulations(oracle, T, F, r, sampler, nrep=​1​): 
    _, M = best_action_value(F, r) 
 

    regrets = [] 
    ​for​ _ ​in​ range(nrep): 
        actions, ecdf = oracle(T, r, sampler=sampler) 
        R = abandonment_regret(actions, F, r, M) 
        regrets.append(R) 
  
    ​return​ regrets 
def​ explore_exploit(T, r, alpha=​1​/​2​, sampler=random.random): 
    ecdf = ECDF() 
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    actions = [] 
    ​for​ t ​in​ range(T): 
        ​if​ t <= ​20+2​*T**alpha: 
            action = ​0 
            threshold = sampler() 
            ecdf.observe(threshold) 
        ​else​: 
            action = action = max(np.linspace(​0​, ​1​, random.randint(​100​, ​200​)),  
                                  key=​lambda​ x: r(x) * (​1​-ecdf.evaluate(x))) 
        actions.append(action) 
 

    ​return​ actions, ecdf 
 
 

# In[11]: 
 
 

r = ​lambda​ x: x 
F = ​lambda​ x: x 
sampler = ​lambda​: random.random() 
 

xstar, M = best_action_value(F, r) 
 

f, ax = plt.subplots(​1​, ​3​, figsize=(​8​, ​3​)) 
 

T = ​2000 
K = int(​2​ * max(​1​, (T / math.log(T))**​0.25​ + ​1​)) 
print​(​"K = {}"​.format(K)) 
 

nrep = ​50 
 

# algos 
for​ i, policy ​in​ enumerate([ucb, klucb]): 
    ​print​(policy) 
    regrets, actions = abandonment_simulation(T, K, F, r, policy, nrep=nrep) 
    plot_regrets(regrets, ax=ax[i], title=policy.__name__) 
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# explore-exploit 
regrets = oracle_simulations(explore_exploit, T, F, r, sampler, nrep) 
plot_regrets(regrets, ax=ax[​-1​], title=​"explore-exploit"​) 
 

for​ a ​in​ ax: 
    a.set_ylim(​0​, ​110​) 
    a.set_xlim(​0​, T) 
  
f.tight_layout() 
 
 

# In[12]: 
 
 

r = ​lambda​ x: x 
F = ​lambda​ x: x 
sampler = ​lambda​: random.random() 
 

xstar, M = best_action_value(F, r) 
 

f, ax = plt.subplots(​1​, ​4​, figsize=(​8​, ​3​)) 
 

T = ​2000 
K = int(​2​ * max(​1​, (T / math.log(T))**​0.25​ + ​1​)) 
print​(​"K = {}"​.format(K)) 
 

nrep = ​50 
 

# algos 
#moss,greedy, 
for​ i, policy ​in​ enumerate([moss,greedy,thompson,byucb]): 
    ​print​(policy) 
    regrets, actions = abandonment_simulation(T, K, F, r, policy, nrep=nrep) 
    plot_regrets(regrets, ax=ax[i], title=policy.__name__) 
  
for​ a ​in​ ax: 
    a.set_ylim(​0​, ​110​) 
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    a.set_xlim(​0​, T) 
  
f.tight_layout() 
 
 

# In[13]: 
 
 

def​ linear_grid(a, b, steps): 
    ​# this is an interior linear grid that does not contain a or b 
    stepsize = (b-a)/steps 
    ​return​ [round(a + (i​+0.5​) * stepsize, ​3​) ​for​ i ​in​ range(steps)] 
 

# value iteration operator 
def​ l2_dist(a, b): 
    ​return​ sum((v - b[x][​0​])**​2​ ​for​ x, (v, _) ​in​ a.items()) / len(a) 
 

def​ vi(initial, operator, converged): 
    ​def​ _vi(old, new): 
        ​if​ converged(old, new): 
            ​return​ new 
        ​return​ _vi(new, operator(new)) 
  
    ​return​ _vi(initial, operator(initial)) 
 
 

# In[14]: 
 
 

# some distribution functions 
def​ Funif(x): 
    ​return​ max(min(x, ​1​), ​0​) 
 

def​ Fbetab(x, b): 
    ​return​ ​1​ - (​1​-x)**b 
 

# some reward functions 
linear = ​lambda​ x: x 
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neglog = ​lambda​ x: -math.log(​1​-x) 
 

steps = ​201 
 
 

# In[15]: 
 
 

def​ Vop(F, grid, r=​lambda​ x: x, beta=​1​, discount=​0.9​): 
   ​def​ Fcond(y, a, b): 
       nom = F(y) - F(a) 
       denom = F(b) - F(a) 
       ​if​ denom > ​0​: 
           ​return​ nom / denom 
       ​return​ ​0 
  
   ​def​ _Vop(xvx): 
       ​def​ v(y, a, b): 
           prob_success = ​1​-Fcond(y, a, b) 
           val_success = r(y) + discount * xvx[(y, b)][​0​] 
           val_fail = beta * discount * xvx[(a, y)][​0​] 
           ​return​ prob_success * val_success + (​1​-prob_success) * val_fail 
  
       ​def​ Vnew(state): 
           a, b = state 
           ​return​ max(((v(y, a, b), y) ​for​ y ​in​ grid ​if​ a <= y < b), default=(​0​, ​0​)) 
  
       ​return​ {state: Vnew(state) ​for​ state, Vstate ​in​ xvx.items()} 
  
   ​return​ _Vop 
 
 

# In[16]: 
 
 

def​ analyze_vopt(F=Funif, grid=linear_grid(​0​, ​1​, steps), reward_fn=linear, 
beta=​1​, discount=​0.8​, tol=​1e-3​): 
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    vopt = compute_vopt(F, grid, reward_fn, beta, discount, tol) 
#     _ = plot_vopt(vopt, grid, discount) 
    ​return​ vopt 
 

def​ compute_vopt(F=Funif, grid=linear_grid(​0​, ​1​, steps), reward_fn=linear, 
beta=​1​, discount=​0.8​, tol=​1e-5​): 
    initial = {(x, y): (​0​, ​0​) ​for​ x ​in​ grid ​for​ y ​in​ grid ​if​ x <= y} 
    ​return​ vi(initial, Vop(F, grid, reward_fn, beta=beta, discount=discount), 
lambda​ x, y: l2_dist(x, y) < tol) 
 
 

# In[17]: 
 
 

# extracting optimal actions 
 

grid = linear_grid(​0​, ​1​, steps) 
lb, ub = grid[​0​], grid[​-1​] 
 

def​ action(vopt, lower, upper): 
    v, y = vopt[(lower, upper)] 
    ​return​ y 
  
def​ action_tree(vopt, init_lower, init_upper): 
    y = action(vopt, init_lower, init_upper) 
    ​if​ y == init_lower: 
        ​return​ y 
    ​return​ y, action_tree(vopt, init_lower, y), action_tree(vopt, y, init_upper) 
 

# code to plot the action tree 
 

def​ left(tree): 
    ​return​ tree[​1​] 
 

def​ right(tree): 
    ​return​ tree[​2​] 
 

def​ value(tree): 
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    ​if​ isinstance(tree, tuple): 
        ​return​ tree[​0​] 
    ​return​ tree 
 
 

# In[18]: 
 
 

def​ plot_line(axes, a, b, style=​"r-"​, alpha=​1.0​, x_offset=​0​): 
    axes.plot([a[​0​]+x_offset, b[​0​]-x_offset], [a[​1​], b[​1​]], style, alpha=alpha) 
    axes.plot([a[​0​]], [a[​1​]], ​"k. "​) 
 
 

def​ plot_node(axes, tree, index=​0​, depth=​10​, x_offset=​0​): 
    ​if​ isinstance(tree, tuple) ​and​ index < depth: 
        plot_line(axes, (index, value(tree)), (index​+1​, value(left(tree))), style=​"r--"​, 
x_offset=x_offset) 
        plot_line(axes, (index, value(tree)), (index​+1​, value(right(tree))), 
style=​"g-"​, x_offset=x_offset) 
#         axes.plot([index, index+1], [value(tree), value(left(tree))], 
color="darkred") 
#         axes.plot([index, index+1], [value(tree), value(right(tree))], 
color="steelblue") 
        plot_node(axes, left(tree), index​+1​, depth) 
        plot_node(axes, right(tree), index​+1​, depth) 
    ​else​: 
        plot_line(axes, (index, value(tree)), (depth, value(tree)), style=​"k:"​, 
alpha=​0.8​, x_offset=x_offset) 
#         axes.plot([index, depth], [value(tree), value(tree)],  
#                   color="black", opacity=0.5) 
 

def​ plot_tree(tree, width=​6​, height=​4​, depth=​10​): 
    f, ax = plt.subplots(figsize=(width, height)) 
  
    ax.set_ylim(​0​, ​1​) 
    ax.set_title(​"Visualization of the optimal policy tree"​) 
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    ax.set_xlabel(​"time step t"​) 
    ax.set_ylabel(​"action at time t x(t)"​) 
  
    ​for​ i ​in​ range(depth​+1​): ax.axvline(i, color=​"black"​, alpha=​0.1​) 
 

    plot_node(ax, tree, depth=depth) 
    ​return​ f, ax 
 

def​ plot_actions(vopt, lb, ub, depth=​10​): 
    tree = action_tree(vopt, lb, ub) 
    c, a = plot_tree(tree, depth=depth) 
    ​return​ c, a 
 

def​ plot_vopt(vopt, grid, discount): 
    vopt_list = [(a, b, v) ​for​ (a, b), (v, y) ​in​ vopt.items()] 
 

    canvas = tp.Canvas(​500​, ​400​) 
    axes = canvas.cartesian() 
 
 

    axes.plot([​0​, ​1​], [​0​, ​1​]) 
 

    ​for​ lower ​in​ grid: 
        sublist = [(b, (​1​-discount)*v) ​for​ a, b, v ​in​ vopt_list ​if​ a == lower ​and​ b != 
lower] 
        ​try​: 
            X, V = zip(*sublist) 
 

            axes.plot(X, V, color=​"black"​, opacity=​0.5​) 
        ​except​ ValueError: 
            ​pass 
  
    ​return​ canvas, axes 
 
 

# In[19]: 
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vopt = analyze_vopt(discount=​0.9​, beta=​0.5​) 
f, ax = plot_actions(vopt, lb, ub) 
 
 

# In[20]: 
 
 

discount = ​0.8 
beta_path = [(beta, 
              compute_vopt(Funif,  
                           linear_grid(​0​, ​1​, steps),  
                           reward_fn=linear,  
                           beta=beta,  
                           discount=discount,  
                           tol=​1e-2​)) 
  ​for​ beta ​in​ linear_grid(​0​, ​1​, ​31​)] 
 

action_path = [(beta, action(vopt, lb, ub)) ​for​ beta, vopt ​in​ beta_path] 
value_path = [(beta, vopt[(lb, ub)][​0​]) ​for​ beta, vopt ​in​ beta_path] 
 
 

# In[21]: 
 
 

f, ax = plt.subplots(figsize=(​6​, ​4​)) 
ax.set_title(​"First action in relation to override probability"​) 
ax.set_xlabel(​"probability of override"​)  
ax.set_ylabel(​r"$x_0$: optimal action at time 0"​) 
 

ax.set_xlim(​0​, ​1​) 
 

x, y = zip(*action_path) 
ax.plot([​0​] + list(x) , [​0.5​] + list(y), ​"k. "​) 
ax.axhline(​0.5​, color=​"k"​, alpha=​0.1​) 
 
 

# In[ ]: 
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10.2 Input/Output Listing 

Input- 

We give the following input parameters and plot the cumulative regret paths 

K-number of arms 

T-Time steps  

N-number of repetitions  

We are giving the below values for them:- 

n=50 

T=2000 

K=12 

 

Output - 

Cumulative regret paths with regret on y axis and time on x axis are plotted . 

As discussed in the document above(Section 7) we get the following regrets  

Mean regret of Epsilon greedy algorithm =42.9,thompson sampling =55.2 and Bayesian           

UCB =319.3 

 

10.3 Other Related Material  

The other related materials are 
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1. Dynamic Learning of Sequential Choice Bandit Problem under Marketing Fatigue 

Authors:  

Junyu Cao 

Wei Sun 

2. Potential Good Abandonment Prediction 

Authors: 

Aleksandr Chuklin 

Pavel Serdyukov 

3. Measuring the reliability of reinforcement learning algorithms 

Authors: 

Stephanie C.Y. Chan 

Samuel Fishman 

John Canny 

Anoop Korattikara 

Sergio Guadarrama 
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