

LEARNING WITH ABANDONMENT

 ​ COEN 281 -Data Mining and Pattern Recognition

 Anjaly George
 Divya Arora

1

Acknowledgements

We would like to express our deep gratitude to Professor Ming Hwa Wang , our

research supervisor, for his patient guidance, enthusiastic encouragement and useful

critiques of this research work. We would also like to thank Mr. Ramesh Johari and Mr.

Sven Schmit , the authors of the paper on which our research is based upon. We would

also like to extend our thanks to the department of computer science and Santa Clara

University. Finally, We wish to thank our parents for their support and encouragement

throughout our study.

2

1.Table of Contents

Index Topic Page Number

1.1 Abstract 5

2 Introduction 6

2.1 Objective 6

2.2 Problem- Learning with Abandonment 6

2.3 Reasons why the project is related to Data Mining
class

6

2.4 Why other approach is not good 7

2.5 Why we think our approach is better 8

2.6 Area or scope of investigation 9

3 Theoretical Bases And Literature Review 10

3.1 Definition Of The Problem 10

3.2 Related Research To Solve The Problem 11

3.3 Advantage/Disadvantage Of Those Research 11

3.4 Our Solution To Solve This Problem 12

3.5 Where our Solution Different From Others 15

3.6 Why our Solution Is Better 16

4 Hypothesis(or goals) 18

4.1 Single/multiple hypothesis 18

4.2 Positive or negative hypothesis 19

5 Methodology 19

5.1 How to generate/collect input data 19

5.2 How to solve the problem 20

5.3 How to generate output 24

3

5.4 How to test against hypotheses 25

5.5 Proof correctness 25

6 Implementation 25

6.1 Code 25

6.2 Design document and flow chart 26

7 Data Analysis and Discussion 28

7.1 Output Generation 28

7.2 Output Analysis 29

7.3 Compare output against hypothesis 30

7.4 Discussions 30

8 Conclusions and recommendations 31

8.1 Summary and conclusions 31

8.2 Recommendations for future studies 32

9 Bibliography 33

10 Appendices 34

10.1 Program source code with documentation 34

10.2 Input/output listing 51

10.3 Other related Material 51

4

1.1 Abstract

Consider a platform that wants to learn a personalized policy for each user, but the

platform faces the risk of a user abandoning the platform if she is dissatisfied with the

actions of the platform. For example, a platform is interested in personalizing the

number of newsletters it sends, but faces the risk that the user unsubscribes forever.

We propose a general thresholded learning model for scenarios like this, and discuss

the structure of optimal policies. We describe salient features of optimal per-

sonalization algorithms and how feedback the platform receives impacts the results.

Furthermore, we investigate how the platform can efficiently learn heterogeneity across

users by interacting with a population and provide performance guarantees.

We are implementing 3 multi armed bandit strategies and they are Epsilon

greedy,Thompson Sampling and Bayesian UCB and comparing the performances

among these strategies by calculating their mean regrets.

5

2. Introduction

2.1 Objective
The objective is to generate a threshold learning model for platforms that want to learn

a personalized policy for each user.Also , to investigate how the platform can efficiently

learn the heterogeneity across users by interacting with a population and provide

performance guarantees.

 2.2 Problem- Learning With Abandonment
If a platform wants to have a personalized policy for the user but the platform faces the

risk of the user abandoning the platform if dissatisfied with the actions of the platform.

For example, a platform is interested in personalizing the number of newsletters it

sends, but faces the risk that the user unsubscribes forever. General threshold models

are implemented for scenarios like this.

2.3 Reasons why the project is related to Data

Mining class

The goal of data mining is the extraction of patterns and knowledge from large amounts

of data .​This ​information can be used to ​increase revenues, cut costs, improve

customer relationships, reduce risks and more. In the project Learning with

Abandonment we are creating three models where different properties of datasets are

6

analyzed and with the help of the result the solution is made better .It fetches the users

data and in order to create personalised policy for the user creates personalised policy

generate threshold learning model.For example in one of the models with the help of

user feedback the model is being continuously improved.

Also the paper was presented in ICDM 2018 in Data Mining conference.

2.4 Why other approach is not good
In the paper there is implementation of 3 strategies but we are exploring more

strategies.

We are planning to implement different strategies for Learning Threshold model .We will

be implementing the following:-

● Bayesian UCB

● Thompson Sampling

● ε-Greedy Algorithm

​In the UCB algorithm, we do not assume any prior on the reward distribution and

therefore we have to rely on Hoeffding's Inequality for a very generalized estimation. In

Bayesian UCB able to know the distribution upfront, we would be able to make better

bound estimation.Thompson is more optimized for maximizing long-term overall payoff.

7

2.5 Why we think our approach is better

The paper is restricted to fewer approaches for the Learning Threshold model .We are

exploring more strategies and we will be comparing which strategy is better .

In the UCB algorithm, we do not assume any prior on the reward distribution and

therefore we have to rely on Hoeffding's Inequality for a very generalized estimation. In

Bayesian UCB able to know the distribution upfront, we would be able to make better

bound estimation.

Epsilon Greedy algorithm is the greediest of all the multi armed bandit algorithms. We

keep the value of epsilon between 0 and 1. The higher the value of epsilon the

algorithm promotes more exploration. We aim to follow this strategy in the beginning to

identify the set of actions based on the users thresholds and later on reduce the value

of the epsilon to reduce the risk of abandonment and we aim to identify different

structures in the personalized policies.

The Thompson sampling is a more principled approach and helps us to yield and

identify more optimal results in marginal cases. We sample one possible success rate

from the beta distribution that corresponds to each variant for each new contact, and

assign the contact to the variant with the largest sampled success rate. The more data

points we've observed, the more confident we'll be about the true success rate, and as

we collect more data, the sampled success rates will be increasingly close to the real

8

rate.So our aim is to explore different strategies to compare the differences among

them.

2.6 Area or scope of investigation

There are directions of further research:-

Abandonment models​- users playing a learning strategy herself, comparing this

platform to one or multiple outside options. In this scenario, the user and platform are

simultaneously learning about each other.

User information​- User activity seems like an important signal of her preferences.

Models that are able to incorporate such information and are able to infer the

parameters from data are beyond the scope of this work but an important direction of

further research

Empirical analysis- This work focuses on theoretical understanding of the

abandonment model, and thus ignores important aspects of a real world system. We

believe there is a lot of potential to gain additional insight from an empirical perspective

using real-world systems with abandonment risk.

9

3.Theoretical Bases And Literature

Review

3.1 Definition Of The Problem

Machine learning algorithms are present in almost every area, humans are

communicating widely with machines either knowingly or unknowingly. It is important for

these algorithms to learn continuously and optimize themselves to provide a better

customer experience.

The problem we are solving is the risk of abandonment of a platform by the user, if the

platform is acting against the users preference. Therefore the algorithms designed by

the platform needs to ensure that they are not losing any of its customers.

The risk of losing customers is faced by many platform like online content creators like

news agencies, they could lose their customers by sending way too many mails, or a

platform that is optimizing the energy consumption can become so stringent in its

policies so the customer might abandon the platform, so it is very important for a

platform to optimize its learning strategies.

We concentrate in this research on gaining insight into the structure of optimal learning

approaches in these environments. We are particularly interested in understanding

10

when such strategies take on a “simple” structure and focus on that throughout the

project.

3.2 Related Research To Solve The Problem

The learning with abandonment problem is quite unique, and we are aware of only one

prominent work that addresses the similar scenario. Apart from this work, Lu et al. 2017

also models the customer abandonment problem using two actions which are classified

as the safe action and the risky action. This difference leads to different kinds of results

as that of our work.

Our problem appears to be related to many reinforcement learning problems due to the

dynamic structure of both the problems. However it is to be noted that there are many

significant differences.

Another related work is on safe reinforcement learning, where we need to stay clear of

catastrophic states, unlike the safe reinforcement learning, in our problem avoiding

abandonment is not set as a hard constraint.

3.3 Advantage/Disadvantage Of Those Research

Those researches in the paper for finding out a set of actions that minimizes the risk of

users abandoning the platform are mostly focusing on UCB, MOSS index of the multi

armed bandit strategy.

11

The advantages of those researches is that they are able to observe how constant

policies are optimal under fixed threshold and independent threshold models, also they

have shown that under small perturbations constant policies are more optimal.

The Disadvantages of the research is that the research is only focusing on UCB, MOSS

and explore exploit strategy. There are more multi armed bandit strategies that need to

be explored further and we are focusing our research on Bayesian UCB, Thompson

sampling and Epsilon Greedy sampling.

Also,additional user information in terms of covariates is not considered in the paper For

example, in the notification example, user activity seems like an important signal of her

preferences

3.4 Our Solution To Solve This Problem

We are approaching the problem with three different models which helps us to develop insight

into the structure of optimal learning strategies in setting up personalized policies. We are

particularly interested in understanding when such strategies take on a “simple” structure.

The models used are:

3.4.1 Threshold model

In this model we consider a platform that interacts with only a single user over time. The

user has a threshold θ drawn from a distribution F, and at each time t = 0, 1, 2, . . . At

each time t ,the platform chooses an action xt . If the chosen action xt ever exceeds the

12

threshold θ, the user abandons the platform; otherwise, the user continues to use the

platform , and the platform earns some reward dependent on the xt chosen by the

platform.

In this model we consider the case where the distribution F and the reward function are

known, and the challenge is finding an optimal strategy for a given new user. For

finding the optimal strategy we consider the problem of maximizing the expected

discounted reward by the platform. We might expect that the optimal policy is increasing

and depends on the discount factor: also, we might try to serve the user at increasing

levels of input xt as long as the user does not abandon the platform .However, the main

result shows this is not exactly the case, the static policy of maximizing one-step reward

is optimal for this problem. It is because the user abandons if the threshold is ever

crossed, and then trying to actively learn the threshold is not helpful anymore.

3.4.2 Learning thresholds

In this model we consider the problem of how to adapt the results when F and/or the

reward function are unknown. In this case the model tries to learn the threshold over

multiple user arrivals.

We concentrate our attention on the fixed threshold model and consider a setting where

n users arrive sequentially, each with a fixed threshold u (u = 1, ... ,n) from the unknown

distribution F with support on [0,1]. In order to highlight the importance of learning from

13

users over time , we find a stylised environment where the platform communicates with

one user at a time, agreeing on all activities and monitoring the effects for that user

before the next user arrives. We consider a proposed algorithm that uses a policy that is

constant to each user. Additionally, we assume that the Rt(x) incentives are bounded

between 0 and 1, but otherwise derived from an arbitrary distribution depending on x.

We test the performance of learning algorithms against the oracle that has total

knowledge of the threshold distribution F and the reward function r, but no access to

random variables realizations.

3.4.3 Feedback

The third model is a more general model with “soft” abandonment. In this case the user

might not abandon the platform after a negative experience, but continue with the

platform with some probability. We characterize the structure of an optimal policy to

maximize expected discounted reward on a per-user basis; in particular, we find that the

policy adaptively experiments until it has sufficient confidence, and then commits to a

static action. We empirically investigate the structure of the optimal policy as well.

We are extending the concept as follows to integrate customer input. Assume that if the

current action xt reaches the threshold (i.e., xt > t), then with probability p we obtain no

reward but that the user persists, and with probability 1 − p the user leaves. As before

the aim is to optimize discounted reward anticipated. Even when the threshold is

reached the platform does not obtain a reward, the question is non trivial even though p

14

= 1. We limit our focus to the single threshold model, where a single one is drawn and

then set for all periods of time.

3.5 Where our Solution Different From Others

As most of the related studies are way different from our research area it is difficult to

exactly map the advantages and disadvantages of those works from ours.

As the Lu et al. 2017 models the customer abandonment problem using two actions

which are classified as the safe action and the risky action. This difference leads to

different kinds of results as that of our work.

Our model has many differences as that of reinforcement learning. The main focus of

our work is developing personalized experience for each user, which when viewed

through the perspective of reinforcement learning corresponds to having only single

episodes or users to learn, which is independent of other users or episodes. On the

other hand, in reinforcement learning, the learning is based on multiple episodes. These

differences produce novel challenges in abandonment learning.

Also our work is much different from safe reinforcement learning, where we need to stay

clear of catastrophic states, unlike the safe reinforcement learning, in our problem

avoiding abandonment is not set as a hard constraint.

The paper is limited to less solutions to the learning threshold model. We are testing

more strategies and we will be contrasting the best strategy.

15

We don't assume any prior incentive distribution in the UCB algorithm and so we have

to rely on Hoeffding 's Inequality for a very simplified estimation. We 'd be able to make

better bound predictions at Bayesian UCB in order to learn the distribution beforehand.

The Epsilon Greedy algorithm is the greediest of all algorithms for multi-armed bandit

algorithms. We hold the value of the epsilon from 0 to 1. The higher the epsilon value

the algorithm supports more exploration. In the beginning, we intend to adopt this

approach to define the collection of behaviors depending on the consumer thresholds

and then to minimize the importance of the epsilon to reduce the probability of failure

and we strive to identify specific mechanisms in the custom policies.

In intermediate cases, the Thompson sampling is a more rational approach and lets one

produce and classify more desirable tests. We sample one potential success score for

each new contact from the beta distribution, which applies to each variant, and assign

the contact to the variant with the lowest sampled success rate. The more data points

we have collected, the more sure we can be regarding the actual success rate, and as

we collect more evidence, the measured success rates will be steadily similar to the real

result.

3.6 Why our Solution Is Better

Our solution is better because we are further exploring the learning strategies proposed

in the paper by implementing more multi armed bandit strategies like epsilon greedy

algorithm, Thompson sampling and Bayesian UCB algorithm.

16

In the UCB algorithm, we do not assume any prior on the reward distribution and

therefore we have to rely on Hoeffding's Inequality for a very generalized estimation. In

Bayesian UCB able to know the distribution upfront, we would be able to make better

bound estimation

Epsilon Greedy algorithm is the greediest of all the multi armed bandit algorithms. We

keep the value of epsilon between 0 and 1. The higher the value of epsilon the

algorithm promotes more exploration. We aim to follow this strategy in the beginning to

identify the set of actions based on the users thresholds and later on reduce the value

of the epsilon to reduce the risk of abandonment and we aim to identify different

structures in the personalized policies.

The Thompson sampling is a more principled approach and helps us to yield and

identify more optimal results in marginal cases. We sample one possible success rate

from the beta distribution that corresponds to each variant for each new contact, and

assign the contact to the variant with the largest sampled success rate. The more data

points we've observed, the more confident we'll be about the true success rate, and as

we collect more data, the sampled success rates will be increasingly close to the real

rate.

17

4. Hypothesis (or goals)

The goal is to develop a general threshold learning model for scenarios like

personalizing the number of newsletters it sends to customers so that the user does not

abandon the platform and discuss the structure of optimal policies.

We are implementing different strategies in the model and compare the performances

among them

4.1 Single/multiple hypothesis

​We are implementing different strategies in the model to develop a general threshold

learning model for scenarios like personalizing the number of newsletters it sends to

customers so that the user does not abandon the platform and discuss the structure of

optimal policies.

Three different strategies have been implemented in the paper .They are

● UCB

● MOSS

● Explore exploit strategy

We are implementing three more :-

● Bayesian UCB

● Thompson Sampling

18

● ε-Greedy Algorithm

Our goal is to compare the performance of different strategies.

and compare the performances among them.

4.2 Positive or negative hypothesis

As Bayesian UCB, Epsilon greedy algorithm and Thompson sampling both fall under

multi-armed bandit problem and each of these has different rates of discovery vs

exploitation strategy both of these algorithms would operate in the case of

abandonment learning, but the findings could vary greatly depending on the parameter

values and could lead to several different outcomes. However they are guaranteed to

generate results for each learning method from which we can draw suitable conclusions

and equate them with the implementation of the author.

5. Methodology

5.1 How to generate/collect input data

The problem makes various assumptions for the input parameters like number of the

users, the users thresholds and also about the distribution used for choosing an action

at time t and and the reward function which produces the rewards for the platform based

19

on the actions performed by the user. All the assumptions made will be documented

and will be added along with the code setup.

5.2 How to solve the problem

To solve the problem of a platform learning a set of actions and not risk the user

abandoning the platform we try out three multi armed bandit algorithms which are

1. Bayesian UCB

2. Thompson Sampling

3. ε-Greedy Algorithm

By applying these algorithms we are trying to identify learning strategies for the platform

without the user abandoning the platform in between. All these algorithms are

explained in the coming section 5.2.1

5.2.1 Algorithm Design

The algorithms used in the project are:

1. Bayesian UCB

This algorithm does not assume any prior reward functions and we depend on

Hoeffding's Inequality for the reward function. The equation for Hoeffding’s

Inequality is given below.

20

Let X​1​,…,X​t be i.i.d. (independent and identically distributed) random variables

and they are all bounded by the interval [0, 1]. The sample mean is = 1/t Xt

 Then for u > 0, we have:∑
t

τ=1
Xt

Given one target action a, let us consider:

rt(a) as the random variables,

Q(a) as the true mean,

Q̂ t(a) as the sample mean,

And u as the upper confidence bound, u=Ut(a)

Then we have,

We want to pick a bound so that with high chances the true mean is below the

sample mean plus the upper confidence bound. Thus e−2tUt(a)2 should be a

small probability. Let’s say we are ok with a tiny threshold p:

Thus,

21

2. Epsilon Greedy Algorithm
Most of the time, the ​ε​-greedy algorithm takes the best action, but occasionally

does random exploration. According to past experience, the action value is

estimated by averaging the rewards associated with the target action a which we

have observed to date (up to the current time step t):

where ,

𝟙 is a binary indicator function

Nt(a) shows how many times the action a has been selected till then

For example, if we have a problem with two actions – A and B, the epsilon

greedy algorithm works as shown below:

22

With probability 1- epsilon,we choose action with maximum value (argmaxa

Qt(a))

With probability epsilon – we randomly choose an action from a set of all actions

3. Thompson Sampling

In Thompson sampling at each time step t, we select an action a according to the

probability that a is optimal:

where π(a|ht) is the probability of taking action a given the history ht.

It is normal to conclude that Q(a) follows a Beta distribution for the Bernoulli

bandit, since Q(a) is basically the probability of success in Bernoulli distribution.

The Beta(α, β) value is inside the interval [0 , 1] α and β refer to the counts when

we have successfully or failed to get a reward respectively.

5.2.2 Language used

The Language used is python 3 and above. The libraries used for the project are

1. Matplotlib

2. Scipy

3. Numpy

23

4. Collections

5. Math

6. Random

7. Time

5.2.3 Tools used

The tools used in this project are

1. Jupyter Notebook

2. Anaconda Navigator

5.3 How to generate output

The output can be generated inline by running all the blocks of code in the jupyter

notebook one after the other after installing all the required libraries.

The required libraries are:

1. Matplotlib

2. Scipy

3. Numpy

4. Collections

5. Math

6. Random

7. Time

24

5.4 How to test against hypotheses

We will validate the things learned from our algorithm against the authors work and

observations. We will draw up meaningful conclusions based on our observations and

see whether we were able to improve the learning strategies used by the platform.

Since our model has no quantitative output we are unable to come up with exact

quantitative measurements.

5.5 Proof of correctness

As Bayesian UCB, Epsilon greedy algorithm and Thompson sampling all comes under

multi armed bandit problem and each of these has different level of exploration vs

exploitation strategy all these algorithms will work in the case of learning with

abandonment, however the results could vary significantly based on the parameter

values and might lead to some different results. However they are guaranteed to

produce patterns for each learning strategy from which we can make appropriate

conclusions and compare it with the author's implementation​.

6. Implementation

6.1 Code

Code in Appendices 10.1

25

6.2 Design Document And Flowchart

6.2.1 Design Document

6.2.1.1 Overview of the Design
The learning with abandonment system is developed in python3 using the jupyter

notebook. The project implementation tries to understand the consequences that occur

when a user abandons a platform in between and how the platform can learn from this

and develop a series of actions that can effectively interact with the user without

causing any displeasure or understanding the patience level of each user. The project

tries to implement different multi armed bandit algorithms which comes under the

reinforcement learning strategy and tries to learn different structures observed and

make meaningful conclusions.

6.2.1.2 The Scope of the project
The scope of the job lies in understanding how each multi armed algorithm, namely

Bayesian UCB, Epsilon greedy algorithm and Thompson sampling works under the

predefined learning scenario of Learning Threshold works and draw meaningful

conclusions. The conclusions are drawn from mean regrets produced by each different

algorithm and analyse which algorithm gives the best performance.

26

6.2.1.3 Deliverables
The deliverables of our project is a jupyter notebook which shows all the

outputs(graphs) we have generated as a part of the project implementation

6.2.2 Flowchart

27

7. Data Analysis And Discussion

7.1 Output Generation

We have implemented 3 multi armed bandit strategies and used a simulation setting for

obtaining the output. In the simulation we are computing the best action value and the

value obtained when each of the three multi armed bandit strategies is used. We

compare the obtained results with the best action value to calculate the mean regret

observed for each of the strategies.

We are giving the three policies as input to our abandonment simulation method and

calculate the mean regret for each policy by comparing it with the best action value

obtained in each of the cases.

Finally to have a better visualization of the outputs we plot the mean regrets as graphs

where the x-axis represents the time t, at which a platform performs an action and

y-axis represents the regret obtained in each of the cases. We also output the mean

regret observed in each of the strategies.

28

7.2 Output Analysis

All the three graphs are analysed .Cumulative regret paths with regret on y axis and

time on x axis are plotted .

Out of three strategies implemented it can be seen that epsilon greedy algorithm has

least regret of 42.9

In the Epsilon-Greedy algorithm random selection between exploration and exploitation

happens to balance exploration and exploitation.

In Bayesian UCB prior information about the distribution of rewards unlike UCB

algorithm.We are getting regret=319.3 for Bayesian UCB .

In Thompson sampling at each time step t, we select an action a according to the pr

probability that a is optimal.

We are getting regret =55.2 for Thompson Sampling.

Out of the three strategies we have implemented ,Epsilon greedy has least regret and

Bayesian UCB has the highest regret.

Please find below the graphs for different strategies.

29

7.3 Compare Output Against Hypothesis

Our hypothesis was to implement different strategies in the model and compare the

performances among them.From the output analysis we see that epsilon greedy has

least regret .Bayesian UCB has the highest regret of 319.3 and Thompson UCB has a

regret of 55.2.

7.4 Discussion

The three strategies which have been mentioned in the research paper are UCB ,MOSS

and explore exploit strategy.UCB has mean regret of 104.9,MOSS has mean regret of

79.7 and explore exploit has mean regret of 36.4.The strategies which we have

30

implemented are Epsilon greedy with mean regret of 42.9 ,Thompson Sampling with

mean regret of 55.2 and Bayesian UCB with mean regret of 319.3.Out of all the six

strategies explore exploit has the least mean regret.

8. Conclusions And Recommendations

8.1 Summary And Conclusions

Our project revolves around different multi armed bandit algorithms which come under

the reinforcement learning algorithms to understand when a user will abandon a

platform and how the platform should continue its learning process/optimizations for

serving the future users better and prevent users from abandoning the platform.

We have tried three multi armed bandit algorithms to understand which algorithm gives

better performance. The performance of the algorithm is based primarily on the mean

regret values produced by the algorithm and graphs are plotted against the mean

regrets.

From our research we came to the conclusion that Epsilon greedy algorithm produced

the least mean regret while bayesian UCB algorithm produced the highest mean regret.

We choose the mean regret to measure the performance of the algorithms because it

shows how much an algorithm deviates from the actual value.

31

From the authors implementation and our own research we have come to the

conclusion that generally the explore exploit strategy produces better results when

compared to other strategies when performance is measured based on the least mean

regret produced by the algorithm.

8.2 Recommendations For Future Studies

The recommendation for future studies which are outside the scope of our project are:

8.2.1 Abandonment models

Firstly, attention should be extended to more nuanced device abandonment behaviour.

This might take several ways, including a cumulative budget for resilience that gets

drained when the threshold is reached. Another paradigm is that of a user themselves

performing a learning game, contrasting this method to one or more external

alternatives. In this case, both the customer and the application think about one another

at the same time.

8.2.2 User information

Second , in terms of covariates, we did not allow additional user knowledge. User

behavior seems like a major indication of her desires in the notification case. Models

32

capable of integrating such knowledge and capable of inferring the data parameters are

outside the scope of this study but are a significant path for future analysis.

8.2.3 Empirical analysis

This work focuses on the theoretical interpretation of the concept of abandonment, while

missing essential facets of a structure in real life. We assume there is considerable

scope to obtain more information from an observational viewpoint using real-world

structures with possibility of abandonment.

9. Bibliography

[1]Johari, Ramesh, and Sven Schmit. “Learning with Abandonment.” Accessed August 28,
2020. https://arxiv.org/pdf/1802.08718v1.pdf.

[2]Schmit, Sven. “GitHub - Schmit/Learning-Abandonment: Repo Accompanying Learning with
Abandonment.” ​GitHub​, https://github.com/schmit/learning-abandonment. Accessed 28 Aug.
2020.

[3]Galbraith, Byron. “GitHub - Bgalbraith/Bandits: Python Library for Multi-Armed Bandits.”
GitHub. Accessed August 28, 2020. https://github.com/bgalbraith/bandits.

[4]Bubeck, Sébastien. “Bandit Theory, Part I | I’m a Bandit.” I’m a bandit, May 11, 2016.
https://blogs.princeton.edu/imabandit/2016/05/11/bandit-theory-part-i/.

[5]I’m a bandit. “Bandit Theory, Part II | I’m a Bandit,” May 13, 2016.
https://blogs.princeton.edu/imabandit/2016/05/13/bandit-theory-part-ii/.

33

10. Appendices

10.1 Program Source Code With Documentation

#!/usr/bin/env python
coding: utf-8

In[1]:

import​ collections, math, random, time

import​ matplotlib.pyplot ​as​ plt
get_ipython().run_line_magic(​'matplotlib'​, ​'inline'​)
get_ipython().run_line_magic(​'config'​, ​"InlineBackend.figure_format = 'svg'"​)

from​ scipy.stats ​import​ norm

import​ numpy ​as​ np

In[2]:

def​ bernoulli(p): ​return​ ​1​*(random.random() < p)

def​ plogpq(p, q):
 ​if​ p == ​0​:
 ​return​ ​0
 ​if​ q == ​0​:
 ​return​ math.inf
 ​return​ p * math.log(p/q)

34

def​ kldiv(p, q):
 ​return​ plogpq(p, q) + plogpq(​1​-p, ​1​-q)

def​ newton(f, fp, x, eps=​1e-5​, projection=​lambda​ x: x):
 ​while​ True:
 xn = projection(x - f(x)/fp(x))
 ​print​(xn)
 ​if​ abs(xn - x) < eps:
 ​return​ xn
 x = xn

def​ proj_unit(x): ​return​ max(​0​, min(​1​, x))
def​ bisect_fn(fn, lowerbound, upperbound, eps=​1e-4​):
 ​if​ fn(lowerbound) > ​0​:
 ​return​ bisect_fn(​lambda​ x: -fn(x), lowerbound, upperbound)

 ​assert​ fn(upperbound) > ​0​, ​"LB and UB must have opposing signs"

 ​while​ abs(upperbound - lowerbound) > eps:
 midpoint = lowerbound/​2​ + upperbound/​2
 ​if​ fn(midpoint) > ​0​:
 upperbound = midpoint
 ​else​:
 lowerbound = midpoint

 ​return​ lowerbound/​2​ + upperbound/​2

In[3]:

History = collections.namedtuple(​"History"​, [​'s'​,​'n'​])
#Our history array
Hstry = []
count = [​0​]

35

def​ update_history(history, outcome):
 Hstry.append(outcome)
 count[​0​] += ​1
 ​return​ History(history.s + outcome, history.n + ​1​)

def​ mean(history):
 ​if​ history.n > ​0​:
 ​return​ history.s / history.n
 ​return​ ​0

def​ ucb_index(history, t, K, alpha=​2​):
 ​if​ history.n == ​0​: ​return​ ​1e10​ + random.random()
 ​return​ mean(history) + math.sqrt(alpha * math.log(t) / (​2​ * history.n))

def​ byucb_index(history, t, K, c=​1.5​,hstry=Hstry):
 ​if​ history.n == ​0​: ​return​ ​1e10​ + random.random()
 std = np.std(history.n)
 ​return​ (c*std)/math.sqrt(history.n/t)

def​ moss_index(history, t, K):
 ​if​ history.n == ​0​: ​return​ ​1e10​ + random.random()
 ​return​ mean(history) + math.sqrt(max(math.log(t/(K*history.n)), ​0​) /
history.n)

def​ greedy_index(history, t, K):
 ​if​ history.n == ​0​: ​return​ ​1e10​ + random.random()
 ​return​ mean(history)

def​ thompson_index(history, t, K, a=​1​, b=​1​):
 ​return​ random.betavariate(a + history.s, b + history.n - history.s)

def​ klucb_index(history, t, K, c=​0​):
 ​if​ history.n == ​0​: ​return​ ​1e10​ + random.random()
 phat = mean(history)

 ​if​ phat == ​1​:

36

 ​return​ ​1

 f = ​lambda​ q: kldiv(phat, q) - (math.log(t) + c * math.log(math.log(t))) /
history.n

 ​# Based on bisection
 ​return​ bisect_fn(f, phat, ​1​)

 ​# Based on Newton's method
 ​# fp = lambda q: -phat/max(1e-5, q) + (phat-1)/max(q-1, 1e-5)
 ​# return newton(f, fp, phat/2 + 1/2, projection=proj_unit)

def​ index_policy(histories, index, *args):
 t = sum(history.n ​for​ history ​in​ histories) + ​1
 K = len(histories)
 ​return​ max(range(K), key=​lambda​ i: index(histories[i], t, K, *args))

def​ ucb(histories): ​return​ index_policy(histories, ucb_index)
def​ moss(histories): ​return​ index_policy(histories, moss_index)
def​ greedy(histories): ​return​ index_policy(histories, greedy_index)
def​ thompson(histories): ​return​ index_policy(histories, thompson_index)
def​ klucb(histories): ​return​ index_policy(histories, klucb_index)
def​ byucb(histories): ​return​ index_policy(histories, byucb_index)

In[4]:

def​ max_concave(f, xmin=​0​, xmax=​1​, eps=​1e-10​):
 ​""" find the maximum of a 1d concave function on a bdd interval"""
 m = xmin/​2​ + xmax/​2
 ​if​ m - xmin < eps:
 ​return​ m

 fmin, fm, fmax = f(xmin), f(m), f(xmax)

37

 ​if​ fm > fmin ​and​ fm > fmax:
 ​return​ max((max_concave(f, m, xmax), max_concave(f, xmin, m)),
 key=​lambda​ x: f(x))

 ​if​ fm < fmin:
 ​return​ max_concave(f, xmin, m)

 ​return​ max_concave(f, m, xmax)

In[5]:

def​ bandit(policy, pull, K, T):
 histories = [History(​0​, ​0​) ​for​ _ ​in​ range(K)]
 actions = []

 ​for​ t ​in​ range(T):
 action = policy(histories)
 outcome = pull(action)
 histories[action] = update_history(histories[action], outcome)
 actions.append(action)

 ​return​ actions, histories

def​ best_action_value(F, r):
 p = ​lambda​ x: r(x) * (​1​-F(x))

 xstar = max_concave(p)
 M = p(xstar)
 ​return​ xstar, M

def​ abandonment_pulls(K, F, r):
 ​def​ pull(action):
 x = (action + ​1​)/K
 ​return​ r(x) * bernoulli(​1​-F(x))

38

 ​return​ pull
def​ listify(gen):
 ​"Convert a generator into a function which returns a list"
 ​def​ patched(*args, **kwargs):
 ​return​ list(gen(*args, **kwargs))
 ​return​ patched

@listify
def​ abandonment_regret(actions, F, r, M=​0​):
 p = ​lambda​ x: r(x) * (​1​-F(x))

 R = ​0
 ​for​ action ​in​ actions:
 R += M - p(action)
 ​yield​ R

In[6]:

def​ plot_regrets(regrets, ax=​None​, title=​"Regret plot"​, style=​"k-"​):
 ​if​ ax ​is​ ​None​:
 f, ax = plt.subplots()

 nrep = len(regrets)
 T = len(regrets[​0​])

 ​for​ R ​in​ regrets:
 line, = ax.plot(R, style, alpha=​0.2​ + ​1​/nrep)

 line.set_label(title)

 ax.set_title(title)
 ax.set_xlabel(​"mean regret: {:.1f}"​.format(sum(R[​-1​] ​for​ R ​in​ regrets)/nrep))
 ax.set_xlim(​0​, T)

39

def​ plot_actions(actions, ax=​None​):
 ​if​ ax ​is​ ​None​:
 f, ax = plt.subplots()

 ax.imshow(actions.T, aspect=​"auto"​)
 ax.tick_params(axis=​'both'​,
 which=​'both'​,
 bottom=​'off'​,
 top=​'off'​,
 left=​'off'​,
 labelbottom=​'off'​,
 labelleft=​'off'​)

In[7]:

def​ abandonment_simulation(T, K, F, r, policy, nrep=​1​, action_agg=​20​):
 pull = abandonment_pulls(K, F, r)
 regrets = []
 action_matrix = np.zeros((T//action_agg, K))

 xstar, M = best_action_value(F, r)

 ​for​ _ ​in​ range(nrep):
 actions, histories = bandit(policy, pull, K, T)
 R = abandonment_regret([(i​+1​)/K ​for​ i ​in​ actions], F, r, M)

 ​# record regret
 regrets.append(R)
 ​# record actions
 ​for​ t, a ​in​ enumerate(actions):
 action_matrix[t//action_agg][a] += ​1

40

 ​return​ regrets, action_matrix

In[8]:

import​ heapq
import​ bisect

import​ numpy ​as​ np

In[9]:

class​ ECDF:
 ​def​ __init__(self):
 self.data = []

 ​def​ observe(self, x):
 bisect.insort(self.data, x)

 ​def​ evaluate(self, x):
 n = len(self.data)
 ​if​ n == ​0​:
 ​return​ ​0.5
 ​return​ bisect.bisect(self.data, x) / n

 ​def​ ecdf(self):
 n = len(self.data)
 ​if​ n < ​200​:
 ​return​ ((x, i/n) ​for​ i, x ​in​ enumerate(self.data))
 ​return​ ((x, self.evaluate(x))
 ​for​ x ​in​ np.linspace(self.data[​0​], self.data[​-1​], ​100​))
 ​def​ plot(self):
 x, e = zip(*self.ecdf())

41

 f, ax = plt.subplots()
 ax.plot(x, e)
 ax.set_title(​"Empirical CDF"​)
 ax.set_xlabel(​r"x"​)
 ax.set_ylabel(​r"$\hat F(x)$"​)

In[10]:

def​ oracle(T, r, sampler=random.random):
 ecdf = ECDF()
 actions = []
 ​for​ _ ​in​ range(T):
 action = max(np.linspace(​0​, ​1​, random.randint(​100​, ​200​)),
 key=​lambda​ x: r(x) * (​1​-ecdf.evaluate(x)))
 threshold = sampler()

 ​# cheat
 ecdf.observe(threshold)
 actions.append(action)

 ​return​ actions, ecdf

def​ oracle_simulations(oracle, T, F, r, sampler, nrep=​1​):
 _, M = best_action_value(F, r)

 regrets = []
 ​for​ _ ​in​ range(nrep):
 actions, ecdf = oracle(T, r, sampler=sampler)
 R = abandonment_regret(actions, F, r, M)
 regrets.append(R)

 ​return​ regrets
def​ explore_exploit(T, r, alpha=​1​/​2​, sampler=random.random):
 ecdf = ECDF()

42

 actions = []
 ​for​ t ​in​ range(T):
 ​if​ t <= ​20+2​*T**alpha:
 action = ​0
 threshold = sampler()
 ecdf.observe(threshold)
 ​else​:
 action = action = max(np.linspace(​0​, ​1​, random.randint(​100​, ​200​)),
 key=​lambda​ x: r(x) * (​1​-ecdf.evaluate(x)))
 actions.append(action)

 ​return​ actions, ecdf

In[11]:

r = ​lambda​ x: x
F = ​lambda​ x: x
sampler = ​lambda​: random.random()

xstar, M = best_action_value(F, r)

f, ax = plt.subplots(​1​, ​3​, figsize=(​8​, ​3​))

T = ​2000
K = int(​2​ * max(​1​, (T / math.log(T))**​0.25​ + ​1​))
print​(​"K = {}"​.format(K))

nrep = ​50

algos
for​ i, policy ​in​ enumerate([ucb, klucb]):
 ​print​(policy)
 regrets, actions = abandonment_simulation(T, K, F, r, policy, nrep=nrep)
 plot_regrets(regrets, ax=ax[i], title=policy.__name__)

43

explore-exploit
regrets = oracle_simulations(explore_exploit, T, F, r, sampler, nrep)
plot_regrets(regrets, ax=ax[​-1​], title=​"explore-exploit"​)

for​ a ​in​ ax:
 a.set_ylim(​0​, ​110​)
 a.set_xlim(​0​, T)

f.tight_layout()

In[12]:

r = ​lambda​ x: x
F = ​lambda​ x: x
sampler = ​lambda​: random.random()

xstar, M = best_action_value(F, r)

f, ax = plt.subplots(​1​, ​4​, figsize=(​8​, ​3​))

T = ​2000
K = int(​2​ * max(​1​, (T / math.log(T))**​0.25​ + ​1​))
print​(​"K = {}"​.format(K))

nrep = ​50

algos
#moss,greedy,
for​ i, policy ​in​ enumerate([moss,greedy,thompson,byucb]):
 ​print​(policy)
 regrets, actions = abandonment_simulation(T, K, F, r, policy, nrep=nrep)
 plot_regrets(regrets, ax=ax[i], title=policy.__name__)

for​ a ​in​ ax:
 a.set_ylim(​0​, ​110​)

44

 a.set_xlim(​0​, T)

f.tight_layout()

In[13]:

def​ linear_grid(a, b, steps):
 ​# this is an interior linear grid that does not contain a or b
 stepsize = (b-a)/steps
 ​return​ [round(a + (i​+0.5​) * stepsize, ​3​) ​for​ i ​in​ range(steps)]

value iteration operator
def​ l2_dist(a, b):
 ​return​ sum((v - b[x][​0​])**​2​ ​for​ x, (v, _) ​in​ a.items()) / len(a)

def​ vi(initial, operator, converged):
 ​def​ _vi(old, new):
 ​if​ converged(old, new):
 ​return​ new
 ​return​ _vi(new, operator(new))

 ​return​ _vi(initial, operator(initial))

In[14]:

some distribution functions
def​ Funif(x):
 ​return​ max(min(x, ​1​), ​0​)

def​ Fbetab(x, b):
 ​return​ ​1​ - (​1​-x)**b

some reward functions
linear = ​lambda​ x: x

45

neglog = ​lambda​ x: -math.log(​1​-x)

steps = ​201

In[15]:

def​ Vop(F, grid, r=​lambda​ x: x, beta=​1​, discount=​0.9​):
 ​def​ Fcond(y, a, b):
 nom = F(y) - F(a)
 denom = F(b) - F(a)
 ​if​ denom > ​0​:
 ​return​ nom / denom
 ​return​ ​0

 ​def​ _Vop(xvx):
 ​def​ v(y, a, b):
 prob_success = ​1​-Fcond(y, a, b)
 val_success = r(y) + discount * xvx[(y, b)][​0​]
 val_fail = beta * discount * xvx[(a, y)][​0​]
 ​return​ prob_success * val_success + (​1​-prob_success) * val_fail

 ​def​ Vnew(state):
 a, b = state
 ​return​ max(((v(y, a, b), y) ​for​ y ​in​ grid ​if​ a <= y < b), default=(​0​, ​0​))

 ​return​ {state: Vnew(state) ​for​ state, Vstate ​in​ xvx.items()}

 ​return​ _Vop

In[16]:

def​ analyze_vopt(F=Funif, grid=linear_grid(​0​, ​1​, steps), reward_fn=linear,
beta=​1​, discount=​0.8​, tol=​1e-3​):

46

 vopt = compute_vopt(F, grid, reward_fn, beta, discount, tol)
_ = plot_vopt(vopt, grid, discount)
 ​return​ vopt

def​ compute_vopt(F=Funif, grid=linear_grid(​0​, ​1​, steps), reward_fn=linear,
beta=​1​, discount=​0.8​, tol=​1e-5​):
 initial = {(x, y): (​0​, ​0​) ​for​ x ​in​ grid ​for​ y ​in​ grid ​if​ x <= y}
 ​return​ vi(initial, Vop(F, grid, reward_fn, beta=beta, discount=discount),
lambda​ x, y: l2_dist(x, y) < tol)

In[17]:

extracting optimal actions

grid = linear_grid(​0​, ​1​, steps)
lb, ub = grid[​0​], grid[​-1​]

def​ action(vopt, lower, upper):
 v, y = vopt[(lower, upper)]
 ​return​ y

def​ action_tree(vopt, init_lower, init_upper):
 y = action(vopt, init_lower, init_upper)
 ​if​ y == init_lower:
 ​return​ y
 ​return​ y, action_tree(vopt, init_lower, y), action_tree(vopt, y, init_upper)

code to plot the action tree

def​ left(tree):
 ​return​ tree[​1​]

def​ right(tree):
 ​return​ tree[​2​]

def​ value(tree):

47

 ​if​ isinstance(tree, tuple):
 ​return​ tree[​0​]
 ​return​ tree

In[18]:

def​ plot_line(axes, a, b, style=​"r-"​, alpha=​1.0​, x_offset=​0​):
 axes.plot([a[​0​]+x_offset, b[​0​]-x_offset], [a[​1​], b[​1​]], style, alpha=alpha)
 axes.plot([a[​0​]], [a[​1​]], ​"k. "​)

def​ plot_node(axes, tree, index=​0​, depth=​10​, x_offset=​0​):
 ​if​ isinstance(tree, tuple) ​and​ index < depth:
 plot_line(axes, (index, value(tree)), (index​+1​, value(left(tree))), style=​"r--"​,
x_offset=x_offset)
 plot_line(axes, (index, value(tree)), (index​+1​, value(right(tree))),
style=​"g-"​, x_offset=x_offset)
axes.plot([index, index+1], [value(tree), value(left(tree))],
color="darkred")
axes.plot([index, index+1], [value(tree), value(right(tree))],
color="steelblue")
 plot_node(axes, left(tree), index​+1​, depth)
 plot_node(axes, right(tree), index​+1​, depth)
 ​else​:
 plot_line(axes, (index, value(tree)), (depth, value(tree)), style=​"k:"​,
alpha=​0.8​, x_offset=x_offset)
axes.plot([index, depth], [value(tree), value(tree)],
color="black", opacity=0.5)

def​ plot_tree(tree, width=​6​, height=​4​, depth=​10​):
 f, ax = plt.subplots(figsize=(width, height))

 ax.set_ylim(​0​, ​1​)
 ax.set_title(​"Visualization of the optimal policy tree"​)

48

 ax.set_xlabel(​"time step t"​)
 ax.set_ylabel(​"action at time t x(t)"​)

 ​for​ i ​in​ range(depth​+1​): ax.axvline(i, color=​"black"​, alpha=​0.1​)

 plot_node(ax, tree, depth=depth)
 ​return​ f, ax

def​ plot_actions(vopt, lb, ub, depth=​10​):
 tree = action_tree(vopt, lb, ub)
 c, a = plot_tree(tree, depth=depth)
 ​return​ c, a

def​ plot_vopt(vopt, grid, discount):
 vopt_list = [(a, b, v) ​for​ (a, b), (v, y) ​in​ vopt.items()]

 canvas = tp.Canvas(​500​, ​400​)
 axes = canvas.cartesian()

 axes.plot([​0​, ​1​], [​0​, ​1​])

 ​for​ lower ​in​ grid:
 sublist = [(b, (​1​-discount)*v) ​for​ a, b, v ​in​ vopt_list ​if​ a == lower ​and​ b !=
lower]
 ​try​:
 X, V = zip(*sublist)

 axes.plot(X, V, color=​"black"​, opacity=​0.5​)
 ​except​ ValueError:
 ​pass

 ​return​ canvas, axes

In[19]:

49

vopt = analyze_vopt(discount=​0.9​, beta=​0.5​)
f, ax = plot_actions(vopt, lb, ub)

In[20]:

discount = ​0.8
beta_path = [(beta,
 compute_vopt(Funif,
 linear_grid(​0​, ​1​, steps),
 reward_fn=linear,
 beta=beta,
 discount=discount,
 tol=​1e-2​))
 ​for​ beta ​in​ linear_grid(​0​, ​1​, ​31​)]

action_path = [(beta, action(vopt, lb, ub)) ​for​ beta, vopt ​in​ beta_path]
value_path = [(beta, vopt[(lb, ub)][​0​]) ​for​ beta, vopt ​in​ beta_path]

In[21]:

f, ax = plt.subplots(figsize=(​6​, ​4​))
ax.set_title(​"First action in relation to override probability"​)
ax.set_xlabel(​"probability of override"​)
ax.set_ylabel(​r"x_0: optimal action at time 0"​)

ax.set_xlim(​0​, ​1​)

x, y = zip(*action_path)
ax.plot([​0​] + list(x) , [​0.5​] + list(y), ​"k. "​)
ax.axhline(​0.5​, color=​"k"​, alpha=​0.1​)

In[]:

50

10.2 Input/Output Listing

Input-

We give the following input parameters and plot the cumulative regret paths

K-number of arms

T-Time steps

N-number of repetitions

We are giving the below values for them:-

n=50

T=2000

K=12

Output -

Cumulative regret paths with regret on y axis and time on x axis are plotted .

As discussed in the document above(Section 7) we get the following regrets

Mean regret of Epsilon greedy algorithm =42.9,thompson sampling =55.2 and Bayesian

UCB =319.3

10.3 Other Related Material

The other related materials are

51

1. Dynamic Learning of Sequential Choice Bandit Problem under Marketing Fatigue

Authors:

Junyu Cao

Wei Sun

2. Potential Good Abandonment Prediction

Authors:

Aleksandr Chuklin

Pavel Serdyukov

3. Measuring the reliability of reinforcement learning algorithms

Authors:

Stephanie C.Y. Chan

Samuel Fishman

John Canny

Anoop Korattikara

Sergio Guadarrama

52

