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Abstract: 

 

Social media is a place where users present themselves to the world, revealing 

personal details and insights into their lives. We are beginning to understand how some 

of this information can be utilized to improve the users’ experiences with interfaces and 

with one another. In this paper, we are interested in the personality of users. Personality 

has been shown to be relevant to many types of interactions; it has been shown to be 

useful in predicting job satisfaction, professional and romantic relationship success, and 

even preference for different interfaces. Until now, to accurately gauge users’ 

personalities, they needed to take a personality test. This made it impractical to use 

personality analysis in many social media domains. In this paper, we present a method 

by which a user’s personality can be accurately predicted through the publicly available 

information on their Facebook profile. We will describe the type of data collected, our 

methods of analysis, and the results of predicting personality traits through machine 

learning. We then discuss the implications this has for social media design, interface 

design, and broader domains.  
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1. Introduction: 

 

Introduction Social networking on the web has grown dramatically over the 

last decade. In January 2005, a survey of social networking websites 

estimated that among all sites on the web there were roughly 115 million 

members. Just over five years later, Facebook alone has exceeded 500 

million members. In the process of creating social networking profiles, 

users reveal a lot about themselves both in what they share and how they 

say it. Through self-description, status updates, photos, and interests, 

much of a user’s personality comes out through their profile.  

 

This paper attempts to bridge the gap between social media and 

personality research by using the information people reveal in their online 

profiles. Our core research question asks whether social media profiles can 

predict personality traits. If so, then there is an opportunity to integrate the 

many results on the implications of personality factors and behavior into the 

users’ online experiences and to use social media profiles as a source of 

information to better understand individuals. For example, the friend 

suggestion system could be tailored to a user based on whether they are 

more introverted or extroverted.  



 

 

Previous work has shown that the information in users’ Facebook profiles is 

reflective of their actual personalities, not an “idealized” version of 

themselves. This, plus a broad user base makes Facebook an ideal 

platform for studying this connection. 

 

 We administered the Big Five Personality Inventory to 279 subjects 

through a Facebook application. In the process, we gathered all the public 

data from their Facebook profiles. This was aggregated, quantified, and 

passed through a text analysis tool to obtain a feature set. Using these 

statistics describing the Facebook profile of each user, we were able to 

develop a model that can predict personality on each of the five personality 

factors to within 11% of the actual values.  

 

The ability to predict personality has implications in many areas. Existing 

research has shown connections between personality traits and success in 

both professional and personal relationships. Social media tools that seek 

to support these relationships could benefit from personality insights. 

Additionally, previous work on personality and interfaces showed that users 

are more receptive to and have greater trust in interfaces and information 

that is presented from the perspective of their own personality features (i.e. 



 

introverts prefer messages presented from an introvert’s perspective). If a 

user’s personality can be predicted from their social media profile, online 

marketing and applications can use this to personalize their message and 

its presentation. 

 

 We begin by presenting background on the Big Five Personality index and 

related work on personality and social media. We then present our 

experimental setup and methods for analyzing and quantifying Facebook 

profile information. To understand the relationship between personality and 

social media profiles, we present results on correlations between each 

profile feature and personality factor. Based on this, we describe the 

machine learning techniques used for classification and show how we 

achieve large and significant improvements over baseline classification on 

each personality factor. We conclude with a discussion of the implications 

that this work has for social media websites and for organizations that may 

utilize social media to better understand the people with whom they 

interact. 

 

 



 

1.1. Objective  
Based on one’s personality he/she may have interest in mingling with other 

personalities or may be with similar kind of personality so it varies from 

person to person. So, instead of considering only location or gender there 

are many other parameters that play important role.So the objective is to 

build a system to recommend or suggest a person to get connected with 

based on following: 

1. Based on person’s personality 

2. Based on person’s interest in getting mingle with other 

personality  

To give user a perfect suggestion / recommendation of user profiles that he 

/she will surely like and would be a great fit for him/her.  

1.2. What is the problem 
The problem is to suggest a user profile of his/her interest that he would 

like or will interest him instead of randomly picking up profiles according to 

the location of the user and the users near him, or through the ELO score 

i.e rating his profile through an separate individual algorithm and not letting 

the users know their ELO score and just suggesting users that have a 

similar ELO score. In, which case the users can edit their profile in a 



 

specific way so that their ELO score increases and they get matches 

according to that.  

1.3. Why is this a project related to this class 
In class we studied concepts like text mining, finding similarities among text 

with various algorithms. Our idea / project is to mine the data that is 

available on the social networking platforms and mine information from that 

data to try and find personality of the users. Using that derived information 

we will be able to suggest users having similar personality as him/her.  

1.4. Why other approaches are not good 
The currently present approaches present in the industry mainly use 

location based searching that happen in real time. They track the users 

when they open the application and use the user’s location of where they 

are and the person near them, if they crossed paths recently or they are in 

a particular mile radius which again is determined by the company itself. 

User has no control whatsoever who he will see or the choices and the pool 

of users who he will be choosing from. He just sees the top user near his 

location. 

 

Also, as the application tracks the user using his real time location the 

people can easily spoof their current location using a location spoofer and 



 

can make the application believe that they are somewhere else when they 

really aren’t. The other flaw in this system is that if a user switched its GPS 

location in his phone off the application won’t be able to suggest any user. 

  

Other approach that is used. Is to give a specific score to the user 

according to his/her profile. The algorithm gives a particular score that is 

also called as an ELO score to calculate attractiveness of the user. But, 

that score can be easily manipulated by modifying your profile to a better 

liking, completing every dialog box in the profile description. You will never 

be shown your ELO score and you can only see the profile of users who 

have a similar ELO score like yours for example if you’re a 7, you won’t be 

shown to 4’s but neither will you be shown to a 9.  



 

1.5. Why our approach is better 
As mentioned above the flaws in the present approach. In our approach we 

would not matter what location you are in and would not suggest users to 

match with other users on the basis of the location of the user but would 

suggest one on the basis of the personality of a user that would be 

predicted and thus would have a higher similarity ratio then what is 

currently present. Also, it wouldn’t matter if a user is in this particular 

location and if it is in other as he would get the choices based on his 

personality that would be mined through his social media handles and as 

he likes or dislikes a user his list would be constantly updated. Thus, 

increasing the chance of getting a good match. 

1.6. Statement of the problem 
There are two problems in the current system of prediction:- 

1) First being that the users only get matched with other users 

based on their real time location of where they are. 

2) The users gets matches according to their ELO score which 

can be easily altered by making some specific changes to their 

profile. 



 

1.7. Area or scope of investigation 
The area of study or the scope of investigation mainly remains on the 

personality that we can derive from the data available to us that we will get 

from the different social media handles of the user and how the data relates 

to the user. If there are more relation of the user with it’s profile from 

example: posts, photos, status updates, location updates. Thus, all the 

information matters when predicting the personality of the user. 

 

Also, the other area of study will be the methods, algorithms used to clean 

the data that will be derived from the various handles and how we 

approach it.  

 

Different machine learning algorithms will also be out area of interest as we 

are hoping to divide the data derived by personality into 5 different vectors 

also called as ‘The big five model’. Thus, then comparing the vectors of two 

different users using cosine similarity. We would also have to study the 

different ML algorithms. 

 



 

2. Theoretical bases and literature review 

2.1. Definition of the problem 
● Problem definition is  divided into two parts :  

○ Predicting personality  

○ Suggesting user profile on basis of their personality. 

 

2.2. Theoretical background of the problem 
We can say that what we post,upload and update on our social media 

platforms is an extended identity of our-self in the digital world. It is how we 

want to represent our self in a digital media. Thus it can be derived that 

what we portrait our-self in the digital world is an extended personality of 

our-self and can be related to us. Thus, proving that one’s digital 

personality in the digital world is actually one’s true personality in the real 

world. So, it can be said that what we get from the virtual world will help us 

to better understand the user and his behaviour/personality in day to day 

life. Most of the online suggestion or recommendation of user profile is 

either random or based on location/gender. Data set of status/tweets will be 

used to solve the problem.The  standard “Big Five model” in field of 

psychology is used to access personality. Every human possess five 



 

personality traits with different magnitude. Presently the most used model 

is ‘NEO Personality Inventory Revised’ (NEO PI-R). The model suggests 

that any users personality can be divided and mapped into five 

characteristics. We will get the data from the users profile picture, tweets, 

status updates, location, images, tagged photos and many more and will try 

to derive the personality of the user into the five characteristics like 

Extraversion, Neuroticism, Agreeableness, Conscientiousness and 

Openness. All of these 5 characteristics display different personality of the 

human behaviour and based on how they interact with their social media.  

Below is the description of the 5 factors: 

• Extraversion: active, friendly, talkative, energetic. 

• Neuroticism: moody, anxious, hostile, irritable. 

• Agreeableness: trusting, altruistic, sympathetic, warm. 

• Conscientiousness: ambitious, efficient, organized. 

• Openness: imaginative, curious, enthusiastic, idealistic. 

 

Based on the magnitude of above personality we will get a personality 

vector. Based on the vector we can find similarity to make suggestion for a 

user / personality and to learn more or to give more suggestion that a 

person is interested we can use its liked / disliked history and can suggest 

a perfect match for him / her. 



 

2.3. Related research to solve the problem 
 

For predicting personality, different approaches can be used like predicting 

or inferring personality from status or tweets (text mining), from profile 

pictures, from network ( user connections). Poria et al. to exploit the 

features related to psycho-linguistics, emotive words and their frequencies 

analyzed at lexical level by utilizing popular dictionaries such as Linguistic 

Inquiry and Word Count (LIWC) and Medical Research Council (MRC) to 

infer personality, apart from it  SenticNet, EmoSenticNet and ConceptNet to 

derive / infer features based on emotions. 

2.4. Advantage/Disadvantage of those research 
The Recommendation systems which currently exist make the 

recommendations based on the user’s preferences. In our literature survey, 

there are 3 approaches for recommendation: Content based filtering, 

collaborative filtering and hybrid approach.  

Content based approach involves creating a feature vector of items and 

users, calculating their similarities and use these similarities to make 

recommendations. Collaborative filtering approach uses past preferences 

of users to decide which items to recommend. Hybrid methods combine 

these approaches to make recommendations. 



 

 

● It benefits from large user bases.​ Simply put, the more people 

are using the service, the better your recommendations will 

become, without doing additional development work or relying on 

subject area expertise. 

● It’s flexible across different domains.​ Collaborative filtering 

approaches are well suited to highly diverse sets of items. 

Where content-based filters rely on metadata, collaborative 

filtering is based on real-life activity, allowing it to make 

connections between seemingly disparate items (like say, an 

outboard motor and a fishing rod) that nonetheless might be 

relevant to some set of users (in this case, people who like to 

fish). 

● It produces more serendipitous recommendations.​ When it 

comes to recommendations, accuracy isn’t always the highest 

priority. Content-based filtering approaches tend to show users 

items that are very similar to items they’ve already liked, which 

can lead to filter bubble problems. By contrast, most users have 

interests that span different subsets, which in theory can result 

in more diverse (and interesting) recommendations. 



 

● It can capture more nuance around items.​ Even a highly 

detailed content-based filtering system will only capture some of 

the features of a given item. By relying on actual human 

experience, collaborative filtering can sometimes recommend 

items that have a greater affinity with one another than a strict 

comparison of their attributes would suggest. Compared to 

collaborative filtering, there are some advantages and 

drawbacks of content-based filtering that we should understand.  

The following are the advantages and the disadvantages of the research 

done: 

Advantages:- 

  

■ The advantages being almost all the necessary data 

needed to predict the personality of the user is available 

through the APIs or on other websites.  

■ Also, because of the recent leaks(cambridge analytica) 

the data is easily available. 

■ User independence: collaborative filtering needs other 

users' rating to find the similarity between the users and 

then give the suggestion. Instead, content-based method 



 

only have to analyze the items and user profile for 

recommendation. 

■ Transparency: collaborative method gives you the 

recommendation because some unknown users have the 

same taste like you, but content-based method can tell 

you  they recommend you the items based on what 

features.  

■ No cold start: opposite to collaborative filtering, new 

items can be suggested before being rated by a 

substantial number of users. 

 

Disadvantages:-  

 

■ The disadvantage being to predict the data using all the 

user data will not be easily done and also many of the 

user data would need to be cleaned. There may be many 

anomalies in the data like missing information, fake 

informations. 

■ Also, many times it happens that as a user progresses 

through the different years in his life cycle, example: 

child, teen, adult. His personality changes thus, if we 



 

have a user data available when he was a teen it may 

not be relevant when he becomes an adult and so on.  

■ Limited content analysis: if the content does not contain 

enough information to discriminate the items precisely, 

the recommendation will be not precisely at the end. 

■ Over-specialization: content-based method provides a 

limit degree of novelty, since it has to match up the 

features of profile and items. A totally perfect 

content-based filtering may suggest nothing "surprised."  

■ New user: when there's not enough information to build a 

solid profile for a user, the recommendation could not be 

provided correctly.  

■ We would need the latest data from each user to 

correctly predict his personality. 

 

 

 

 



 

2.5. Your solution to solve the problem 

Our solution to the problem is to suggest users who have similar 

personality and thus increasing the percentage of getting matched. For the 

system to successfully recommend a user based on his/her personality it 

would have to have data of the user to map to it can be done by collecting 

all the personality specific data that would be available from his/her social 

media handles. Thus, the system can start creating a personality of the 

user and thus map the users likes and dislikes.  

 

After, that is done the system will randomly show people for a while and 

would start learning from the users likes and dislikes. So, it can map what 

the user likes and thus can start suggesting users who have the same 

characteristics in their personality. Thus, increasing the chance of getting a 

perfect match. As the systems would start learning from the users choices 

using machine learning algorithms like lstm, seq2seq to start differentiating 

the users what the user would like and what he would not like. Thus, 

mapping a users personality properly and also his/her choices would give 

us a better result of suggesting a user on which he is likely to like it. 



 

2.6. Where our solution is different from others 

The difference in the solutions from others is that currently every dating app 

uses location based matching to match users from one other the only 

difference being one gives more privacy control to one user than the other.  

Tinder uses your location to send you profiles of people in your area who fit 

the criteria you’re looking for (specifically, age and gender).​ ​If you and the 

other person swipe right, a little screen pops up informing you there’s a 

match (it’s a thrilling moment), and you can introduce yourself. Bumble 

works largely the same way, with one major difference: on Bumble, only the 

woman can make the first move, which gives women more say in the 

dating process. It’s why women say they feel safer on.  

 

The difference in solution here being we would match the users based on 

their personality being similar or not and not just randomly suggesting 

users based on their location. So, by predicting the personality through 

their social media we would have a clear profile of a user of what he likes 

and what he doesn't.  

 

Thus, we would be able to give a user a better prediction if who he is 

supposed to match and who rather than who he isn’t. Also, after suggesting 



 

a couple of random users at first to learn a user’s needs we can now 

provide him with  a more realistic match then at the first as we would be 

able to learn from the users action on what he likes and dislikes. Thus, this 

are the basic difference between the different solutions. 

2.7. Why our solution is better 

Our solution is better than the one that is in use because of the following 

reasons:- 

 

Our solution is to give the recommendations based on the personality of 

the users and thus increases the chance of getting a favourable match as it 

will recommend it using your personality. It will be able to do so by using 

the data you have given in your social media handles photos, posts, 

location, updates, statuses. All of this data contribute to your personality 

and will help us improve the match that you will get. 

 

After, knowing your personality through your social media handles the 

system will try to learn what are your likes and dislikes when you are 

looking for the other user. It will do that by first suggesting some random 

users and will learn on the basis of that what are your likes and dislikes for 

example: you dislike a specific user because they show that they love cats. 



 

The system will read that information and and will try to provide 

suggestions on the basis of that. All in all increasing the probability of 

suggesting a user that you are likely to be matched with the more often you 

use the application the more likely it is that the system learns about your 

likes and dislikes and help you in pairing with a perfect match. 

 

Thus, these are the ways are solution is better than the ones currently in 

use. 

 

 

 

  



 

3. Hypothesis 

What we’re trying to achieve here is that a user gets smart 

recommendations for the profile based on his personality vector. 

 

In this project we plan to implement the models, SVM and word2vec to 

evaluate them to understand what factors are most predictive for finding 

profiles that a user would like using features set below. 

 

We implemented Supervised Machine Learning models, the model takes a          

profile personality vector as input and will output the profiles according to            

the preferences of the user.  

 

 

  



 

4. Methodology 

4.1. How to generate/collect input data 

The data that we need to collect from the user about the information about 

his/her personality is available through an .csv file on sites like kaggle 

because of the research done on the user data on  a different topics. The 

data is of the facebook users collected through a survey and has many 

fields like status updates, location information, posts and much more. 

Though the data is available, the data is not properly cleaned or parsed 

and needs to be cleaned in order to get the necessary fields from the 

available data.  

 

We would also have to generate some random user data in order to know 

display to the user at the beginning from which we will get to know about 

the likes and dislikes of the user from which we will get to know the 

personality of the user and the users with a following personality trait that 

he would be interested in. Thus, to get know this we would have to give the 

users a sample amount of profiles to choose from having different 

personality traits and this will help us knowing the user better. 

 

These, are the following types of data that we need to generate/collect.  



 

 

4.2. How to solve the problem 

The following flow diagram will give the process in a nutshell. 

 

 



 

4.2.1. Algorithm design 

We can divide algorithm design into 2 phase : 

1.Generate Personality Vector 

2.Generate suggestion for User 

 

1. Generate Personality Vector 

Method 1 :  

1. Iterate steps for every user 

a.Count unique word and add frequency for each user. 

b.Use Textblob to get sentimental analysis  

c. Use SVM for text categorization 

d.Add personality vector with Gender to ‘Personality DataSet’ 

       2. Generate a pair of similar personality vector data set 

(Similarity Data Set) with similarity above threshold. 

  

Method 2​: 

Word2vec: 

Word2Vec is an effective solution to convert text into vector format, 

which leverages the context of the target words. Basically, we want to 

use the surrounding words to represent the target words with a 



 

Neural Network whose hidden layer encodes the word 

representation. 

There are two types of algorithms for Word2Vec, Skip-gram and 

Continuous Bag of Words (CBOW). 

 

Method 3 

1.SVM (Support Vector Machine) 

A Support Vector Machine (SVM) is a discriminative  

classifier formally defined by a separating hyperplane. In other words, given 

labeled training data (supervised learning), the algorithm outputs an optimal 

hyperplane which categorizes new examples. In two dimensional space 

this hyperplane is a line dividing a plane in two parts where in each class 

lay in either side​. 

 

We have 10 different personalities and to predict it we have used different 

kernel / types of SVM classifiers such as ‘linear’ , ‘polynomial’ and ‘radial’. 

Out of all 3 linear gave the best output as there was clear partition among 

data as shown in fig 3. But as we have to predict one class out of 10. SVM 

will use one to other classification for each of the class and allocated / 

predict highest scoring class as a suitable value. 

 



 

If we plot SVM for our data, it will be 10 partitions of arbitrary shape and 

there will be a almost clear separation among the partitions. 

 

 

Fig. 3 

 

Skip-gram 

For skip-gram model, the input is the target word, while the outputs are the 

words surrounding the target words. All the input and output data are of the 

same dimension and one-hot encoded. The network contains 1 hidden 

layer whose dimension is equal to the embedding size, which is smaller 



 

than the input/ output vector size. At the end of the output layer, a softmax 

activation function is applied so that each element of the output vector 

describes how likely a specific word will appear in the context. The graph 

below visualizes the network structure. 

 

The word embedding for the target words can obtained by extracting the 

hidden layers after feeding the one-hot representation of that word into the 

network. 

With skip-gram, the representation dimension decreases from the 

vocabulary size (V) to the length of the hidden layer (N).  

 



 

CBOW 

Continuous Bag of Words (CBOW) is very similar to the skip-gram model. 

The idea is that given a context, we want to know which word is most likely 

to appear in it. 

 

The biggest difference between Skip-gram and CBOW is that the way the 

word vectors are generated. For CBOW, all the examples with the target 

word as target are fed into the networks, and taking the average of the 

extracted hidden layer. Skip-gram only feeds in the one and only one target 

word one-hot vector as input. 



 

 

2.   Generate Suggestion for User using LSTM 

Method 1: 

1. From Similarity Data-Set, find a generic similar vector 

(sim-vector). 

2. Find set of vectors from ‘Personality data set’ that are 

similar to (sim-vector) using LSTM. 

Method 2: 

1. Find cosine similarity for a user and some set of other 

users as of now and later we can extend to find similarity 

that have opposite sex / in same area / city 

2. Each user has minimum threshold value that he would 

like other person’s personality for eg. user 1 with 

threshold 20% will like all other the users/ profiles that 

have 20% similarity with his personality 

3. Feed user with matching profile and update the database 

on its action like ‘Y’ or ‘N’ ( He liked it or not ) 

 

Cosine Similarity 

Cosine similarity is a ​measure of similarity​ between two 

https://en.wikipedia.org/wiki/Measure_of_similarity


 

non-zero vectors of an ​inner product space​ that measures ​cosine​ of 

the angle between them. 

For vectors A and B,the cosine similarity, is represented by dot 

product and magnitude as below: 

 

So we find cosine similarity matrix between n*n users and use upper 

triangular matrix to compare with threshold and will sort the output in 

ascending order to get the most likely profile to be liked by user at 

first and will show him/her with its name and percentage match. 

 

LSTM Networks 

 

Long Short-Term Memory networks – usually just called “LSTMs” – are a 

special kind of RNN, capable of learning long-term dependencies. They 

were introduced by ​Hochreiter & Schmidhuber (1997)​, and were refined 

and popularized by many people in following work. They work 

tremendously well on a large variety of problems, and are now widely used. 

 

https://en.wikipedia.org/wiki/Inner_product_space
https://en.wikipedia.org/wiki/Cosine
http://www.bioinf.jku.at/publications/older/2604.pdf


 

LSTMs are explicitly designed to avoid the long-term dependency problem.          

All recurrent neural networks have the form of a chain of repeating modules             

of neural network. In standard RNNs, this repeating module will have a very             

simple structure, such as a single tan(h) layer. 

 

 

 

 

LSTMs also have this chain like structure, but the repeating module has a 

different structure. Instead of having a single neural network layer, there 

are four, interacting in a very special way. 

 

 



 

 

 

The notions of LSTMs are as below. 

 

 

 

 

 

In the above diagram, each line carries an entire vector, from the output of 

one node to the inputs of others. The pink circles represent pointwise 

operations, like vector addition, while the yellow boxes are learned neural 

network layers. Lines merging denote concatenation, while a line forking 

denotes its content being copied and the copies going to different locations. 

 

  



 

Method: 4 

 

Random Forest 

 

The random forest is an ensemble approach that can also be thought of as 

a form of nearest neighbor predictor.It works as an  divide-and-conquer 

approach used to improve performance. The main principle behind this 

method is that a group of weak learners can come together to form a strong 

learner. The figure below provides an example. Each classifier, individually, 

is a weak learner, while all the classifiers taken together are a strong 

learner. 

The data to be modeled are the blue circles. We assume that they 

represent some underlying function plus noise. Each individual learner is 

shown as a gray curve. Each gray curve which is a weak learner is a fair 

approximation to the underlying data. The red curve which here represents 

as an strong learner can be seen to be a much better approximation to the 

underlying data. 

Trees and Forests. The random forest starts with a standard machine 

learning technique called a decision tree which, in ensemble terms, is our 



 

weak learner. In a decision tree, an input is entered at the top and as it 

traverses down the tree the data gets bucketed into smaller and smaller 

sets. 

Other example of this model,where the data is driven and made into trees 

it advises us, based u

pon 

weather conditions, whether to play football. For example, if the outlook is 



 

sunny and the humidity is less than or equal to 70, then it’s probably of to 

play football. 

 

The random forest (see figure below) takes this notion to the next level by 

combining trees with the notion of an ensemble. Thus, in ensemble terms, 



 

the trees are weak learners and the random forest is a strong learner.

 

Here is how such a system is trained; for some number of trees ​T​: 

1. Sample ​N​ cases at random with replacement to create a subset of 

the data. The subset should be about 66% of the total set. 

2. At each node: 

1. For some number​ ​m, predictor variables are selected at random 

from all the predictor variables. 

2. The predictor variable that provides the best split, according to 

some objective function, is used to do a binary split on that 

node. 



 

3. At the next node, choose another m variables at random from 

all predictor variables and do the same. 

Depending upon the value of m, there are three different possibilities 

● Random splitter selection: m =1 

● Breiman’s bagger: m = total number of predictor variables 

● Random forest: m << number of predictor variables. The alootihtam 

suggests three possible values for m: ½√​m​, √​m​, and 2√​m. 

 

Running a Random Forest. When a new input is entered into the system, it 

is run down all of the trees. The result may either be an average or 

weighted average of all of the terminal nodes that are reached, or, in the 

case of categorical variables, a voting majority. 

It should be taken into thought that:  

● With a large number of predictors, the eligible predictor set will be 

quite different from node to node. 

● The greater the inter-tree correlation, the greater the random forest 

error rate, so one pressure on the model is to have the trees as 

uncorrelated as possible. 



 

● As ​m​ goes down, both inter-tree correlation and the strength of 

individual trees go down. So some optimal value of ​m​ must be 

discovered. 

 

Positives and negatives: Random forest runtimes are quite fast, and they 

are able to deal with unbalanced and missing data. Random Forest 

weaknesses are that when used for regression they cannot predict beyond 

the range in the training data, and that they may over-fit data sets that are 

particularly noisy. Of course, the best test of any algorithm is how well it 

works upon your own data set. 

Neither method can be said to be better than the other in all cases. It 

remains to be seen if there is any systematicity as to why and where one 

method is better than another. 

This figure shows a frequency histogram of the mean precision 

improvement over chance for the 72 projects for the random forest: 

 



 

 

 

 



 

Method 5: 

Logistic  Regression 

 

Logistic regression is a statistical method for analyzing a dataset in which            

there are one or more independent variables that determine an outcome.           

The outcome is measured with a dichotomous variable (in which there are            

only two possible outcomes). 

 

In logistic regression, the dependent variable is binary or i.e. it only            

contains data coded as 1 (TRUE, success, pregnant, etc.) or 0 (FALSE,            

failure, non-pregnant, etc.). 

 

The goal of logistic regression is to find the best fitting (yet biologically             

reasonable) model to describe the relationship between the binary         

characteristic of interest (dependent variable = response or outcome         

variable) and a set of independent (predictor or explanatory) variables.          

Logistic regression generates the coefficients (and its standard errors and          

significance levels) of a formula to predict a ​logit transformation of the            

probability of presence of the characteristic of interest: 



 

 

where p is the probability of presence of the characteristic of interest.            

The logit transformation is defined as the logged odds: 

 

and 

 

Rather than choosing parameters that minimize the sum of squared errors           

(like in ordinary regression), estimation in logistic regression chooses         

parameters that maximize the likelihood of observing the sample values. 

 

Like all regression analyses, the logistic regression is a predictive analysis. 

Logistic regression is used to describe data and to explain the relationship 

between one dependent binary variable and one or more nominal, ordinal, 

interval or ratio-level independent variables. 

Sometimes logistic regressions are difficult to interpret;  



 

Example:  

How does the probability of getting lung cancer (yes vs. no) change for 

every additional pound a person is overweight and for every pack of 

cigarettes smoked per day? 

Do body weight, calorie intake, fat intake, and age have an influence on the 

probability of having a heart attack (yes vs. no)? 

 

Binary logistic regression major assumptions: 

1. The dependent variable should be dichotomous in nature (e.g., 

presence vs. absent). 

2. There should be no outliers in the data, which can be assessed by 

converting the continuous predictors to standardized scores, and 

removing values below -3.29 or greater than 3.29. 

3. There should be no high correlations (multicollinearity) among the 

predictors.  This can be assessed by a correlation matrix among the 

predictors. Tabachnick and Fidell (2013) suggest that as long 

correlation coefficients among independent variables are less than 

0.90 the assumption is met. 

At the center of the logistic regression analysis is the task estimating the 

log odds of an event.  Mathematically, logistic regression estimates a 

multiple linear regression function defined as: 



 

logit(p)  

for i = 1…n . 

 

Overfitting.​  When selecting the model for the logistic regression analysis, 

another important consideration is the model fit.  Adding independent 

variables to a logistic regression model will always increase the amount of 

variance explained in the log odds (typically expressed as R²).  However, 

adding more and more variables to the model can result in overfitting, 

which reduces the generalizability of the model beyond the data on which 

the model is fit. 

 

Reporting the R2​.  Numerous pseudo-R2 values have been developed for 

binary logistic regression.  These should be interpreted with extreme 

caution as they have many computational issues which cause them to be 

artificially high or low.  A better approach is to present any of the goodness 

of fit tests available; Hosmer-Lemeshow is a commonly used measure of 

goodness of fit based on the Chi-square test. 



 

 

 

 

 

 

 

 

 

 

 



 

Method 6: 

 

KNN 

The ​k​-nearest neighbors algorithm (​k​-NN) is a ​non-parametri​c and instance 

based method used for ​classification​ and ​regression​.​ ​In both cases, the 

input consists of the ​k​ closest training examples in the ​feature space​. The 

output depends on whether ​k​-NN is used for classification or regression. 

 

When we say a technique is ​non-parametric​ , it means that it does not 

make any assumptions on the underlying data distribution. In other words, 

the model structure is determined from the data. If you think about it, it’s 

pretty useful, because in the “real world”, most of the data does not obey 

the typical theoretical assumptions made (as in linear regression models, 

for example). Therefore, KNN could and probably should be one of the first 

choices for a classification study when there is little or no prior knowledge 

about the distribution data. 

Instance-based​ learning means that our algorithm doesn’t explicitly learn a 

model. Instead, it chooses to memorize the training instances which are 

subsequently used as “knowledge” for the prediction phase. Concretely, 

this means that only when a query to our database is made (i.e. when we 

https://en.wikipedia.org/wiki/Non-parametric_statistics
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Feature_space


 

ask it to predict a label given an input), will the algorithm use the training 

instances to spit out an answer. 

It is worth noting that the minimal training phase of KNN comes both at a 

memory cost​, since we must store a potentially huge data set, as well as a 

computational cost​ during test time since classifying a given observation 

requires a run down of the whole data set. Practically speaking, this is 

undesirable since we usually want fast responses 

4.2.2. Language used 

1. Python 3.6 

4.2.3. Tools used 

1. Scikit-Learn 

2. Hadoop 2.9.0 

3. Map Reduce 

4. Anaconda 3 with Jupyter 

5. Numpy and Pandas 

6. Textblob 

7. Seaborn 

8. Matplotlib 

9. NLTK toolkit 

 



 

5. Implementation  

5.1 Code 

# coding: utf-8 
# <img src="TwitterData/flow.png"/> 
# ### Read the input data files. 
# In[1]: 
import numpy as np 
import os 
import pandas as pd 
import matplotlib 
import matplotlib.pyplot as plt 
import seaborn as sns 
import nltk 
import re 
import sklearn.metrics.pairwise as sk 
from textblob import TextBlob 
# nltk.download() 
from nltk.corpus import stopwords 
from sklearn import linear_model 
from sklearn.model_selection import GridSearchCV 
from sklearn.feature_extraction.text import CountVectorizer 
 
# In[4]: 
#Read the tweets one by one and process it 
import csv 
user_id=[] 
inpTweets = csv.reader(open('survey_dump_with_tweet_count', 
'rt',encoding='utf8'), delimiter=',') 
i = 0 



 

for row in inpTweets: 
    i+=1; 
    if(i>1): 
        user_id.append(row[0]) 
    if('1663416536' in row): 
        print(i) 
print(i); 
# ### Pre-process Tweets 
 
# In[6]: 
class PreprocessTweets: 
 
    def __init__(self): 
        self.name = 'PreprocessTweets' 
 
    #start process_tweet 
    def processTweet(self, tweet): 
  
        #Convert to lower case 
        tweet = tweet.lower() 
        #Convert www.* or https?://* to URL 
        tweet = re.sub('((www\.[^\s]+)|(https?://[^\s]+))','URL',tweet) 
        #Convert @username to AT_USER 
        tweet = re.sub('@[^\s]+','AT_USER',tweet) 
        #Remove additional white spaces 
        tweet = re.sub('[\s]+', ' ', tweet) 
        #Replace #word with word 
        tweet = re.sub(r'#([^\s]+)', r'\1', tweet) 
        #trim 
        tweet = tweet.strip('\'"') 
        # Remove all Non-ASCII characters 
        tweet = re.sub(r'[^\x00-\x7F]+',' ', tweet) 
 



 

        return tweet 
# In[7]: 
class FilterStopWords: 
 
    # stopWords = [] 
    def __init__(self): 
        self.name = 'FilterStopWords' 
        #initialize stopWords 
        self.stopWords = [] 
 
 
    def getStopWordList(self, stopWordListFileName): 
        #read the stopwords file and build a list 
        stopWords = [] 
        stopWords.append('AT_USER') 
        stopWords.append('URL') 
        stopWords.append('[') 
        stopWords.append('[') 
 
        fp = open(stopWordListFileName, 'r',encoding='utf8') 
        line = fp.readline() 
        while line: 
            word = line.strip() 
            stopWords.append(word) 
            line = fp.readline() 
        fp.close() 
        return stopWords 
  
    def getFeatureVector(self, tweet, stopWords): 
        featureVector = [] 
        #split tweet into words 
        words = tweet.split() 
        for w in words: 



 

            #replace two or more with two occurrences 
            #w = replaceTwoOrMore(w) 
            #strip punctuation 
            w = w.strip('\'"?,.') 
            #check if the word stats with an alphabet 
            val = re.search(r"^[a-zA-Z][a-zA-Z0-9]*$", w) 
            #ignore if it is a stop word 
            if(w in self.stopWords or val is None): 
                continue 
            else: 
                featureVector.append(w.lower()) 
        return featureVector 
# ### Feature Engineering  
 
# In[8]: 
class FeatureEngineering: 
    def __init__(self): 
        self.name = 'FeatureEngineering' 
        self.featureList = [] 
        # self.sid = SentimentIntensityAnalyzer() 
    #start extract_features 
    def extract_features(self,tweet): 
        tweet_words = set(tweet) 
        features = {} 
        for word in self.featureList: 
            features['contains(%s)' % word] = (word in tweet_words) 
        return features 
## Create New Training set based on personality labels predicted from 
Survey results 
    def createNewTrainingSet(self, fileName): 
        XTrain = [] 
        YTrain = [] 
        XTrainFeatures = [] 



 

        XTrainSentiment = [] 
        XTrainFreqTweets = [] 
        geo_latitude = [] 
        geo_longitude = [] 
  
        objFilterStopWords = FilterStopWords() 
        objPreprocessTweets = PreprocessTweets() 
 
        stopWords = 
objFilterStopWords.getStopWordList('TwitterData/StopWords.txt') 
  
        #Read the tweets one by one and process it 
        inpTweets = csv.reader(open(fileName, 'r',encoding='utf8'), 
delimiter=',') 
        next(inpTweets) 
        tweets = [] 
        i = 0 
        for row in inpTweets: 
            personality = row[5] 
            tweet = row[1] 
            cleanTweet = tweet.replace('"",""'," ") 
            cleanTweet = cleanTweet.replace('""'," ") 
            processedTweet = 
objPreprocessTweets.processTweet(cleanTweet) 
 
            XTrainFreqTweets.append(int(row[4])) 
            wordsList = processedTweet.split() 
  
            # Remove stop words 
            filtered_words = [word for word in wordsList if word not in 
stopwords.words('english')] 
            filteredTweets = ' '.join(filtered_words) 
  



 

            featureVector = 
objFilterStopWords.getFeatureVector(processedTweet, stopWords) 
  
            geo_latitude.append(float(row[2])) 
            geo_longitude.append(float(row[3])) 
  
            blob = TextBlob(processedTweet) 
            sentiment = 0 
            for sentence in blob.sentences: 
                sentiment += sentence.sentiment.polarity 
 
            totSentiment = sentiment/ len(blob.sentences) 
 
            XTrainSentiment.append(totSentiment) 
 
            XTrainFeatures.append(filteredTweets) 
  
            YTrain.append(personality)  
 
        return XTrain, YTrain, XTrainFeatures, XTrainSentiment, 
XTrainFreqTweets, geo_latitude, geo_longitude 
# In[9]: 
objFeatureEngineering = FeatureEngineering() 
fileName = 'TwitterData/survey_dump_with_tweet_count' 
XTrain, YTrain, XTrainFeatures, XTrainSentiment, XTrainFreqTweets, 
geo_latitude, geo_longitude = 
objFeatureEngineering.createNewTrainingSet(fileName) 
# ### Get Feature vector 
# In[10]: 
newYTrain = [] 
 
for item in YTrain: 
    temp = item.replace('[', '') 



 

    temp = temp.replace('\"', '') 
    newItem = temp.replace(']', '') 
    newYTrain.append(newItem) 
  
YTrain = newYTrain 
# ### Map the class labels to numbers 
 
# In[11]: 
def mapLabels(className): 
    if className == 'Conscientiousness': 
        return 0 
    elif className == 'Extrovert': 
        return 1 
    elif className == 'Agreeable': 
        return 2 
    elif className == 'Empathetic': 
        return 3 
    elif className == 'Novelty Seeking': 
        return 4 
    elif className == 'Perfectionist': 
        return 5 
    elif className == 'Rigid': 
        return 6 
    elif className == 'Impulsive': 
        return 7 
    elif className == 'Psychopath': 
        return 8 
    elif className == 'Obsessive': 
        return 9 
    #elif className == None: 
        #return 10 
    else: 
        pass 



 

 
YTrain = [mapLabels(x) for x in YTrain] 
# In[12]: 
XTrain = np.array(XTrainFeatures) 
YTrain = np.array(YTrain) 
# In[13]: 
YTrain 
# ### Split Train and Test data 
# In[14]: 
n=60 
trainSamples = XTrain[0:n] 
YtrainSamples = YTrain[0:n] 
 
testSamples = XTrain[n:] 
YtestSamples = YTrain[n:] 
 
trainSentimentSamples = np.array(XTrainSentiment[0:n]) 
testSentimentSamples = np.array(XTrainSentiment[n:]) 
trainFreqTweetSamples = np.array(XTrainFreqTweets[0:n]) 
testFreqTweetSamples = np.array(XTrainFreqTweets[n:]) 
# ### Bag of Words as Features 
# In[15]: 
vectorizer = CountVectorizer() 
XTr = vectorizer.fit_transform(trainSamples) 
 
trainBagVector = XTr.toarray() 
XTe = vectorizer.transform(testSamples) 
testBagVector = XTe.toarray() 
 
 
# In[16]: 
XEv = XTe 
# ### Stack or concatenate all features together 



 

# In[17]: 
XTrainWordFeatures = trainBagVector #trainNGramVector 
 
temp = np.column_stack((XTrainWordFeatures, trainSentimentSamples)) 
 
XTrainAllFeatures =  np.column_stack((temp, trainFreqTweetSamples)) 
 
XTestWordFeatures = testBagVector #testNGramVector 
temp =  np.column_stack((XTestWordFeatures, testSentimentSamples)) 
 
XTestAllFeatures =  np.column_stack((temp, testFreqTweetSamples)) 
 
# ### Write Predicted Output Labels to File 
# In[18]: 
def writePredictedLabelFile(YPred): 
    f = open("Predictions.csv","w") 
    f.write("Id,Label" + "\n") 
    for i in range(len(YPred)): 
        f.write(str(i) + "," + str(np.around(YPred[i],decimals=2))+ "\n") 
    f.close() 
# In[19]: 
train = XTrainAllFeature 
YTrain = YtrainSamples 
YTest = YtestSamples 
# In[20]: 
from sklearn.neighbors import KNeighborsClassifier 
 
train = XTrainAllFeatures 
test = XTestAllFeatures 
 
params = {'neighbours':10} 
neighbours = params['neighbours'] 
neigh = KNeighborsClassifier(n_neighbors=neighbours) 



 

YPredKNN = neigh.fit(train, YTrain).predict(test) 
# In[21]: 
from sklearn.ensemble import RandomForestClassifier 
params = {'trees':150, 'criterion':'entropy','random_state':None} 
trees = params['trees'] 
crit = params['criterion'] 
seed = params['random_state'] 
clf = 
RandomForestClassifier(n_estimators=trees,criterion=crit,random_state=se
ed) 
clf.fit(train, YTrain) 
YPredRF = clf.predict(test) 
# In[22]: 
#LogReg = linear_model.LogisticRegression(solver = 'sag', multi_class = 
'multinomial',penalty='l2', dual=False, tol=0.0001, C=1.0, fit_intercept=True, 
intercept_scaling=1, class_weight=None, random_state=None) 
LogReg = linear_model.LogisticRegression() 
penalty = ['l1', 'l2'] 
C = np.logspace(0, 4, 10) 
hyperparameters = dict(C=C, penalty=penalty) 
clf = GridSearchCV(LogReg, hyperparameters) 
 
clf.fit(train, YTrain) 
YPredLR = clf.predict(test) 
# In[23]: 
from sklearn import svm 
params = {'kernel':'linear'} 
ker = params['kernel'] 
YPred = svm.SVC(kernel=ker, probability = True).fit(train, 
YTrain).decision_function(test) 
# In[24]: 
YPred  # [7, 8, 6, 4, 9, 7, 9, 6, 1, 6, 7, 2, 4, 2, 2, 7, 9, 7, 9, 7, 8, 6, 
#9, 4, 8, 9, 1, 3, 9, 9, 8, 7, 7, 9, 9, 1, 1, 1, 8, 9, 7, 8, 1, 6, 



 

 #      8, 5, 8, 6, 3, 1, 4, 9, 3, 9, 7, 7, 9, 9, 3, 7, 3, 9, 4, 8, 7, 1, 
  #     9, 9, 1, 9, 1, 3, 3, 2, 3, 1, 1, 0, 4, 7, 8, 6, 4, 9, 7, 9, 6, 1, 
   #    6, 7, 2, 4, 2, 2, 7, 9, 7, 9, 7, 8, 6, 9, 4, 8, 9, 1, 3, 9, 9, 8, 
    #   7, 7, 9,9, 
     #  1, 1, 1, 8, 9, 7, 8, 1, 6, 8,5, 8, 
      # 6, 3, 1, 4, 9, 3, 9, 7, 7, 9, 9, 3, 7, 3, 9, 4, 8, 7, 1, 9, 9, 1,  
       #9, 1, 3, 3, 2, 3, 1, 1, 0, 4]''' 
# In[25]: 
dfYPred=YPred 
# In[26]: 
df=pd.DataFrame(data=dfYPred) 
# In[27]: 
dfYPred 
# In[28]: 
pers=['Conscientiousness','Extrovert','Agreeable','Emphathetic','Nov 
Seekng','Perfectionist','Rigid','Impulsive','Psychopath','Obsessive'] 
# In[29]: 
df.columns=pers 
# In[30]: 
df['dom_pers']=df.idxmax(axis=1) 
# In[31]: 
df['thres']= np.random.randint(10, 100, df.shape[0]) 
# In[32]: 
df['user_id']=user_id[n:] 
# In[33]: 
df.set_index('user_id') 
df.head(10) 
# In[34]: 
def cosine_sim(df): 
    for index, row in df.iterrows(): 
        print((row[1:10])) 
# In[35]: 
df1=pd.DataFrame(data=sk.cosine_similarity(YPred,YPred)) 



 

# In[36]: 
df1=df1*100 
# In[37]: 
df1.columns=user_id[n:] 
df1['user_id']=user_id[n:] 
# In[38]: 
#df_1=df1.loc[df1['user_id'] == '1516255956'] 
# In[39]: 
#userid or input 
userid='1414166594' 
# In[40]: 
df_d=df.loc[df['user_id'] == userid] 
 
labels = tuple(pers)#'Extrovert', 'Agreeable', 'Empathetic','Novelty 
Seeking','Perfectionist','Rigid','Impulsive','Psychopath','Obsessive' 
sizes = df_d.iloc[0,:10] 
explode = (0.2,0,0.2,0,0.2,0,0.2,0,0.2,0) 
fig1, ax1 = plt.subplots() 
ax1.pie(sizes, explode=explode, labels=labels, autopct='%1.1f%%', 
        shadow=True, startangle=90) 
ax1.axis('equal')  # Equal aspect ratio ensures that pie is drawn as a circle. 
plt.show() 
# In[41]: 
df_d=df1.loc[df1['user_id'] == userid] 
df_2=df_d[(df_d<100) & (df_d>df.loc[df['user_id'] == userid]['thres'].iloc[0])] 
df_2=df_2[df_2!='NaN'] 
df_2.dropna(axis=1,inplace=True) 
df_2=df_2.iloc[:,:-1] 
df_2=df_2.transpose() 
df_2.columns=[1] 
df_2=df_2.sort_values(1) 
# In[42]: 
df_2.head() 



 

# In[43]: 
from IPython import display 
def plotSimilarityGraph(userid2): 
  
    user_personality_df=df.loc[(df['user_id'] == userid) | 
(df['user_id']==userid2 )] 
 
    del user_personality_df['thres'] 
    del user_personality_df['dom_pers'] 
 
    df_melt = user_personality_df.melt('user_id', var_name='Personalities', 
value_name='Magnitudes') 
    df_melt 
 
    barG=sns.factorplot(data=df_melt, 
kind='bar',hue='user_id',x='Personalities',y='Magnitudes',palette='Set1') 
    barG.set_xticklabels(rotation=90) 
    display.display(barG) 
# In[45]: 
for index,row in df_2.itertuples(): 
    plotSimilarityGraph(index) 
    inp=input("Do you want another suggestion? (y/n): ") 
    if(inp=='n'): 
        break; 
 

 

 

 

 

 

 



 

Mapper.py 

#!/usr/bin/python 

import sys 

 

def main(argv): 

    word2count = {} 

    line = sys.stdin.readline() 

    try: 

        while line: 

            list = line.split(",") 

            print('%s\t%s' % (list[1],list[5])) 

            line = sys.stdin.readline() 

    except "end of file": 

        return None 

if __name__=="__main__": 

    main(sys.argv) 

 

 

 

 

 



 

Reducer.py 

#!/usr/bin/python 

from operator import itemgetter 

from collections import defaultdict 

import sys 

word2count = {} 

l = [] 

# input comes from STDIN 

for line in sys.stdin: 

    # remove leading and trailing whitespace 

    line = line.strip() 

    # parse the input we got from mapper.py 

    word = line.split('\t') 

    if(len(word)==2): 

        if(word[0] in word2count): 

            word2count[word[0]].append(word[1])  

        else: 

            word2count[word[0]] = [word[1]] 

for word in word2count.keys(): 

    print '%s\t%s' % (word,word2count[word]) 

 



 

5.2 Design document and flowchart 

 



 

 6. Data analysis and discussion  

6.1 Output generation 

 

 



 

 
 
 
 
 
  



 

6.2 Output Analysis 
As, you can see from the generated pie chart above this is a pie chart of a 
person and his personality that was derived from his twitter data. We can 
see that there are some major personality trends in this chart and from that 
we can derive his personality and also after that recommend a person 
having a very similar personality like this user by creating their charts and 
comparing. Thus, we can get find out personality of any user if we have 
his/her data and 
 
Above is the pair of the two users that were recommended to one another 
based on their personality that was predicted with the help of the different 
modeling algorithms.  
 
You can see from the above chart that the similarities the two person 
possess because of their personality and how we compared them using 
their individual personality vectors.  



 

6.3 Output against hypothesis 
 
 

We implemented Supervised Machine Learning models, the model takes a          

profile personality vector as input and will output the profiles according to            

the preferences of the user.  

 

Our hypothesis was that we give a user smart recommendation for his            

profile based on his personality vector and we have been able to achieve it              

so far. 

 

It was done using the models that we had decided during the starting of this               

project and the evaluation came out to be true as we have been successful              

in getting the personality vector from the user. 

 
 
 
 
 
 
 
 
 
 



 

7. Conclusions and recommendations  

7.1  Summary and conclusions  

The performance of Linear SVMs and logistic regression are 

comparable in practice. SVMs with nonlinear kernel are used if the data 

won't be linearly separable (or need to be more robust to outliers than 

LR will normally tolerate). Otherwise, we try logistic regression first and 

see how you do with that simpler model. If logistic regression fails, we 

try an SVM with a non-linear kernel like a RBF. 

 

SVM fits a function (hyperplane) that attempts to separate two classes 

of data that could be of multiple dimensions. 

SVM could have difficulty when the classes are not separable or there 

is not enough margin to fit a (n-dimensions - 1) hyperplane between the 

two classes. 

 

However, in our case, the number of features is very large (5230). As the 

classes are linearly separable, using SVM with a linear kernel seems a 

viable option. 

 



 

Random Forests generally needs larger number of instances to work its 

randomization concept well and generalize to the novel data. In addition, in 

one way or another, random forests works with combination of some kind 

of soft linear boundaries at the decision surface thus I believe that this is 

still below the success of max margin SVM non linear boundaries. 

Thus if you have small amount of data compared to possible variations of 

the instances than SVM is better choice.  

  



 

7.2  Recommendations for future studies  
For further studies and recommendations we can use the same set of data 
and try using other distribution models than the ones we have tried on this 
dataset. 
 
By doing so we can know how the other type compares to this data models 
and also we can extent that by also changing the data set and trying the 
different models on different dataset.  
 
Thus, by doing so, we can come to know about the feasibility of the data 
with the different models and how successfully it can compute and predict 
the personality of the user and after doing that the important thing to also 
take care of is that how well it can predict the right person to match it with.  
 
 
Thus, in the future studies we can try using different neural models to get 
the best match case scenario on different data sets and can thus come to a 
conclusion that a particular model is the best for this type of recommender 
system. 
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9. Appendices  
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9.2 Long Short Term Memory Networks 

 

 

 

 

 

 

 

 



 

 

9.3  Random Forest Model 

 



 

  



 

9.4  KNN 
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