

PERSONALITY BASED

RECOMMENDER SYSTEM

COEN 281- Pattern Recognition and Data

Mining

Santa Clara University

Shail Shah

 Bhargav Maniyar

Pinak Ghate

Dhaval Pujara

 Harshil Shah

ACKNOWLEDGEMENT

The success of any project depends on contribution of team and guidance of others. We take

this as an opportunity to express our gratitude to the people who have been instrumental in the

successful completion of this project, especially Dr. Ming-Hwa Wang, for his guidance

throughout the term.

Abstract:

Social media is a place where users present themselves to the world, revealing

personal details and insights into their lives. We are beginning to understand how some

of this information can be utilized to improve the users’ experiences with interfaces and

with one another. In this paper, we are interested in the personality of users. Personality

has been shown to be relevant to many types of interactions; it has been shown to be

useful in predicting job satisfaction, professional and romantic relationship success, and

even preference for different interfaces. Until now, to accurately gauge users’

personalities, they needed to take a personality test. This made it impractical to use

personality analysis in many social media domains. In this paper, we present a method

by which a user’s personality can be accurately predicted through the publicly available

information on their Facebook profile. We will describe the type of data collected, our

methods of analysis, and the results of predicting personality traits through machine

learning. We then discuss the implications this has for social media design, interface

design, and broader domains.

Table of Contents

1. Introduction: 6
Objective 9
What is the problem 9
Why is this a project related to this class 10
Why other approaches are not good 10
Why our approach is better 12
Statement of the problem 12
Area or scope of investigation 13

 ​2​. ​Theoretical bases and literature review 14
Definition of the problem 14
Theoretical background of the problem 14
Related research to solve the problem 16
Advantage/Disadvantage of those research 16
Your solution to solve the problem 21
Where our solution is different from others 22
Why our solution is better 23

 ​3​.​Hypothesis 25

 4.​Methodology 26
How to generate/collect input data 26
How to solve the problem 27

 ​Algorithm design 28
Language used 50
Tools used 52

 5​. Implementation 54
 ​Code 54

 ​ Design document and flowchart 69

 6​. Data analysis and discussion 70
 ​Output generation 70
 ​ Output Analysis 72

 7​. Conclusions and recommendations 74
 ​Summary and conclusions 74
 ​Recommendations for future studies 76

 8.​ ​Bibliography 77

9. Appendices
Program flowchart 77
Long Short Term Memory Networks 78
Random Forest Model 79

 KNN 81

1. Introduction:

Introduction Social networking on the web has grown dramatically over the

last decade. In January 2005, a survey of social networking websites

estimated that among all sites on the web there were roughly 115 million

members. Just over five years later, Facebook alone has exceeded 500

million members. In the process of creating social networking profiles,

users reveal a lot about themselves both in what they share and how they

say it. Through self-description, status updates, photos, and interests,

much of a user’s personality comes out through their profile.

This paper attempts to bridge the gap between social media and

personality research by using the information people reveal in their online

profiles. Our core research question asks whether social media profiles can

predict personality traits. If so, then there is an opportunity to integrate the

many results on the implications of personality factors and behavior into the

users’ online experiences and to use social media profiles as a source of

information to better understand individuals. For example, the friend

suggestion system could be tailored to a user based on whether they are

more introverted or extroverted.

Previous work has shown that the information in users’ Facebook profiles is

reflective of their actual personalities, not an “idealized” version of

themselves. This, plus a broad user base makes Facebook an ideal

platform for studying this connection.

 We administered the Big Five Personality Inventory to 279 subjects

through a Facebook application. In the process, we gathered all the public

data from their Facebook profiles. This was aggregated, quantified, and

passed through a text analysis tool to obtain a feature set. Using these

statistics describing the Facebook profile of each user, we were able to

develop a model that can predict personality on each of the five personality

factors to within 11% of the actual values.

The ability to predict personality has implications in many areas. Existing

research has shown connections between personality traits and success in

both professional and personal relationships. Social media tools that seek

to support these relationships could benefit from personality insights.

Additionally, previous work on personality and interfaces showed that users

are more receptive to and have greater trust in interfaces and information

that is presented from the perspective of their own personality features (i.e.

introverts prefer messages presented from an introvert’s perspective). If a

user’s personality can be predicted from their social media profile, online

marketing and applications can use this to personalize their message and

its presentation.

 We begin by presenting background on the Big Five Personality index and

related work on personality and social media. We then present our

experimental setup and methods for analyzing and quantifying Facebook

profile information. To understand the relationship between personality and

social media profiles, we present results on correlations between each

profile feature and personality factor. Based on this, we describe the

machine learning techniques used for classification and show how we

achieve large and significant improvements over baseline classification on

each personality factor. We conclude with a discussion of the implications

that this work has for social media websites and for organizations that may

utilize social media to better understand the people with whom they

interact.

1.1. Objective
Based on one’s personality he/she may have interest in mingling with other

personalities or may be with similar kind of personality so it varies from

person to person. So, instead of considering only location or gender there

are many other parameters that play important role.So the objective is to

build a system to recommend or suggest a person to get connected with

based on following:

1. Based on person’s personality

2. Based on person’s interest in getting mingle with other

personality

To give user a perfect suggestion / recommendation of user profiles that he

/she will surely like and would be a great fit for him/her.

1.2. What is the problem
The problem is to suggest a user profile of his/her interest that he would

like or will interest him instead of randomly picking up profiles according to

the location of the user and the users near him, or through the ELO score

i.e rating his profile through an separate individual algorithm and not letting

the users know their ELO score and just suggesting users that have a

similar ELO score. In, which case the users can edit their profile in a

specific way so that their ELO score increases and they get matches

according to that.

1.3. Why is this a project related to this class
In class we studied concepts like text mining, finding similarities among text

with various algorithms. Our idea / project is to mine the data that is

available on the social networking platforms and mine information from that

data to try and find personality of the users. Using that derived information

we will be able to suggest users having similar personality as him/her.

1.4. Why other approaches are not good
The currently present approaches present in the industry mainly use

location based searching that happen in real time. They track the users

when they open the application and use the user’s location of where they

are and the person near them, if they crossed paths recently or they are in

a particular mile radius which again is determined by the company itself.

User has no control whatsoever who he will see or the choices and the pool

of users who he will be choosing from. He just sees the top user near his

location.

Also, as the application tracks the user using his real time location the

people can easily spoof their current location using a location spoofer and

can make the application believe that they are somewhere else when they

really aren’t. The other flaw in this system is that if a user switched its GPS

location in his phone off the application won’t be able to suggest any user.

Other approach that is used. Is to give a specific score to the user

according to his/her profile. The algorithm gives a particular score that is

also called as an ELO score to calculate attractiveness of the user. But,

that score can be easily manipulated by modifying your profile to a better

liking, completing every dialog box in the profile description. You will never

be shown your ELO score and you can only see the profile of users who

have a similar ELO score like yours for example if you’re a 7, you won’t be

shown to 4’s but neither will you be shown to a 9.

1.5. Why our approach is better
As mentioned above the flaws in the present approach. In our approach we

would not matter what location you are in and would not suggest users to

match with other users on the basis of the location of the user but would

suggest one on the basis of the personality of a user that would be

predicted and thus would have a higher similarity ratio then what is

currently present. Also, it wouldn’t matter if a user is in this particular

location and if it is in other as he would get the choices based on his

personality that would be mined through his social media handles and as

he likes or dislikes a user his list would be constantly updated. Thus,

increasing the chance of getting a good match.

1.6. Statement of the problem
There are two problems in the current system of prediction:-

1) First being that the users only get matched with other users

based on their real time location of where they are.

2) The users gets matches according to their ELO score which

can be easily altered by making some specific changes to their

profile.

1.7. Area or scope of investigation
The area of study or the scope of investigation mainly remains on the

personality that we can derive from the data available to us that we will get

from the different social media handles of the user and how the data relates

to the user. If there are more relation of the user with it’s profile from

example: posts, photos, status updates, location updates. Thus, all the

information matters when predicting the personality of the user.

Also, the other area of study will be the methods, algorithms used to clean

the data that will be derived from the various handles and how we

approach it.

Different machine learning algorithms will also be out area of interest as we

are hoping to divide the data derived by personality into 5 different vectors

also called as ‘The big five model’. Thus, then comparing the vectors of two

different users using cosine similarity. We would also have to study the

different ML algorithms.

2. Theoretical bases and literature review

2.1. Definition of the problem
● Problem definition is divided into two parts :

○ Predicting personality

○ Suggesting user profile on basis of their personality.

2.2. Theoretical background of the problem
We can say that what we post,upload and update on our social media

platforms is an extended identity of our-self in the digital world. It is how we

want to represent our self in a digital media. Thus it can be derived that

what we portrait our-self in the digital world is an extended personality of

our-self and can be related to us. Thus, proving that one’s digital

personality in the digital world is actually one’s true personality in the real

world. So, it can be said that what we get from the virtual world will help us

to better understand the user and his behaviour/personality in day to day

life. Most of the online suggestion or recommendation of user profile is

either random or based on location/gender. Data set of status/tweets will be

used to solve the problem.The standard “Big Five model” in field of

psychology is used to access personality. Every human possess five

personality traits with different magnitude. Presently the most used model

is ‘NEO Personality Inventory Revised’ (NEO PI-R). The model suggests

that any users personality can be divided and mapped into five

characteristics. We will get the data from the users profile picture, tweets,

status updates, location, images, tagged photos and many more and will try

to derive the personality of the user into the five characteristics like

Extraversion, Neuroticism, Agreeableness, Conscientiousness and

Openness. All of these 5 characteristics display different personality of the

human behaviour and based on how they interact with their social media.

Below is the description of the 5 factors:

• Extraversion: active, friendly, talkative, energetic.

• Neuroticism: moody, anxious, hostile, irritable.

• Agreeableness: trusting, altruistic, sympathetic, warm.

• Conscientiousness: ambitious, efficient, organized.

• Openness: imaginative, curious, enthusiastic, idealistic.

Based on the magnitude of above personality we will get a personality

vector. Based on the vector we can find similarity to make suggestion for a

user / personality and to learn more or to give more suggestion that a

person is interested we can use its liked / disliked history and can suggest

a perfect match for him / her.

2.3. Related research to solve the problem

For predicting personality, different approaches can be used like predicting

or inferring personality from status or tweets (text mining), from profile

pictures, from network (user connections). Poria et al. to exploit the

features related to psycho-linguistics, emotive words and their frequencies

analyzed at lexical level by utilizing popular dictionaries such as Linguistic

Inquiry and Word Count (LIWC) and Medical Research Council (MRC) to

infer personality, apart from it SenticNet, EmoSenticNet and ConceptNet to

derive / infer features based on emotions.

2.4. Advantage/Disadvantage of those research
The Recommendation systems which currently exist make the

recommendations based on the user’s preferences. In our literature survey,

there are 3 approaches for recommendation: Content based filtering,

collaborative filtering and hybrid approach.

Content based approach involves creating a feature vector of items and

users, calculating their similarities and use these similarities to make

recommendations. Collaborative filtering approach uses past preferences

of users to decide which items to recommend. Hybrid methods combine

these approaches to make recommendations.

● It benefits from large user bases.​ Simply put, the more people

are using the service, the better your recommendations will

become, without doing additional development work or relying on

subject area expertise.

● It’s flexible across different domains.​ Collaborative filtering

approaches are well suited to highly diverse sets of items.

Where content-based filters rely on metadata, collaborative

filtering is based on real-life activity, allowing it to make

connections between seemingly disparate items (like say, an

outboard motor and a fishing rod) that nonetheless might be

relevant to some set of users (in this case, people who like to

fish).

● It produces more serendipitous recommendations.​ When it

comes to recommendations, accuracy isn’t always the highest

priority. Content-based filtering approaches tend to show users

items that are very similar to items they’ve already liked, which

can lead to filter bubble problems. By contrast, most users have

interests that span different subsets, which in theory can result

in more diverse (and interesting) recommendations.

● It can capture more nuance around items.​ Even a highly

detailed content-based filtering system will only capture some of

the features of a given item. By relying on actual human

experience, collaborative filtering can sometimes recommend

items that have a greater affinity with one another than a strict

comparison of their attributes would suggest. Compared to

collaborative filtering, there are some advantages and

drawbacks of content-based filtering that we should understand.

The following are the advantages and the disadvantages of the research

done:

Advantages:-

■ The advantages being almost all the necessary data

needed to predict the personality of the user is available

through the APIs or on other websites.

■ Also, because of the recent leaks(cambridge analytica)

the data is easily available.

■ User independence: collaborative filtering needs other

users' rating to find the similarity between the users and

then give the suggestion. Instead, content-based method

only have to analyze the items and user profile for

recommendation.

■ Transparency: collaborative method gives you the

recommendation because some unknown users have the

same taste like you, but content-based method can tell

you they recommend you the items based on what

features.

■ No cold start: opposite to collaborative filtering, new

items can be suggested before being rated by a

substantial number of users.

Disadvantages:-

■ The disadvantage being to predict the data using all the

user data will not be easily done and also many of the

user data would need to be cleaned. There may be many

anomalies in the data like missing information, fake

informations.

■ Also, many times it happens that as a user progresses

through the different years in his life cycle, example:

child, teen, adult. His personality changes thus, if we

have a user data available when he was a teen it may

not be relevant when he becomes an adult and so on.

■ Limited content analysis: if the content does not contain

enough information to discriminate the items precisely,

the recommendation will be not precisely at the end.

■ Over-specialization: content-based method provides a

limit degree of novelty, since it has to match up the

features of profile and items. A totally perfect

content-based filtering may suggest nothing "surprised."

■ New user: when there's not enough information to build a

solid profile for a user, the recommendation could not be

provided correctly.

■ We would need the latest data from each user to

correctly predict his personality.

2.5. Your solution to solve the problem

Our solution to the problem is to suggest users who have similar

personality and thus increasing the percentage of getting matched. For the

system to successfully recommend a user based on his/her personality it

would have to have data of the user to map to it can be done by collecting

all the personality specific data that would be available from his/her social

media handles. Thus, the system can start creating a personality of the

user and thus map the users likes and dislikes.

After, that is done the system will randomly show people for a while and

would start learning from the users likes and dislikes. So, it can map what

the user likes and thus can start suggesting users who have the same

characteristics in their personality. Thus, increasing the chance of getting a

perfect match. As the systems would start learning from the users choices

using machine learning algorithms like lstm, seq2seq to start differentiating

the users what the user would like and what he would not like. Thus,

mapping a users personality properly and also his/her choices would give

us a better result of suggesting a user on which he is likely to like it.

2.6. Where our solution is different from others

The difference in the solutions from others is that currently every dating app

uses location based matching to match users from one other the only

difference being one gives more privacy control to one user than the other.

Tinder uses your location to send you profiles of people in your area who fit

the criteria you’re looking for (specifically, age and gender).​ ​If you and the

other person swipe right, a little screen pops up informing you there’s a

match (it’s a thrilling moment), and you can introduce yourself. Bumble

works largely the same way, with one major difference: on Bumble, only the

woman can make the first move, which gives women more say in the

dating process. It’s why women say they feel safer on.

The difference in solution here being we would match the users based on

their personality being similar or not and not just randomly suggesting

users based on their location. So, by predicting the personality through

their social media we would have a clear profile of a user of what he likes

and what he doesn't.

Thus, we would be able to give a user a better prediction if who he is

supposed to match and who rather than who he isn’t. Also, after suggesting

a couple of random users at first to learn a user’s needs we can now

provide him with a more realistic match then at the first as we would be

able to learn from the users action on what he likes and dislikes. Thus, this

are the basic difference between the different solutions.

2.7. Why our solution is better

Our solution is better than the one that is in use because of the following

reasons:-

Our solution is to give the recommendations based on the personality of

the users and thus increases the chance of getting a favourable match as it

will recommend it using your personality. It will be able to do so by using

the data you have given in your social media handles photos, posts,

location, updates, statuses. All of this data contribute to your personality

and will help us improve the match that you will get.

After, knowing your personality through your social media handles the

system will try to learn what are your likes and dislikes when you are

looking for the other user. It will do that by first suggesting some random

users and will learn on the basis of that what are your likes and dislikes for

example: you dislike a specific user because they show that they love cats.

The system will read that information and and will try to provide

suggestions on the basis of that. All in all increasing the probability of

suggesting a user that you are likely to be matched with the more often you

use the application the more likely it is that the system learns about your

likes and dislikes and help you in pairing with a perfect match.

Thus, these are the ways are solution is better than the ones currently in

use.

3. Hypothesis

What we’re trying to achieve here is that a user gets smart

recommendations for the profile based on his personality vector.

In this project we plan to implement the models, SVM and word2vec to

evaluate them to understand what factors are most predictive for finding

profiles that a user would like using features set below.

We implemented Supervised Machine Learning models, the model takes a

profile personality vector as input and will output the profiles according to

the preferences of the user.

4. Methodology

4.1. How to generate/collect input data

The data that we need to collect from the user about the information about

his/her personality is available through an .csv file on sites like kaggle

because of the research done on the user data on a different topics. The

data is of the facebook users collected through a survey and has many

fields like status updates, location information, posts and much more.

Though the data is available, the data is not properly cleaned or parsed

and needs to be cleaned in order to get the necessary fields from the

available data.

We would also have to generate some random user data in order to know

display to the user at the beginning from which we will get to know about

the likes and dislikes of the user from which we will get to know the

personality of the user and the users with a following personality trait that

he would be interested in. Thus, to get know this we would have to give the

users a sample amount of profiles to choose from having different

personality traits and this will help us knowing the user better.

These, are the following types of data that we need to generate/collect.

4.2. How to solve the problem

The following flow diagram will give the process in a nutshell.

4.2.1. Algorithm design

We can divide algorithm design into 2 phase :

1.Generate Personality Vector

2.Generate suggestion for User

1. Generate Personality Vector

Method 1 :

1. Iterate steps for every user

a.Count unique word and add frequency for each user.

b.Use Textblob to get sentimental analysis

c. Use SVM for text categorization

d.Add personality vector with Gender to ‘Personality DataSet’

 2. Generate a pair of similar personality vector data set

(Similarity Data Set) with similarity above threshold.

Method 2​:

Word2vec:

Word2Vec is an effective solution to convert text into vector format,

which leverages the context of the target words. Basically, we want to

use the surrounding words to represent the target words with a

Neural Network whose hidden layer encodes the word

representation.

There are two types of algorithms for Word2Vec, Skip-gram and

Continuous Bag of Words (CBOW).

Method 3

1.SVM (Support Vector Machine)

A Support Vector Machine (SVM) is a discriminative

classifier formally defined by a separating hyperplane. In other words, given

labeled training data (supervised learning), the algorithm outputs an optimal

hyperplane which categorizes new examples. In two dimensional space

this hyperplane is a line dividing a plane in two parts where in each class

lay in either side​.

We have 10 different personalities and to predict it we have used different

kernel / types of SVM classifiers such as ‘linear’ , ‘polynomial’ and ‘radial’.

Out of all 3 linear gave the best output as there was clear partition among

data as shown in fig 3. But as we have to predict one class out of 10. SVM

will use one to other classification for each of the class and allocated /

predict highest scoring class as a suitable value.

If we plot SVM for our data, it will be 10 partitions of arbitrary shape and

there will be a almost clear separation among the partitions.

Fig. 3

Skip-gram

For skip-gram model, the input is the target word, while the outputs are the

words surrounding the target words. All the input and output data are of the

same dimension and one-hot encoded. The network contains 1 hidden

layer whose dimension is equal to the embedding size, which is smaller

than the input/ output vector size. At the end of the output layer, a softmax

activation function is applied so that each element of the output vector

describes how likely a specific word will appear in the context. The graph

below visualizes the network structure.

The word embedding for the target words can obtained by extracting the

hidden layers after feeding the one-hot representation of that word into the

network.

With skip-gram, the representation dimension decreases from the

vocabulary size (V) to the length of the hidden layer (N).

CBOW

Continuous Bag of Words (CBOW) is very similar to the skip-gram model.

The idea is that given a context, we want to know which word is most likely

to appear in it.

The biggest difference between Skip-gram and CBOW is that the way the

word vectors are generated. For CBOW, all the examples with the target

word as target are fed into the networks, and taking the average of the

extracted hidden layer. Skip-gram only feeds in the one and only one target

word one-hot vector as input.

2. Generate Suggestion for User using LSTM

Method 1:

1. From Similarity Data-Set, find a generic similar vector

(sim-vector).

2. Find set of vectors from ‘Personality data set’ that are

similar to (sim-vector) using LSTM.

Method 2:

1. Find cosine similarity for a user and some set of other

users as of now and later we can extend to find similarity

that have opposite sex / in same area / city

2. Each user has minimum threshold value that he would

like other person’s personality for eg. user 1 with

threshold 20% will like all other the users/ profiles that

have 20% similarity with his personality

3. Feed user with matching profile and update the database

on its action like ‘Y’ or ‘N’ (He liked it or not)

Cosine Similarity

Cosine similarity is a ​measure of similarity​ between two

https://en.wikipedia.org/wiki/Measure_of_similarity

non-zero vectors of an ​inner product space​ that measures ​cosine​ of

the angle between them.

For vectors A and B,the cosine similarity, is represented by dot

product and magnitude as below:

So we find cosine similarity matrix between n*n users and use upper

triangular matrix to compare with threshold and will sort the output in

ascending order to get the most likely profile to be liked by user at

first and will show him/her with its name and percentage match.

LSTM Networks

Long Short-Term Memory networks – usually just called “LSTMs” – are a

special kind of RNN, capable of learning long-term dependencies. They

were introduced by ​Hochreiter & Schmidhuber (1997)​, and were refined

and popularized by many people in following work. They work

tremendously well on a large variety of problems, and are now widely used.

https://en.wikipedia.org/wiki/Inner_product_space
https://en.wikipedia.org/wiki/Cosine
http://www.bioinf.jku.at/publications/older/2604.pdf

LSTMs are explicitly designed to avoid the long-term dependency problem.

All recurrent neural networks have the form of a chain of repeating modules

of neural network. In standard RNNs, this repeating module will have a very

simple structure, such as a single tan(h) layer.

LSTMs also have this chain like structure, but the repeating module has a

different structure. Instead of having a single neural network layer, there

are four, interacting in a very special way.

The notions of LSTMs are as below.

In the above diagram, each line carries an entire vector, from the output of

one node to the inputs of others. The pink circles represent pointwise

operations, like vector addition, while the yellow boxes are learned neural

network layers. Lines merging denote concatenation, while a line forking

denotes its content being copied and the copies going to different locations.

Method: 4

Random Forest

The random forest is an ensemble approach that can also be thought of as

a form of nearest neighbor predictor.It works as an divide-and-conquer

approach used to improve performance. The main principle behind this

method is that a group of weak learners can come together to form a strong

learner. The figure below provides an example. Each classifier, individually,

is a weak learner, while all the classifiers taken together are a strong

learner.

The data to be modeled are the blue circles. We assume that they

represent some underlying function plus noise. Each individual learner is

shown as a gray curve. Each gray curve which is a weak learner is a fair

approximation to the underlying data. The red curve which here represents

as an strong learner can be seen to be a much better approximation to the

underlying data.

Trees and Forests. The random forest starts with a standard machine

learning technique called a decision tree which, in ensemble terms, is our

weak learner. In a decision tree, an input is entered at the top and as it

traverses down the tree the data gets bucketed into smaller and smaller

sets.

Other example of this model,where the data is driven and made into trees

it advises us, based u

pon

weather conditions, whether to play football. For example, if the outlook is

sunny and the humidity is less than or equal to 70, then it’s probably of to

play football.

The random forest (see figure below) takes this notion to the next level by

combining trees with the notion of an ensemble. Thus, in ensemble terms,

the trees are weak learners and the random forest is a strong learner.

Here is how such a system is trained; for some number of trees ​T​:

1. Sample ​N​ cases at random with replacement to create a subset of

the data. The subset should be about 66% of the total set.

2. At each node:

1. For some number​ ​m, predictor variables are selected at random

from all the predictor variables.

2. The predictor variable that provides the best split, according to

some objective function, is used to do a binary split on that

node.

3. At the next node, choose another m variables at random from

all predictor variables and do the same.

Depending upon the value of m, there are three different possibilities

● Random splitter selection: m =1

● Breiman’s bagger: m = total number of predictor variables

● Random forest: m << number of predictor variables. The alootihtam

suggests three possible values for m: ½√​m​, √​m​, and 2√​m.

Running a Random Forest. When a new input is entered into the system, it

is run down all of the trees. The result may either be an average or

weighted average of all of the terminal nodes that are reached, or, in the

case of categorical variables, a voting majority.

It should be taken into thought that:

● With a large number of predictors, the eligible predictor set will be

quite different from node to node.

● The greater the inter-tree correlation, the greater the random forest

error rate, so one pressure on the model is to have the trees as

uncorrelated as possible.

● As ​m​ goes down, both inter-tree correlation and the strength of

individual trees go down. So some optimal value of ​m​ must be

discovered.

Positives and negatives: Random forest runtimes are quite fast, and they

are able to deal with unbalanced and missing data. Random Forest

weaknesses are that when used for regression they cannot predict beyond

the range in the training data, and that they may over-fit data sets that are

particularly noisy. Of course, the best test of any algorithm is how well it

works upon your own data set.

Neither method can be said to be better than the other in all cases. It

remains to be seen if there is any systematicity as to why and where one

method is better than another.

This figure shows a frequency histogram of the mean precision

improvement over chance for the 72 projects for the random forest:

Method 5:

Logistic Regression

Logistic regression is a statistical method for analyzing a dataset in which

there are one or more independent variables that determine an outcome.

The outcome is measured with a dichotomous variable (in which there are

only two possible outcomes).

In logistic regression, the dependent variable is binary or i.e. it only

contains data coded as 1 (TRUE, success, pregnant, etc.) or 0 (FALSE,

failure, non-pregnant, etc.).

The goal of logistic regression is to find the best fitting (yet biologically

reasonable) model to describe the relationship between the binary

characteristic of interest (dependent variable = response or outcome

variable) and a set of independent (predictor or explanatory) variables.

Logistic regression generates the coefficients (and its standard errors and

significance levels) of a formula to predict a ​logit transformation of the

probability of presence of the characteristic of interest:

where p is the probability of presence of the characteristic of interest.

The logit transformation is defined as the logged odds:

and

Rather than choosing parameters that minimize the sum of squared errors

(like in ordinary regression), estimation in logistic regression chooses

parameters that maximize the likelihood of observing the sample values.

Like all regression analyses, the logistic regression is a predictive analysis.

Logistic regression is used to describe data and to explain the relationship

between one dependent binary variable and one or more nominal, ordinal,

interval or ratio-level independent variables.

Sometimes logistic regressions are difficult to interpret;

Example:

How does the probability of getting lung cancer (yes vs. no) change for

every additional pound a person is overweight and for every pack of

cigarettes smoked per day?

Do body weight, calorie intake, fat intake, and age have an influence on the

probability of having a heart attack (yes vs. no)?

Binary logistic regression major assumptions:

1. The dependent variable should be dichotomous in nature (e.g.,

presence vs. absent).

2. There should be no outliers in the data, which can be assessed by

converting the continuous predictors to standardized scores, and

removing values below -3.29 or greater than 3.29.

3. There should be no high correlations (multicollinearity) among the

predictors. This can be assessed by a correlation matrix among the

predictors. Tabachnick and Fidell (2013) suggest that as long

correlation coefficients among independent variables are less than

0.90 the assumption is met.

At the center of the logistic regression analysis is the task estimating the

log odds of an event. Mathematically, logistic regression estimates a

multiple linear regression function defined as:

logit(p)

for i = 1…n .

Overfitting.​ When selecting the model for the logistic regression analysis,

another important consideration is the model fit. Adding independent

variables to a logistic regression model will always increase the amount of

variance explained in the log odds (typically expressed as R²). However,

adding more and more variables to the model can result in overfitting,

which reduces the generalizability of the model beyond the data on which

the model is fit.

Reporting the R2​. Numerous pseudo-R2 values have been developed for

binary logistic regression. These should be interpreted with extreme

caution as they have many computational issues which cause them to be

artificially high or low. A better approach is to present any of the goodness

of fit tests available; Hosmer-Lemeshow is a commonly used measure of

goodness of fit based on the Chi-square test.

Method 6:

KNN

The ​k​-nearest neighbors algorithm (​k​-NN) is a ​non-parametri​c and instance

based method used for ​classification​ and ​regression​.​ ​In both cases, the

input consists of the ​k​ closest training examples in the ​feature space​. The

output depends on whether ​k​-NN is used for classification or regression.

When we say a technique is ​non-parametric​ , it means that it does not

make any assumptions on the underlying data distribution. In other words,

the model structure is determined from the data. If you think about it, it’s

pretty useful, because in the “real world”, most of the data does not obey

the typical theoretical assumptions made (as in linear regression models,

for example). Therefore, KNN could and probably should be one of the first

choices for a classification study when there is little or no prior knowledge

about the distribution data.

Instance-based​ learning means that our algorithm doesn’t explicitly learn a

model. Instead, it chooses to memorize the training instances which are

subsequently used as “knowledge” for the prediction phase. Concretely,

this means that only when a query to our database is made (i.e. when we

https://en.wikipedia.org/wiki/Non-parametric_statistics
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Feature_space

ask it to predict a label given an input), will the algorithm use the training

instances to spit out an answer.

It is worth noting that the minimal training phase of KNN comes both at a

memory cost​, since we must store a potentially huge data set, as well as a

computational cost​ during test time since classifying a given observation

requires a run down of the whole data set. Practically speaking, this is

undesirable since we usually want fast responses

4.2.2. Language used

1. Python 3.6

4.2.3. Tools used

1. Scikit-Learn

2. Hadoop 2.9.0

3. Map Reduce

4. Anaconda 3 with Jupyter

5. Numpy and Pandas

6. Textblob

7. Seaborn

8. Matplotlib

9. NLTK toolkit

5. Implementation

5.1 Code

coding: utf-8

Read the input data files.
In[1]:
import numpy as np
import os
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
import nltk
import re
import sklearn.metrics.pairwise as sk
from textblob import TextBlob
nltk.download()
from nltk.corpus import stopwords
from sklearn import linear_model
from sklearn.model_selection import GridSearchCV
from sklearn.feature_extraction.text import CountVectorizer

In[4]:
#Read the tweets one by one and process it
import csv
user_id=[]
inpTweets = csv.reader(open('survey_dump_with_tweet_count',
'rt',encoding='utf8'), delimiter=',')
i = 0

for row in inpTweets:
 i+=1;
 if(i>1):
 user_id.append(row[0])
 if('1663416536' in row):
 print(i)
print(i);
Pre-process Tweets

In[6]:
class PreprocessTweets:

 def __init__(self):
 self.name = 'PreprocessTweets'

 #start process_tweet
 def processTweet(self, tweet):

 #Convert to lower case
 tweet = tweet.lower()
 #Convert www.* or https?://* to URL
 tweet = re.sub('((www\.[^\s]+)|(https?://[^\s]+))','URL',tweet)
 #Convert @username to AT_USER
 tweet = re.sub('@[^\s]+','AT_USER',tweet)
 #Remove additional white spaces
 tweet = re.sub('[\s]+', ' ', tweet)
 #Replace #word with word
 tweet = re.sub(r'#([^\s]+)', r'\1', tweet)
 #trim
 tweet = tweet.strip('\'"')
 # Remove all Non-ASCII characters
 tweet = re.sub(r'[^\x00-\x7F]+',' ', tweet)

 return tweet
In[7]:
class FilterStopWords:

 # stopWords = []
 def __init__(self):
 self.name = 'FilterStopWords'
 #initialize stopWords
 self.stopWords = []

 def getStopWordList(self, stopWordListFileName):
 #read the stopwords file and build a list
 stopWords = []
 stopWords.append('AT_USER')
 stopWords.append('URL')
 stopWords.append('[')
 stopWords.append('[')

 fp = open(stopWordListFileName, 'r',encoding='utf8')
 line = fp.readline()
 while line:
 word = line.strip()
 stopWords.append(word)
 line = fp.readline()
 fp.close()
 return stopWords

 def getFeatureVector(self, tweet, stopWords):
 featureVector = []
 #split tweet into words
 words = tweet.split()
 for w in words:

 #replace two or more with two occurrences
 #w = replaceTwoOrMore(w)
 #strip punctuation
 w = w.strip('\'"?,.')
 #check if the word stats with an alphabet
 val = re.search(r"^[a-zA-Z][a-zA-Z0-9]*$", w)
 #ignore if it is a stop word
 if(w in self.stopWords or val is None):
 continue
 else:
 featureVector.append(w.lower())
 return featureVector
Feature Engineering

In[8]:
class FeatureEngineering:
 def __init__(self):
 self.name = 'FeatureEngineering'
 self.featureList = []
 # self.sid = SentimentIntensityAnalyzer()
 #start extract_features
 def extract_features(self,tweet):
 tweet_words = set(tweet)
 features = {}
 for word in self.featureList:
 features['contains(%s)' % word] = (word in tweet_words)
 return features
Create New Training set based on personality labels predicted from
Survey results
 def createNewTrainingSet(self, fileName):
 XTrain = []
 YTrain = []
 XTrainFeatures = []

 XTrainSentiment = []
 XTrainFreqTweets = []
 geo_latitude = []
 geo_longitude = []

 objFilterStopWords = FilterStopWords()
 objPreprocessTweets = PreprocessTweets()

 stopWords =
objFilterStopWords.getStopWordList('TwitterData/StopWords.txt')

 #Read the tweets one by one and process it
 inpTweets = csv.reader(open(fileName, 'r',encoding='utf8'),
delimiter=',')
 next(inpTweets)
 tweets = []
 i = 0
 for row in inpTweets:
 personality = row[5]
 tweet = row[1]
 cleanTweet = tweet.replace('"",""'," ")
 cleanTweet = cleanTweet.replace('""'," ")
 processedTweet =
objPreprocessTweets.processTweet(cleanTweet)

 XTrainFreqTweets.append(int(row[4]))
 wordsList = processedTweet.split()

 # Remove stop words
 filtered_words = [word for word in wordsList if word not in
stopwords.words('english')]
 filteredTweets = ' '.join(filtered_words)

 featureVector =
objFilterStopWords.getFeatureVector(processedTweet, stopWords)

 geo_latitude.append(float(row[2]))
 geo_longitude.append(float(row[3]))

 blob = TextBlob(processedTweet)
 sentiment = 0
 for sentence in blob.sentences:
 sentiment += sentence.sentiment.polarity

 totSentiment = sentiment/ len(blob.sentences)

 XTrainSentiment.append(totSentiment)

 XTrainFeatures.append(filteredTweets)

 YTrain.append(personality)

 return XTrain, YTrain, XTrainFeatures, XTrainSentiment,
XTrainFreqTweets, geo_latitude, geo_longitude
In[9]:
objFeatureEngineering = FeatureEngineering()
fileName = 'TwitterData/survey_dump_with_tweet_count'
XTrain, YTrain, XTrainFeatures, XTrainSentiment, XTrainFreqTweets,
geo_latitude, geo_longitude =
objFeatureEngineering.createNewTrainingSet(fileName)
Get Feature vector
In[10]:
newYTrain = []

for item in YTrain:
 temp = item.replace('[', '')

 temp = temp.replace('\"', '')
 newItem = temp.replace(']', '')
 newYTrain.append(newItem)

YTrain = newYTrain
Map the class labels to numbers

In[11]:
def mapLabels(className):
 if className == 'Conscientiousness':
 return 0
 elif className == 'Extrovert':
 return 1
 elif className == 'Agreeable':
 return 2
 elif className == 'Empathetic':
 return 3
 elif className == 'Novelty Seeking':
 return 4
 elif className == 'Perfectionist':
 return 5
 elif className == 'Rigid':
 return 6
 elif className == 'Impulsive':
 return 7
 elif className == 'Psychopath':
 return 8
 elif className == 'Obsessive':
 return 9
 #elif className == None:
 #return 10
 else:
 pass

YTrain = [mapLabels(x) for x in YTrain]
In[12]:
XTrain = np.array(XTrainFeatures)
YTrain = np.array(YTrain)
In[13]:
YTrain
Split Train and Test data
In[14]:
n=60
trainSamples = XTrain[0:n]
YtrainSamples = YTrain[0:n]

testSamples = XTrain[n:]
YtestSamples = YTrain[n:]

trainSentimentSamples = np.array(XTrainSentiment[0:n])
testSentimentSamples = np.array(XTrainSentiment[n:])
trainFreqTweetSamples = np.array(XTrainFreqTweets[0:n])
testFreqTweetSamples = np.array(XTrainFreqTweets[n:])
Bag of Words as Features
In[15]:
vectorizer = CountVectorizer()
XTr = vectorizer.fit_transform(trainSamples)

trainBagVector = XTr.toarray()
XTe = vectorizer.transform(testSamples)
testBagVector = XTe.toarray()

In[16]:
XEv = XTe
Stack or concatenate all features together

In[17]:
XTrainWordFeatures = trainBagVector #trainNGramVector

temp = np.column_stack((XTrainWordFeatures, trainSentimentSamples))

XTrainAllFeatures = np.column_stack((temp, trainFreqTweetSamples))

XTestWordFeatures = testBagVector #testNGramVector
temp = np.column_stack((XTestWordFeatures, testSentimentSamples))

XTestAllFeatures = np.column_stack((temp, testFreqTweetSamples))

Write Predicted Output Labels to File
In[18]:
def writePredictedLabelFile(YPred):
 f = open("Predictions.csv","w")
 f.write("Id,Label" + "\n")
 for i in range(len(YPred)):
 f.write(str(i) + "," + str(np.around(YPred[i],decimals=2))+ "\n")
 f.close()
In[19]:
train = XTrainAllFeature
YTrain = YtrainSamples
YTest = YtestSamples
In[20]:
from sklearn.neighbors import KNeighborsClassifier

train = XTrainAllFeatures
test = XTestAllFeatures

params = {'neighbours':10}
neighbours = params['neighbours']
neigh = KNeighborsClassifier(n_neighbors=neighbours)

YPredKNN = neigh.fit(train, YTrain).predict(test)
In[21]:
from sklearn.ensemble import RandomForestClassifier
params = {'trees':150, 'criterion':'entropy','random_state':None}
trees = params['trees']
crit = params['criterion']
seed = params['random_state']
clf =
RandomForestClassifier(n_estimators=trees,criterion=crit,random_state=se
ed)
clf.fit(train, YTrain)
YPredRF = clf.predict(test)
In[22]:
#LogReg = linear_model.LogisticRegression(solver = 'sag', multi_class =
'multinomial',penalty='l2', dual=False, tol=0.0001, C=1.0, fit_intercept=True,
intercept_scaling=1, class_weight=None, random_state=None)
LogReg = linear_model.LogisticRegression()
penalty = ['l1', 'l2']
C = np.logspace(0, 4, 10)
hyperparameters = dict(C=C, penalty=penalty)
clf = GridSearchCV(LogReg, hyperparameters)

clf.fit(train, YTrain)
YPredLR = clf.predict(test)
In[23]:
from sklearn import svm
params = {'kernel':'linear'}
ker = params['kernel']
YPred = svm.SVC(kernel=ker, probability = True).fit(train,
YTrain).decision_function(test)
In[24]:
YPred # [7, 8, 6, 4, 9, 7, 9, 6, 1, 6, 7, 2, 4, 2, 2, 7, 9, 7, 9, 7, 8, 6,
#9, 4, 8, 9, 1, 3, 9, 9, 8, 7, 7, 9, 9, 1, 1, 1, 8, 9, 7, 8, 1, 6,

 # 8, 5, 8, 6, 3, 1, 4, 9, 3, 9, 7, 7, 9, 9, 3, 7, 3, 9, 4, 8, 7, 1,
 # 9, 9, 1, 9, 1, 3, 3, 2, 3, 1, 1, 0, 4, 7, 8, 6, 4, 9, 7, 9, 6, 1,
 # 6, 7, 2, 4, 2, 2, 7, 9, 7, 9, 7, 8, 6, 9, 4, 8, 9, 1, 3, 9, 9, 8,
 # 7, 7, 9,9,
 # 1, 1, 1, 8, 9, 7, 8, 1, 6, 8,5, 8,
 # 6, 3, 1, 4, 9, 3, 9, 7, 7, 9, 9, 3, 7, 3, 9, 4, 8, 7, 1, 9, 9, 1,
 #9, 1, 3, 3, 2, 3, 1, 1, 0, 4]'''
In[25]:
dfYPred=YPred
In[26]:
df=pd.DataFrame(data=dfYPred)
In[27]:
dfYPred
In[28]:
pers=['Conscientiousness','Extrovert','Agreeable','Emphathetic','Nov
Seekng','Perfectionist','Rigid','Impulsive','Psychopath','Obsessive']
In[29]:
df.columns=pers
In[30]:
df['dom_pers']=df.idxmax(axis=1)
In[31]:
df['thres']= np.random.randint(10, 100, df.shape[0])
In[32]:
df['user_id']=user_id[n:]
In[33]:
df.set_index('user_id')
df.head(10)
In[34]:
def cosine_sim(df):
 for index, row in df.iterrows():
 print((row[1:10]))
In[35]:
df1=pd.DataFrame(data=sk.cosine_similarity(YPred,YPred))

In[36]:
df1=df1*100
In[37]:
df1.columns=user_id[n:]
df1['user_id']=user_id[n:]
In[38]:
#df_1=df1.loc[df1['user_id'] == '1516255956']
In[39]:
#userid or input
userid='1414166594'
In[40]:
df_d=df.loc[df['user_id'] == userid]

labels = tuple(pers)#'Extrovert', 'Agreeable', 'Empathetic','Novelty
Seeking','Perfectionist','Rigid','Impulsive','Psychopath','Obsessive'
sizes = df_d.iloc[0,:10]
explode = (0.2,0,0.2,0,0.2,0,0.2,0,0.2,0)
fig1, ax1 = plt.subplots()
ax1.pie(sizes, explode=explode, labels=labels, autopct='%1.1f%%',
 shadow=True, startangle=90)
ax1.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.
plt.show()
In[41]:
df_d=df1.loc[df1['user_id'] == userid]
df_2=df_d[(df_d<100) & (df_d>df.loc[df['user_id'] == userid]['thres'].iloc[0])]
df_2=df_2[df_2!='NaN']
df_2.dropna(axis=1,inplace=True)
df_2=df_2.iloc[:,:-1]
df_2=df_2.transpose()
df_2.columns=[1]
df_2=df_2.sort_values(1)
In[42]:
df_2.head()

In[43]:
from IPython import display
def plotSimilarityGraph(userid2):

 user_personality_df=df.loc[(df['user_id'] == userid) |
(df['user_id']==userid2)]

 del user_personality_df['thres']
 del user_personality_df['dom_pers']

 df_melt = user_personality_df.melt('user_id', var_name='Personalities',
value_name='Magnitudes')
 df_melt

 barG=sns.factorplot(data=df_melt,
kind='bar',hue='user_id',x='Personalities',y='Magnitudes',palette='Set1')
 barG.set_xticklabels(rotation=90)
 display.display(barG)
In[45]:
for index,row in df_2.itertuples():
 plotSimilarityGraph(index)
 inp=input("Do you want another suggestion? (y/n): ")
 if(inp=='n'):
 break;

Mapper.py

#!/usr/bin/python

import sys

def main(argv):

 word2count = {}

 line = sys.stdin.readline()

 try:

 while line:

 list = line.split(",")

 print('%s\t%s' % (list[1],list[5]))

 line = sys.stdin.readline()

 except "end of file":

 return None

if __name__=="__main__":

 main(sys.argv)

Reducer.py

#!/usr/bin/python

from operator import itemgetter

from collections import defaultdict

import sys

word2count = {}

l = []

input comes from STDIN

for line in sys.stdin:

 # remove leading and trailing whitespace

 line = line.strip()

 # parse the input we got from mapper.py

 word = line.split('\t')

 if(len(word)==2):

 if(word[0] in word2count):

 word2count[word[0]].append(word[1])

 else:

 word2count[word[0]] = [word[1]]

for word in word2count.keys():

 print '%s\t%s' % (word,word2count[word])

5.2 Design document and flowchart

 6. Data analysis and discussion

6.1 Output generation

6.2 Output Analysis
As, you can see from the generated pie chart above this is a pie chart of a
person and his personality that was derived from his twitter data. We can
see that there are some major personality trends in this chart and from that
we can derive his personality and also after that recommend a person
having a very similar personality like this user by creating their charts and
comparing. Thus, we can get find out personality of any user if we have
his/her data and

Above is the pair of the two users that were recommended to one another
based on their personality that was predicted with the help of the different
modeling algorithms.

You can see from the above chart that the similarities the two person
possess because of their personality and how we compared them using
their individual personality vectors.

6.3 Output against hypothesis

We implemented Supervised Machine Learning models, the model takes a

profile personality vector as input and will output the profiles according to

the preferences of the user.

Our hypothesis was that we give a user smart recommendation for his

profile based on his personality vector and we have been able to achieve it

so far.

It was done using the models that we had decided during the starting of this

project and the evaluation came out to be true as we have been successful

in getting the personality vector from the user.

7. Conclusions and recommendations

7.1 Summary and conclusions

The performance of Linear SVMs and logistic regression are

comparable in practice. SVMs with nonlinear kernel are used if the data

won't be linearly separable (or need to be more robust to outliers than

LR will normally tolerate). Otherwise, we try logistic regression first and

see how you do with that simpler model. If logistic regression fails, we

try an SVM with a non-linear kernel like a RBF.

SVM fits a function (hyperplane) that attempts to separate two classes

of data that could be of multiple dimensions.

SVM could have difficulty when the classes are not separable or there

is not enough margin to fit a (n-dimensions - 1) hyperplane between the

two classes.

However, in our case, the number of features is very large (5230). As the

classes are linearly separable, using SVM with a linear kernel seems a

viable option.

Random Forests generally needs larger number of instances to work its

randomization concept well and generalize to the novel data. In addition, in

one way or another, random forests works with combination of some kind

of soft linear boundaries at the decision surface thus I believe that this is

still below the success of max margin SVM non linear boundaries.

Thus if you have small amount of data compared to possible variations of

the instances than SVM is better choice.

7.2 Recommendations for future studies
For further studies and recommendations we can use the same set of data
and try using other distribution models than the ones we have tried on this
dataset.

By doing so we can know how the other type compares to this data models
and also we can extent that by also changing the data set and trying the
different models on different dataset.

Thus, by doing so, we can come to know about the feasibility of the data
with the different models and how successfully it can compute and predict
the personality of the user and after doing that the important thing to also
take care of is that how well it can predict the right person to match it with.

Thus, in the future studies we can try using different neural models to get
the best match case scenario on different data sets and can thus come to a
conclusion that a particular model is the best for this type of recommender
system.

8. Bibliography

● [1] Chris Sweeney Liu Liu Sean Arietta Jason Lawrence. "HIPI: A

Hadoop Image Processing Interface for Image Based MapReduce

Tasks." University of Virginia.

● “Mining of Massive Datasets,2nd Edition”, by Anand Rajaraman, Jure

Leskovec, Jeffrey D. Ullman, ISBN: 978-1107077232,

Cambridge 2014.

● ACM Digital Library -Assessing personality using demographic

information from social media data,

https://dl.acm.org/citation.cfm?id=2789187.2789201

● Analyzing Personality through Social Media Profile Picture Choice,

http://wwbp.org/papers/persimages16icwsm.pdf

● Point-of-Interest Recommendation for Location Promotion in Location

Based Social Network,

https://ieeexplore.ieee.org/document/7962475​/

● Adaptive Location Recommendation Algorithm based on Location

https://dl.acm.org/citation.cfm?id=2789187.2789201
http://wwbp.org/papers/persimages16icwsm.pdf
https://ieeexplore.ieee.org/document/7962475/

Based Social Networks,

https://ieeexplore.ieee.org/document/7250231/

● Knowledge-driven Approach to Predict Personality Traits by

Leveraging Social Media Data,

https://ieeexplore.ieee.org/document/7817065/

● Understanding LSTM Networks,

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

● https://medium.com/@adi.bronshtein/a-quick-introduction-to-k-neares

t-neighbors-algorithm-62214cea29c7

● https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

● https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/

● https://www.medcalc.org/manual/logistic_regression.php

● http://www.statisticssolutions.com/what-is-logistic-regression/

● https://en.wikipedia.org/wiki/Support_vector_machine

● https://blog.statsbot.co/support-vector-machines-tutorial-c1618e635e

93

● https://en.wikipedia.org/wiki/Cosine_similarity

● http://blog.christianperone.com/2013/09/machine-learning-cosine-simi

larity-for-vector-space-models-part-iii/

● https://pandas.pydata.org/

● https://www.anaconda.com/

https://ieeexplore.ieee.org/document/7250231/
https://ieeexplore.ieee.org/document/7817065/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://medium.com/@adi.bronshtein/a-quick-introduction-to-k-nearest-neighbors-algorithm-62214cea29c7
https://medium.com/@adi.bronshtein/a-quick-introduction-to-k-nearest-neighbors-algorithm-62214cea29c7
https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/
https://www.medcalc.org/manual/logistic_regression.php
http://www.statisticssolutions.com/what-is-logistic-regression/
https://en.wikipedia.org/wiki/Support_vector_machine
https://blog.statsbot.co/support-vector-machines-tutorial-c1618e635e93
https://blog.statsbot.co/support-vector-machines-tutorial-c1618e635e93
https://en.wikipedia.org/wiki/Cosine_similarity
http://blog.christianperone.com/2013/09/machine-learning-cosine-similarity-for-vector-space-models-part-iii/
http://blog.christianperone.com/2013/09/machine-learning-cosine-similarity-for-vector-space-models-part-iii/
https://pandas.pydata.org/
https://www.anaconda.com/

● https://seaborn.pydata.org/

● http://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://seaborn.pydata.org/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

9. Appendices

9.1 Program flowchart

9.2 Long Short Term Memory Networks

9.3 Random Forest Model

9.4 KNN

THANK YOU!

