

COVID-19 and Machine Learning:
Investigation and Prediction

Team #5:
Kiran Brar

Olivia Alexander
Kimberly Segura

1

Abstract

The COVID-19 virus has affected over four million people in the world. In the U.S. alone, the

number of positive cases have exceeded one million, making it the most affected country. There

is clear urgency to predict and ultimately decrease the spread of this infectious disease.

Therefore, this project was motivated to test and determine various machine learning models that

can accurately predict the number of confirmed COVID-19 cases in the U.S. using available

time-series data. COVID-19 data was coupled with state demographic data to investigate the

distribution of cases and potential correlations between demographic features. Concerning the

four machine learning models tested, it was hypothesized that LSTM and XGBoost would result

in the lowest errors due to the complexity and power of these models, followed by SVR and

linear regression. However, linear regression and SVR had the best performance in this study

which demonstrates the importance of testing simpler models and only adding complexity if the

data requires it. We note that LSTM’s low performance was most likely due to the size of the

training dataset available at the time of this research as deep learning requires a vast amount of

data. Additionally, each model’s accuracy improved after implementing time-series

preprocessing techniques of power transformations, normalization, and the overall restructuring

of the time-series problem to a supervised machine learning problem using lagged values. This

research can be furthered by predicting the number of deaths and recoveries as well as extending

the models by integrating healthcare capacity and social restrictions in order to increase accuracy

or to forecast infection, death, and recovery rates for future dates.

Keywords: COVID-19, time-series forecasting, linear regression, SVR, XGBoost, LSTM, model
evaluation

2

Acknowledgements

We would like to thank Professor Wang for his guidance during this project.

We would also like to thank Kaggle.com for supplying open source data for COVID-19.

3

Table of Contents

Page

ABSTRACT………………….…………………………………………………………………....1

ACKNOWLEDGEMENTS………………………………………………………………....…….2

TABLE OF CONTENTS…….…………………………….………………………………….…..3

CHAPTER

I. INTRODUCTION………………………………………………………………………...5

Research Objective and Problem……………….…………………………………………5

Research Comparisons………………………………………………………………….....7

Scope of Investigation…………………………………………………………………......9

II. THEORETICAL BASES AND LITERATURE REVIEW .…...……………..…………11

Theoretical Background of the Problem……………………………………………..…..11

Related Research………………………..……………...………………………………...17

Proposed Solution…………………..…………………...…………………………….....20

III. HYPOTHESES………………….………………...…………………………………..…23

Positive Hypotheses for Research……………..……………………………………...….23

IV. METHODOLOGY…………………………………………………………………...….24

How to Generate/Collect Input Data……………...………………………………...……24

How to Solve the Problem….………...…………...…………………………………..…26

How to Generate Output………………………..………………………………………..29

How to Test Against Hypotheses……….……………………………………………......30

V. IMPLEMENTATION…………....………………………………………………..……..32

4

Code…………………………………………………………………………………...…32

Design Document and Flowchart………………………………………..………………60

VI. DATA ANALYSIS AND DISCUSSION………………...………...………...…………62

Output Generation and Analysis…………………………………………………………62

Compare Output Against Hypothesis……………………………………………………81

Abnormal Case Explanation……………………………………………………..………82

Discussion…………………………………………………………………………….….83

VII. CONCLUSIONS AND RECOMMENDATIONS………...………...………..………....87

Summary and Conclusions………………………………………………………..……..87

Recommendations for Future Studies……………………………………………………88

VIII. BIBLIOGRAPHY……………………..………………………………………………....90

IX. APPENDIX ………………………..………………………………………….…...…….93

Input/Output Listings………………………………………………………………….....93

5

I. INTRODUCTION

Research Objective and Problem

Objective

The objective of this paper is to conduct a comparative study on the performance of

different machine learning models in forecasting the number of COVID-19 confirmed cases in

the United States.

What is the Problem

The world is at war with a disease that we can’t seem to figure out how to stop from

spreading. The COVID-19 disease is set apart by its ability to spread easily. Exponentially

growing every single day. The biggest challenge we face is a shortage of resources, such as

equipment and health care workers, to aid those who are affected with the disease. As stated in

the paper “Malaria Epidemics Detection and Control Forecasting and Prevention”, “The actual

impact of epidemics depends not only on the increase in specific morbidity, but also on the

general health of the affected population.” Our unreadiness for a disaster of this magnitude has

led the government to declare a national emergency with some states order an executive stay at

home order, in hopes that we “flatten the curve.” The goal is to diminish the amount of people

who have contracted the disease so we can properly care for them. The result of social distancing

has not only impacted the economy but also the mental health for many americans. As health

workers fight tirelessly to save the lives of COVID-19 patients, we believe it will be extremely

valuable to accurately forecast the number of confirmed cases that are expected based on the

current data.

6

COVID-19 is an infectious disease that is caused by severe acute respiratory syndrome.

First identified in December 2019 in Wuhan, China, the disease has spread to over 210 countries

with 1.8 million confirmed cases. COVID-19 is incredibly insidious because of its

asymptomatic transmission -from the time of exposure it may take 5 to 14 days to start showing

symptoms, which include fever, dry cough, and shortness of breath.

In hopes of diminishing the spread, the United States government has placed a country

wide quarantine, where individuals are encouraged to maintain a 6 foot distance and only go out

for the essentials. People must also wear a mask to avoid spreading germ droplets. COVID-19

presented unprecedented challenges as many businesses have experienced a huge economic

downfall, and tons of citizens are no longer working and are worried about where their next

paycheck is going to come from. The impact of COVID-19 is something that we have never seen

in our lifetimes, there has never been a situation of this capacity in many years, and we have

proved to be unprepared. Relief measures such as a stimulus check have been in the works, as

well as urging citizens to wear homemade cotton facemasks.

A few major determinants that are important to note are that the virus is spreading

rapidly, there is no cure or medicine to help combat the disease, and everyone is at risk. Due to

the way the virus has been spreading so rapidly, thousands of people are now infected and we do

not have the resources at hospitals to care for everyone. The possibility of having a cure or

vaccine is said to be expected a year from now. People over the age of 65 who have previously

had chronic diseases are the most at risk. The disease causes the lungs to have complications, and

can cause pneumonia.

7

Research Comparisons

Why This is a Project Related to Class

In machine learning, it is best to attempt several models, based on the purpose and

domain of the data, in order to find the best fit model based on accuracy, performance, cost, etc.

Therefore, we will be applying our learnings from this course by utilizing a linear regression

model to the data, which was a simple model covered in class. We will also extend our learnings

by using machine learning algorithms that are unfamiliar to us, such as SVR, XGBoost, and

LSTMs. By testing different models for time-series forecasting of COVID-19 cases, we can

compare the strengths and weaknesses of different levels of complexities for models. For

example, linear regression is an extremely simple model and will most likely not fit the data

well. However, accuracy can be relative to the domain as well as the complexity or relevance of

the data used in modeling. Therefore, when comparing the performance of linear regression to

more complex models such as SVR, XGBoost, and LSTMs, we can weigh the value of fitting

data to complex models versus simple models.

As we explored and researched different machine learning models, we noticed that using

these models is common for forecasting and modeling of epidemics. We found a study that

evaluated Neural Networks, Support Vector Machines, Random Forests and XGBoost to

determine the best technique to show that human mobility has an impact on the spread of

dengue. The purpose of this paper was to provide solutions for allocating resources in order to

combat the disease.

8

Why Other Approach is No Good

COVID-19 is an ongoing epidemic at the time of this research. Whereas past viruses can

be studied and modeled with the use of mathematical or statistical models once more information

about the virus has been concluded such as how rapidly the virus tends to transmit, most

vulnerable demographic features, mortality rates, etc., these factors are not yet known for

COVID-19 and will not be determined in the foreseeable future until years of research of this

epidemic has been done. Therefore, in the current study of COVID-19, it is vastly appropriate to

attempt to forecast the rate of this epidemic using machine learning.

As this research is presented, the COVID-19 pandemic is new and growing. There are

few resources that are actively working on analyzing the deaths, recovered, and infected patients

of the COVID-19. The new disease therefore lacks research literature and there are no

approaches to be followed. Other papers have been useful to know how other epidemics have

been handled, but COVID-19 has unique factors that differentiate from previous diseases.

Why We Think Our Approach is Better

Machine learning requires less information from the user side, where we currently have

knowledge gaps, and will rather attempt to learn from the data in order to assist us with these

important insights to the spread of the virus. Forecasting COVID-19 cases with dynamic models

through machine learning applications rather than static mathematical and statistical models will

assist in learning from the constantly evolving and updated data.

The ongoing battle with COVID-19 has left researchers working tirelessly to evaluate

how the disease functions and what we could do to diminish the spread. In recent months, there

9

have been few contributions to the area of data analysis for COVID-19, we believe our approach

will offer valuable insight that no recent paper has discussed. Our goal is to find the best machine

learning algorithm that will accurately represent the future of COVID-19 and attempt to make

some observations that will aid in the fight against this pandemic.

Scope of Investigation

COVID-19 cases in the United States are now the worlds-leading both in terms of

confirmed cases as well as deaths related to the virus. As this current epidemic continues to

evolve and scientists and health workers continuously give their best efforts to stop the spread of

this deadly disease, data scientists are also trying to contribute to this effort by analyzing data

and demographics surrounding COVID-19. In this research, we aim to collect time-series data of

COVID-19 cases in the United States in attempts to forecast confirmed cases from the virus

using applications of machine learning. As this epidemic is new and evolving, there is no past

research or studies involving applications of machine learning for COVID-19 predictions.

Therefore, we will research methods of general epidemic modeling to gain insights into

this field as well as researching machine learning models and which may be most beneficial in

predicting time series data. Additionally, in an attempt to understand the distribution of

COVID-19 cases across the United States, we aim to collect demographic data for each state and

perform data exploration on various features. Once time-series and demographic COVID-19 data

for the United States has been collected, related literature and methods have been reviewed and

relevant machine learning models have been selected, we will test the various machine learning

models with the time-series data collected and capture each model’s accuracy in forecasting

10

COVID-19 cases. We will then compare the results of each model by capturing different

statistical metrics to evaluate model accuracy. In doing so, we hope to suggest the best fit model

from our study for the use of future researchers of the COVID-19 epidemic, which may be

studied for decades to come.

11

II. THEORETICAL BASES AND LITERATURE REVIEW

Theoretical Background of the Problem

Linear Regression

Although linear regression can have higher errors than more sophisticated machine

learning models, it can nevertheless have strong performance and is one of the most simplest and

interpretable models[Ristanoski]. We will consider linear regression in this paper as a method for

time series forecasting. Linear regression generates a predictive model by modeling the

relationship between the labels (dependent variable) and explanatory variables (independent

variables). Put differently, the dependent variable can be modeled as the following :

 Given a set of training examples, it can find the parameters (best fit) by minimizing the

distance(cost function) between the model’s prediction and actual labels of training examples.

 1

1 https://sebastianraschka.com/faq/docs/closed-form-vs-gd.html

https://sebastianraschka.com/faq/docs/closed-form-vs-gd.html

12

For linear regression, there are two main approaches for optimizing the cost function: 1)

Solving the system of normal equations(closed form solution) and 2) gradient descent. To find

the weights using the closed form solution, weights are found using the following formula:

. However, if the dataset is small (number of features is greater than the

number of training examples), this approach fails to compute the weights as the matrix XTX will

not be invertible. Alternatively, optimal weights can be found using gradient descent, which

iteratively updates the weights by computing the derivative of the cost function in respect to the

parameter using the whole training set. The weight is updated by moving in the opposite

direction of the gradient, where J is the cost function and is the learning rate:

There are many variants of gradient descent, including Stochastic Gradient Descent (SGD) and

Mini-Batch Gradient Descent (MB-GD). Instead of using the whole training set, SGD and

MB-GD use a random training example or small subset of training data to calculate the gradient,

respectively.

13

To prevent overfitting and constrain model complexity, regularization can be used to

penalize high weights. This can be achieved by adding a regularization term to the cost function,

where the α controls the extent of regularization.

The cost function using L1 norm (Lasso regularization) :

The cost function using L2 norm (Ridge regularization):

XGBoost

Extreme Gradient Boosting (XGBoost) implements gradient boosting machines. This

method works by training models at the same time, with each model trained to improve the

errors of precedent. Models are continued to be added until it has reached its limit on

enhancement. What makes XGBoosting fairly convenient is that it is focused on fixing the

mistakes of the previous model, rather than in algorithms that work all at once making the same

mistakes. Gradient boosting is the name of the approach in which models are trained to predict

the errors of the previous models.

14

The benefits of using XGBoost is that of speed and performance. This method is a very

fast implementation of gradient boosting compared to others. The scalability of XGBoost can be

attributed to a tree learning algorithm for handling sparse data, parallel and distributed

computation, and allowing to process millions of examples in one computer [Chen & Guestrin].

XGBoost solves the following equation: for each x in the data set.

Followed by doing second-order Taylor expansion on the loss function, you get g_m(x) the

gradient and h_m(x) the Hessian. The loss function can be expressed as:

Letting G_jm represent the sum of gradient in region j and H_jm will equal the sum of hessian,

we get a function of

where the optimal weight is:

Plugging it back into the loss function yields: . This is the

structure score for the tree and the goal is to make the score smaller. Thus, each split a proxy is

gained. XGBoost uses regularization to improve its performance . Thus we can rewrite the

function and obtain a the following gain function:

15

Support Vector Regression

 Support Vector Machines (SVM) have also been explored in time series forecasting

[Makridakis, Samsudin]. Ahmed et al. found that SVM to be one of the top performing models in

time series forecasting, whereas another comparative study, conducted by Samsudin et al., even

suggested that support vector machines outperform neural networks for time series forecasting.

The applicability and capability for SVMs to solve the time series forecasting has been attributed

to SVM’s ability to solve nonlinear regression estimation problems [Samsudin].

Specifically, support-vector machines are supervised learning models that construct a

hyperplane such that maximizes the margin between two classes (while minimizing error). When

data is not linearly separable, one can map the data into high-dimensional feature space by a

nonlinear mapping, and then perform linear regression.

To do this, basis functions can be applied to the data point d and query point q, which can

map the point into higher dimensional space. The prediction for a query would look like this:

However, computing dot products of 2 high-dimensional vectors can become very

computationally expensive. To avoid this, nonlinear SVMs use the kernel trick: one can replace

16

the dot product of (d) (q) with the kernel function, which is much less costly. The kernelφ • φ

function is capable of computing the (d) (q) by just using the original vectors d and q,φ • φ

which have less dimensions than (d) and (q).φ φ

There are many kinds of kernel functions, such as radial basis, polynomial, etc. that can

be used with support vector machines. One needs to experiment with different kinds and pick the

one with the best score.

Long Short Term Memory networks (LSTM)

LSTMs have attracted a lot of interest recently in the forecasting field [Chae, Ahmed]

and will be examined in this paper. Long Short Term Memory networks are a special kind of

artificial neural networks (specifically recurrent neural networks) capable of learning long-term

dependencies from long sequences of observations. The key idea behind LSTM is we want some

information to persist over time. Because of its complex architecture consisting of several gates,

LSTMs have the ability to remember values over time and can effectively regulate the flow of

information.

LSTM exploits long term dependencies by the use of cell states Ct, sometimes referred to

as a conveyor belt, that runs through the different cells, enabling the persistence of information

from one memory block to the next. The flow of information is also controlled by gates, which

determine whether values are added to the cell state or discarded. There are 3 types of gates:

input it , output o t, and forget gate f t. These gates consist of nonlinear sigmoid function, which

17

given the previous hidden state and input x, it returns a value from 0 (discard value) to 1 (keep

value). Given input x1, .. xT and y1, …yT, the following equations determine unit

activations[Chniti]:

The overall architecture is:

In the article, “E-commerce Time Series Forecasting using LSTM Neural Network and

Support Vector Regression”, researchers compared the performance of SVR and LSTM on time

18

series forecasting using ecommerce data[Chniti], concluding that multivariate LSTM has higher

accuracy than multivatiate SVR.

Related Work

Related Research to Solve the Problem

There has been a vast array of research conducted in the domain of epidemic modeling.

However, many mathematical and statistical models are unable to capture the complexities of

these incidences. A widely used epidemiological model known as the SIR model (Suseptibles,

Infected, Recovered) computes the predicted number of infected individuals from an epidemic

episode over time within a fixed population, as used in K. Abbas et al., 2005. This study

researched the temporal spread of influenza, an infectious disease similar to COVID-19, using a

SIR model.

Early detection of epidemics is imperative to the health and safety of the human

population. A lot of techniques have been used to identify epidemics, including using social

media to help determine when an epidemic is upon us. A paper written by students from the

University of Tokyo called, Twitter Catches the Flu: Detecting Influenza Epidemics using

Twitter, describes the method of using SVM to extract useful information from tweets of

influenza patients. Their hypothesis is that “Twitter texts reflect the real world in real time” and

in turn help prevent destructive epidemics from occurring. The paper distinguished between

tweets that aren't relevant or provide truthful information, negative tweets, and positive tweets

that were in fact written by those suffering from the flu. “First, we build an annotated corpus of

pairs of a tweet and positive/negative labels. Then, a support vector machine (SVM) (Cortes and

19

Vapnik, 1995) based sentence classifier extracts only positive influenza tweets from tweets. This

paper helps us determine different outlets we can seek for more information about how many

people are actually contracting COVID-19.

Advantage/Disadvantage of those Research

The traditional SIR model used in K. Abbas et al. consists of three differential equations

for each dependent variable segment of the population (S,I,R; with independent variable t), that

involve two parameters, the rate of transmission and the rate of removal. This may be

disadvantageous as these two parameters often need to be estimated. It is difficult to determine,

especially in the midst of an actual epidemic when new data is being developed daily, what the

value of these two parameters are. Additionally, K. Abbas et al. derived their influenza epidemic

data set through synthetic computations using a Bayseian network. However, this raises a

problem when producing epidemic curves, which graph the incidence of the disease over time

from time series analysis of the data sets on different variants of the demographics to identify

risk levels, from the SIR model. This is due to the epidemic curves being based on the

probability distribution of features and their estimated conditional probabilities, this can result in

very inaccurate predictions.

This model assumes that the total number of people in a certain area is a constant which

can help with simplicity and aids information like revealing the overall information transmission

law. However, this can also be considered a disadvantage because it limits the application scope

of the model as in reality, there are always changes in population and some form of interaction

between populations. Also, the model cannot adapt to changes of control policies such as city

20

lockdowns, which would impact the epidemic curve. Additionally, conventional statistical

methods like maximum likelihood estimation require an explicit solution of the time series data

whereas this is difficult to obtain from the SIR model due to the nonlinearity of the model.

Therefore, several approximations are required to fit the SIR model with the epidemic data of

infectious diseases.

Although statistical models have traditionally been used for time series forecasting,

machine learning models have become serious contenders [Ahmed]. In a study conducted using

Korea Center for Disease Control data, researchers found the machine learning models LSTM

and deep neural networks to be more accurate predictors of infectious diseases, such as

chickenpox and scarlet fever, than statistical models like ARIMA [Chae].

Additionally, in another study, Ahmed and others conducted large scale comparison

study of the following 8 machine learning models for time series forecasting: multilayer

perceptron, Bayesian neural networks, radial basis functions, generalized regression neural

networks (also called kernel regression), K-nearest neighbor regression, CART regression trees,

support vector regression, and Gaussian processes. The study concluded multilayer perceptron

and support vector regression to be two of the best performing models, with CART

(classification and regression trees) and radial basis functions having the worst overall

performance. Keeping this ranking in mind, we will avoid using models, like CART and radial

basis functions, which have low accuracy.

Proposed Solution

Our Solution to this Problem, Where it Differs From Others and why it is Better

21

Viruses are significantly complex to model, even with static mathematical or statistical

models, which are generally used for these purposes. Additionally, one of the most widely-used

epidemiological models, the SIR model, depends on two critical parameters to produce its

results, the rate of transmission of the virus and the rate of removal of the virus. In this research,

we are studying an ongoing epidemic where new data, developments, and understandings of the

virus are constantly occurring. Therefore, we are not afforded the luxury of having an estimated

rate of transmission or removal with a good level of confidence. Even influenza (the flu), which

has evidence dating back to 1580, is still being studied and modeled to date. Thus, for the goals

of this study to model and forecast the number of confirmed cases related to COVID-19 in the

United States, we turn to machine learning. Addressing this epidemic from a machine learning

approach rather than a static mathematical or statistical model will be better to allow the model

to learn from the data. In static models, usually based on differential equations with manually set

parameters, there requires human interaction and knowledge of the epidemic. For COVID-19, it

is too early in the epidemics' development to estimate these parameters effectively. Therefore,

we will take advantage of the strength of machine learning to help in the understanding and

forecasting of COVID-19 cases in the United States.

Applications of machine learning for COVID-19 have not been reported in research

papers to date. Therefore, we believe that all models used in this study in attempts to forecast

COVID-19 cases in the United States will be original based on our research. However, as a

consequence of this work being extremely new, we will be relying on the general performance of

different machine learning models to forecast time-series data in order to select the machine

learning models best suited for this study and will examine and compare the results of each

22

respective model. Our hope in modeling this new epidemic and applying new methods to study

its behavior, that we can find and recommend an appropriate machine learning model for

COVID-19 cases, as it may be studied for decades to follow.

 Many researchers have modeled epidemic outbreaks with the use of synthetic data and

simulations. We aim to conduct this research by using authentic and current epidemic data in

connection with machine learning. A major difference in these two approaches is how the

epidemic is modeled: simulations vs. machine learning models. In simulations, one knows and

understands the model of the incidence, but does not have the data. In machine learning, one has

the data for the incidence, but does not know or understand the exact model of it. Additionally,

as stated when using static models such as SIR, there is a requirement to understand several

characteristics of the epidemic. Since we are studying a developing virus, it is hypothesized that

applications of machine learning will greatly fit the needs of this modeling.

However, these machine learning models have not been deployed to forecast confirmed

COVID-19 cases. The purpose of this paper is to 1) solve the problem of forecasting COVID-19

cases and 2) evaluate and compare performance of different machine learning models on

forecasting COVID-19. In particular, our team will compare the following models: linear

regression, support vector machines, XGBoost and LSTM.

 Although there have been significant amounts of studies done on forecasting infectious

diseases, there is limited research on how to effectively apply machine learning models for time

series forecasting on COVID-19. In our paper, we will try to address this gap in research.

23

III. HYPOTHESES

Hypotheses for Research

Our team has a two-part hypothesis regarding the 1) prediction of the COVID-19 and 2)

performance of machine learning models. In terms of COVID-19 cases, we predict a rise in the

number of confirmed cases. There are a number of factors that we have taken into consideration

that have led us to this prediction. First and foremost, the rate at which people are getting

infected has led in a huge decrease of available resources. Hospitals are struggling to accept all

these patients. Additionally, as this virus is completely new, there is not yet a vaccination

available and will most likely not be developed in the near future. Secondly, the country wide

quarantine has not been taken seriously by many citizens. Thirdly, the uncertainty of this disease

and how it has been spreading so quickly, and how it affects the human body. The CDC has said

that it could take up to two weeks before showing any symptoms, between that time of being

infected and showing symptoms you could have infected a number of people who in turn have

affected others; a domino effect.

In terms of our hypothesis for model performance, we predict long short term memory

networks (LSTM) to have the best accuracy, followed by XGBoosting, followed by support

vector machines (SVM) for performing our time-series forecasting of COVID-19. We

hypothesize that the worst accuracy of forecasting prediction will be linear regression as

COVID-19 cases seem to be growing exponentially which a linear model may not be able to

capture.

24

IV. METHODOLOGY

How to Generate/Collect Input Data

From the research we have conducted for related work of epidemic modeling, we have

found that synthesizing epidemic data can lead to inaccurate results from modeling. Data

scientists often use the phrase “Garbage in, garbage out.” This expresses that any data with the

appropriate format can be inputted to a model. However, if the data itself is not accurate or

representative of the subject in study, the results of the model will not be of actual value.

Similarly, as complex as viruses and epidemics can be, there is a certain risk with synthesizing

data. For example, using a Bayesian network and estimating conditional probabilities between

features may not produce accurate results to model the epidemic in study, let alone a new

epidemic in consideration. Likewise, synthetic data that may have produced accurate results for

another epidemic, like influenza, may not be appropriate to use to model COVID-19, as these

two viruses, although they share similar symptoms, do not behave and transmit in an identical

manner. Therefore, we will not be synthesizing or producing code to generate data for this study.

We feel it is crucial to work with authentic COVID-19 data as we hope our results can have an

impact on this critical and evolving epidemic.

We will be utilizing an open-source dataset from Kaggle to collect the time-series data of

COVID-19 in the United States. The data set records (rows) indicate cities that have conducted

COVID-19 testing within the United States, as well as United States territories, for a total of

3,253 records. The state belonging to each record is also specified, along with its latitude and

longitude, total city population, and number of occurrences by day (the time-series data). The

time-series data for each city begins on January 22, 2020, as the first case of COVID-19 in the

25

United States was confirmed on January 20, 2020, less than a month after its discovery in

Wuhan, China. As this is an ongoing epidemic, the data set is being updated twice daily. As we

are researching an ongoing epidemic with new data being produced daily, we will continue to

update our training dataset in the hopes of potentially improving model accuracy as more data

becomes available. For the purposes of this research, we will be studying, monitoring, and

modeling the daily number of confirmed cases of COVID-19 in the United States through

time-series modeling. For reference, this open-source Kaggle dataset is composed from the data

repository for the 2019 Novel Coronavirus Visual Dashboard operated by the Johns Hopkins

University Center for Systems Science and Engineering (JHU CSSE) which is also supported by

ESRI Living Atlas Team and the Johns Hopkins University Applied Physics Lab (JHU APL).

This repository is updated once a day around 23:59 (UTC) for files after February 1st, 2020.

For the purposes of understanding and exploring the COVID-19 cases in the United

States including the distribution among states, we aim to explore population features such as

density, age, gender, health factors, income, etc. to test for possible correlations between the

number of individuals tested, confirmed, or deceased from this virus and the state’s

demographics. To conduct this data exploration, we will be utilizing an open-source data set

from Kaggle that includes COVID-19 cases by state as well as general demographics for each

state. The data set encompasses all 50 states, 1 state per record, as well as the District of

Columbia (Washington D.C., the country’s capital), for a total of 51 records. The features

incorporated in this dataset are the following: State name, # tested, # confirmed, # deaths, #

population, population density, gini coefficient for income inequality, # ICU beds, income per

capita, GDP per capita, unemployment % of state, sex ratio males/females, smoking rate %, flu

26

deaths per 100,000, respitatory deaths per 100,000, # physicians, # hospitals, health spending,

pollution, # med and large airports, % population in urban environment, age groups, and school

closure date. This data set is being updated daily for the total number of individuals tested for

COVID-19, confirmed cases of the virus, and deaths associated with the virus by state.

How to Solve the Problem

Algorithm Design

However, these machine learning models have not been deployed to forecast confirmed

COVID-19 cases. The purpose of this paper is to 1) solve the problem of forecasting COVID-19

cases and 2) evaluate and compare performance of different machine learning models on

forecasting COVID-19. In particular, we will attempt to solve the problem of forecasting by

linear regression, LSTM, support vector machines, and XBboost.

We will first perform exploratory data analysis to find any consistent patterns, significant

trends, seasonalities, and any outliers present in the data. To identify strong relationships/

correlations among the variables, we will plot heatmaps and matrix scatterplots. We also use lag

plots to check for serial correlation /autocorrelation.

In contrast to statistical time series forecasting, where time series data is required to be

stationary (constant mean, variance, autocorrelation over time), there is no such census for

making data stationary for machine learning. While some literature emphasizes the importance

of preprocessing and making data stationary[Zhang], others suggest that machine learning

models are capable of training and predicting raw time series data[Nelson].

Nonetheless, we will consider the common preprocessing techniques for time series data and

27

choose according to our findings from exploratory data analysis. Some common transformations

for time series data include deseasonalization, Box Cox transformation to transform non-normal

dependent variables so they have a “normal shape” and log transformation, which can transform

data following exponential distribution to be linear by taking the logarithm of the values

[Hyndman]. These transformations can also help stabilize the variance of the time series.

We will also consider DIFF, LAGGED- VAL and MOV-AVG preprocessing techniques, as they

have been shown to have a huge impact on model performance [Ahmed]. The preprocessing

techniques will be chosen based on the shape of time series data and model.

● For LAGGED- VAL (no special preprocessing), pick N lagged time series values which

will be the N input variables, where the N is a parameter. The value to be predicted is the

next value (for one-step ahead forecasting).

● For MOV-AVG (moving averages) - compute the moving averages with varying sized

windows. The purpose of this is to smooth short term fluctuations so long term trends are

highlighted.

● For DIFF (differencing) - compute the differencing between consecutive observations.

Differencing can also reduce/eliminate trends and seasonality of the data while

eliminating varying mean.

28

The transformations chosen will depend on the machine learning model and shape of the

data. If the data indicates long term average to have some significance, MOV-AVG will be

applied, etc. In the article “An Empirical Comparison of Machine Learning Models for Time

Series Forecasting”, Ahmed demonstrated that “differencing is not always a good strategy for

nonstationary time series, and the converse is true for stationary time series”. Moreover, they

found that LAGGED-VAL and MOV-AVG yielded the best performance for machine learning

models.

Once the data has been transformed appropriately, it will then input to our machine

learning models: support vector machines, linear regression, XGBoost, and LSTM.

Language Used

The data cleansing, modeling, and data analysis for this research will be conducted with

the Python programming language for its extensive support libraries, open source modules, ease

of use, and speed.

Tools Used

Because machine learning can be computationally expensive, we will be using Google

Collab, a free cloud service, that executes code on Google’s cloud servers, allowing us to

leverage Google’s powerful hardware (specifically GPUs).

We will use matplotlib library for exploratory data analysis, such as scatter plots and

heatmaps. We will be using scikit-learn Python library for linear regression

29

(sklearn.linear_model), support vector regression(sklearn.svm), and hyperparameter

optimization (sklearn.GridSearchCV). To implement linear regression, scikit-learn offers two

functions- LinearRegression (using closed form solution) and SGDClassifier(stochastic gradient

descent).We will consider both of these during our project. To implement deep learning models,

such as LSTM, we will be using Keras (Tensorflow’s high level API). Specifically, Keras

provides a Sequential model API, which we will use to create a Sequential instance and add

layers to it.

How to Generate Output

After data cleansing has been completed, the training dataset will be inputted to each

program for the different machine learning models in this study. The model’s will then attempt to

forecast COVID-19 confirmed cases. Additionally, validation of each model’s output will be

performed by using k-fold cross validation. This validation method is chosen for this study over

splitting the entire dataset into training and testing portions as there is already very limited

time-series data for COVID-19. Using k-fold cross validation to evaluate the different machine

learning models will give us better confidence with our model results by splitting the dataset into

training and testing subsets, training the model on the training data portion, and testing the model

on the remaining testing data portion. However, with this method, this procedure is done k times,

for different splitting subsets of the data set. The advantage of this method for our study is that

we do not have to permanently leave out a certain percentage of the data set for testing purposes,

as our data set is already limited. Rather, this method replaces the testing set back into the

training set after its evaluation is complete, and selects another section of the data set for testing.

30

After the program has run through each model (SVR, XGBoost, LSTM, and Linear Regression)

for each data set (confirmed cases in U.S) including k-fold cross-validation of their respective

results, we will capture their forecast results as the models output as well as the forecast accuracy

of each run.

How to Test Against Hypotheses

To address our hypothesis of model performance, based on related research in this field

as well as general Machine Learning knowledge, several measures of model accuracy will be

computed for each of the models to compare successes and shortcomings of each.

The forecasting accuracy of the models will be evaluated by the following statistical

metrics: mean squared error(MSE), root mean squared error(RMSE), and SMAPE. From our

research, we found all these three to be the most popular for evaluating performance of time

series forecasting machine learning models[Hyndman]. RMSE is more sensitive to outliers as it

will give a lot more weight to large errors . 2

Both of these, however, scale dependent errors, meaning it can be very hard to compare

errors between series of different units. This leads us to include “symmetric” mean absolute

percentage error (SMAPE), a scale independent measure, as a performance metric in this study.

Although it has been criticized as a symmetric measure (over- and under-forecasts are not treated 3

2 https://otexts.com/fpp2/accuracy.html
3 https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0174202

https://otexts.com/fpp2/accuracy.html
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0174202

31

the same), it is very robust to outliers and independent of units. The formula for SMAPE is as

follows:

For the hypothesis of continued rising COVID-19 cases for the remainder of this

research, we will continue to update our training dataset to include the new daily confirmed

cases. Once the models in study have been assembled, we will run the updated data set daily

through the models and capture the different accuracy metrics. If the number of confirmed cases

do not rise, and rather remain constant, or drop, the machine learning models would not be

capable of predicting and capturing that spontaneous decline. Therefore, we can test this

hypothesis by continuously monitoring the accuracy rate of the models which may indicate a

sudden change in the data through a plateau or decline in cases rather than an incline.

Additionally, we can monitor the visual representations of the data set from the data exploration

phase of this study including the time series plots of new daily cases, which will also reveal a

potential change in trend.

32

V. IMPLEMENTATION

(Code) Part 1: Investigation

Feature engineering:

First, we did population adjustments to our data in order to state level comparison.

Specifically, we calculated new features as per-capita. We saw this helped with identifying and

calculating the correlations. So, instead of the raw number of confirmed cases, we considered

data per-hundred thousand:

Exploratory Data Analysis:

Line Dot Plots-

The following line plots gives us an overview of how the covid-19 data is distributed for

California. We plotted the count of positive cases, number of deaths, new cases, new deaths,

hospitalized, and the number of tests allotted in California. We are seeing an exponential growth

in all the cases. Despite incidents starting as early as December 2019, the World Health

Organization publicly announced deep concern on COVID-19 in March 2020. The CDC began

covid-19 surveillance data in March, which is where our x-axis begins. The data tracker is

updated daily and currently the numbers for positive cases in California exceed 70,000. These

line plots provide huge significance to our project because it gives us insight to how we should

expect our results to be after forecasting.

33

An interesting observation we found was that in the count of new cases, we saw no new

cases recorded from April 11 to April 12. This was very out of the ordinary which led us to

consider a few things. April 12 was Easter which is a recognized holiday in the U.S, there may

have been no new recordings because many medical offices are closed, or they may have not

been any test distributed on this day.

The line plots below show the trend of positive cases and new cases in California. We

wanted to see how the trend of positive cases was growing. It is growing exponentially, thus we

can see from this plot that our hypothesis of an increase in cases may hold true.

34

In the process of evaluating the dataset, we thought it would be important to show the

deaths compared to the cases.

Top States for COVID-19:

To look at the bigger picture, we found plotting the top ten states with the highest

numbers useful information for our project. We listed the top 10 states with most deaths, with

New York coming in at numbers in the range of 20,000. Visualizing we wanted to see how those

compared to one another through line plots and a bar chart. This allowed us to see the severity of

each state, in which we quickly realized that New York has exceeding numbers.

35

It is very clear from our graphs that the 10 states with the highest number of positive

cases are: New York, New Jersey, Illinois, Massachusetts, California, Pennsylvania, Michigan,

Texas, Florida, and Georgia. New York has been hit the hardest, with the most cases and deaths

than any other state. We found that California has twice the population but less than half the

testing. Therefore, it is surprising to see that California does not have more cases given this fact.

This graph below displays the number of new cases by day where we can see the change

each day and observe any significant changes to daily values.

36

In order to see which states have been impacted the most severely, we plotted the highest

number of deaths. We also compared the top 10 states with the highest number of deaths with the

top 10 states with highest number of cases. In both instances, we found it true that most cases

also had most deaths.

Interactive Plots with Altair for Deeper Analysis

We found static plots to be very useful to give a broader perspective on how each state

was different from one another in cases. However, to further understand certain anomalies, we

37

needed more features, such as the ability to click on certain data points for more information.

Below are two of the most helpful plots. The following interactive scatter plot below showcases

the total number of covid-19 cases in the US, for the top 10 states. The following left scatter plot

and histogram are connected. In particular, we implemented a filter, which allowed us to drag

and create a filter. Dragging along the filter (gray box) on the scatterplot changed the

corresponding histogram. This was really insightful and revealing to understand how the number

of cases change over time among states. The plot on the right which is also interactive, allowed

us to see specific numbers and they changed over time for different states.

38

Heatmap

To quickly and most effectively visualize correlations between the features, we plotted a

heatmap to identify potential correlations among variables. Here is our code and result:

39

We then plotted scatterplots between variables we suspected had a strong correlation.

Statistical correlation measures the strength between two variables. To summarize the

correlation, we also computed the Pearson coefficient using scipy.stats.pearsonr(x, y), which

returns the Pearson correlation coefficient and the p-value for testing non-correlation. The

correlation coefficient ranges from -1 to 1, indicating strong negative correlation to strong

positive correlation. Value of 0 indicates no correlation.

Furthermore, we computed P-values to determine if the correlation coefficient is

statistically significant. The null hypothesis is stated as "No correlation between the two

variables". If the p < 0.05, we stated that the correlation is statistically significant and can still be

due to chance. However, if p < 0.01, the correlation coefficient is highly statistically significant

and it cannot be attributed to random chance.

Scatter Plot/Correlation

The following are the correlation plots that gave us statistically significant results, using

Pearson coefficient as mentioned above. To reiterate, in order to do a state by state comparison,

we transformed the raw number of confirmed cases to the number of confirmed cases per

(100,000) people. When we looked at those tested, we found correlations between infected,

deaths, and respiratory deaths. This makes sense because those who were infected and died, had

to have had been tested beforehand in order to come to that conclusion. It is important to note

that we assume there have been those who have gone untested and contracted covid-19. Health

spending was another feature we looked at and found correlations between infected, death, and

testing. We predict that states who have higher health spending are most likely going to have

40

more testing which leads to uncovering more people who are infected and unfortunately

eventually die.

In mostly all of these cases, there is one outlier and that is New York. The question arises

then, why are we seeing such high numbers in this one state? One reasoning we discussed was

the timing of social distancing. Humans can be carrying the disease for 2 weeks at most with

little to no symptoms. This means they had the opportunity to unknowingly spread the disease

amongst many more. Time is very sensitive to covid-19, if New York had implemented their

stay-at-home orders a little too late, this could explain why we are seeing high numbers. We also

considered the amount of tests distributed in New York, and who were receiving tests. Only

those who showed severe symptoms were being tested. Given this fact, New York has still tested

more of the population than California. Also, population density is another factor we considered,

New York has a high population density but not by much compared to similar states such as

California. There would be no reason to believe that this could play such a huge factor in the

special case of NY.

The following code depicts how we plotted our graphs and used Pearson’s coefficient in

order to test the correlation relationship. Here you will see the correlations between: Tested and

Infected, Tested and Deaths, Tested and Respiratory Deaths, Infected and Health Spending,

Death and Health Spending, Deaths and Physicians, Tested and Health spending. Lastly, the

code we followed in order to do all the plots.

41

Tested and Infected

Tested and Deaths

Tested and Respiratory

Deaths

Infected and Health

Spending

Death and Health Spending

Deaths and Physicians

Tested and Health

Spending

CODE EXAMPLE (Followed same format for plots)

42

Autocorrelation and Partial Autocorrelation plots

Autocorrelation and partial autocorrelation plots are very crucial in time series analysis

and forecasting and are used to summarize the strength of a relationship with an observation in a

time series with observations at prior time steps. Autocorrelation is a strong and robust filter to

detect bias if noise outweighs the actual signal for the objective time-series. This test is useful as

it reveals information both about the variable as well as the model. Autocorrelation can reveal

wrong estimations of the error variances which in turn makes confidence interval calculations,

significance tests, etc. invalid.

43

(Code) Part 2: Time Series Forecasting (Preprocessing and Model Code)

General approach:

In general, our approach was to first do feature engineering, apply preprocessing

techniques (which are discussed in the following three sections). When applying multiple

preprocessing techniques, we followed the following general order: Box Cox, differencing,

MinMax Scaling/Standardization. In order, to transform our time series data into a supervised

learning problem, we used sliding window/lagged value techniques. We then used grid search for

models like XGBoost and SVR in order to find optimal value for hyperparameters.

BoxCox transformations

Since Covid cases are exponential, doing near-log transform (boxcox optimizes the

lambda transform and resulted in approximately 0 which is a log transform) creates a more-linear

representation of the data to use for linear regression.

44

Power transform on confirmed COVID-19 cases where lambda (power transform coefficient) is

found automatically with a value of 0.046 (close to 0 which is log transform)

Scale/Normalization

Normalization was tested to scale down the data since the number of confirmed

COVID-19 cases are now in the millions in the United States. We normalized y-axis (number of

confirmed cases) to around 0-1 (scaled automatically/optimally by MinMaxScaler() sklearn

function) to get a more concise reference for error values and accuracy of predictions.

Standardization

 Standardization was tested in attempts to make the distribution of our data Gaussian.

Differencing

 In this project, we wanted to examine if differencing would impact performance on

machine learning models. Differencing is a preprocessing technique used to remove trends and

seasonality from a time series dataset. Put differently, it removes autocorrelation and makes data

45

stationary. Since we detected autocorrelation, we tried to perform trend differencing on some of

our models.

After applying differencing once, we got the following results:

46

This indicated that there was still autocorrelation so performed differencing again:

We were able to achieve stationary data after three level differencing:

47

Sliding Window / Lagged Values: Converting time series problem into supervised learning

In order to use machine learning algorithms for time series forecasting, you have to

reframe/restructure the problem so it is a supervised learning problem. So to do this, we used the

sliding window method to to phrase the time series data as supervised learning. Instead of using

the month and date as features to predict the number of cases in the time-series, we also

investigated the use of sliding windows in order to predict confirmed cases. In this technique, a

manually set number of previous days is used to predict the following day’s value. For example,

the test below uses a time step of 7 which means the first 7 days number of confirmed cases will

be the independent value to predict the number of confirmed cases on day 8, then day 2-8 will be

used to predict day 9, day 3-9 to predict day 10, etc.

Grid Search:

We performed a 5 fold cross validation grid search. Here are the snippets of the code we used to

find the optimal hyperparameter for the estimations.

48

For the SVR function linear and RBF kernel there are hyperparameters for C, epsilon,

and gamma(only for nonlinear SVR). C is a regularization parameter for SVR that optimizes the

tradeoff between correct classifications and maximizing the margin whereas gamma defines how

close (high value) or far (low value) a training data influence reaches. The grid search computes

the accuracy of different values of each hyperparameter using the given data. These optimal

hyperparameters are then used in our final models.

For XGboost there are 5 key hyperparameters to be optimized for its grid search: gamma,

subsample, learning rate, number of estimators, and max depth.

● Gamma, as explained for SVR’s grid search, defines how close or far a training data

influence reaches.

● Subsample is the ratio of training data sampled before growing trees to prevent overfitting.

This ratio of sampled data will be performed once for every boosting iteration.

● The learning rate is used to reduce overfitting of training data as this can be a problem with

gradient boosted decision trees by slowing the learning of the model. The learning rate can

manage the weight of new trees added to the model whereas smaller rates generally require

the model to include more decision trees.

49

● The number of estimators (n_estimators) is used to tune the number of decision trees used

in the computation. As each additional tree tries to correct the errors of previous trees, it is

beneficial to test larger and larger values for the number of trees.

● However, another component of decision trees that is essential to consider is its depth.

Having a shallow tree (max_depth is low integer value) generally results in poor

performance as they do not capture the necessary details of the data. Similarly, having a

deep tree (max_depth is a high integer value) generally results in overfitting the data by

capturing too many details from the training dataset which makes generalization difficult or

impossible for incoming data. Therefore, the max_depth parameter is used to tune the

optimal maximum depth for each decision tree when implemented with the given data.

Models:

Linear Regression Model

Linear Regression was the most simple model used in this study as it can be used for

time-series forecasting. The use of linear regression was performed both with linear predictions

and non-linear predictions. Linear predictions were tested for date/COVID-19 day number as the

50

univariate independent variable and number of confirmed/positive cases as the predicted

dependent variable. Time-series are rarely simple enough to be linearly increasing or decreasing

over time which is a major benefit of utilizing lagged values. Nonlinear predictions were tested

for sliding window lagged values where the previous X number of days confirmed case numbers

were used to predict the subsequent next day case numbers. Using lagged value windows creates

more complex models and breaks out of the linear paradigm and creates nonlinear predictions

while still using the simplicity of the linear regression model. The figure below, from

futurelearn.com, shows a linear regression model being utilized for time series, both for a linear

prediction (red line) as well as a nonlinear prediction from lagged values (blue line) which

allows the model to fit cyclical and varying data.

Source: https://www.futurelearn.com/courses/advanced-data-mining-with-weka/0/steps/29456

For both linear and nonlinear predictions, the following lines of code were used to

implement a linear regression model to the data.

https://www.futurelearn.com/courses/advanced-data-mining-with-weka/0/steps/29456

51

Support Vector Regressions Models - Linear and Nonlinear

We tested linear SVR as well as nonlinear SVR with the RBF and polynomial kernels.

Linear SVR and RBF SVR were found to capture the time-series data for confirmed cases most

accurately. Therefore, these two models were tested under various preprocessing techniques and

lagged value time steps in attempts to find the most optimal combination. It was found that linear

SVR with lagged value of 7 days, auto power transformation, no trend differencing, and auto

normalization yielded the lowest errors for MSE and SMAPE.

XGBoost Model

For XGBOOST, after using GridSearchCV to find optimal values on the data, we pass

those values for the parameters in XGBRegressor method, where the objective function is

squared loss. Here is a sample of the code:

For XGBOOST experiments, we had two main approaches: We used the month and day

as the features(X) and the Covid19 cases.

52

We will later discuss in the “Output Analysis” that this resulted in very poor performance.

The second approach was to use lagged values/sliding window approach, where the input

features for each time step i were the previous lag values for i, where lagged value code was

discussed above in this subchapter.

LSTM Network

There were multiple models we tried for LSTM. Out of all the models, LSTM took the

longest to tune. In order to use LSTM for time series forecasting, we first applied Box Cox

transformation, then transformed the observations to have a specific scale. Specifically, to

rescale the data to values between -1 and 1 to meet the default hyperbolic tangent activation

function of the LSTM model. We also tried to scale between 0 and 1. The difference in

performance results will be discussed in output analysis. Lastly, we transformed the time series

data into supervised learning problems by using the create_dataset method.

Our first approach to generate time series data was to use the TimeseriesGenerator

provided by Tensorflow:

We understand this is the most common technique used to generate lagged values and

sliding windows. When we initially used the Time Series Generator, it worked in terms of

53

allowing us to train the LSTM model, but it gave us problems splitting into a validation set. So

we decided to use our own function create_dataset which gave more flexibility. Specifically, the

number of lagged values was set to seven, so each forecast used the previous seven time steps to

make a prediction.

Here is code implementation of the feature engineering steps described above:

54

Before passing our time series into LSTM, one has to reshape the input into three

dimensions, which contain samples(aka Batch size) number of samples that are trained together

for one epoch, time steps,and features.

As shown by the code above, we reshaped X_train so the number of time steps were

equal to the number of observations in X_train, and the number of features was equal to the lag

value.

We picked the best architecture through trial and error, testing various combinations of

number of layers and neurons to see which model would give us the best model. While trying

different number of layers and neurons, we kept the following in mind:

● Using too few neurons in the hidden layers will result in underfitting and the model

won’t be able can’t detect the signals in a complicated data set. On the other hand, using

too many neurons not only results in greater training time but can overfit to training data.

● We started with a simple model and strategically added multiple hidden layers and

increased the number of neurons, but we found that the number of layers did not always

55

correlate with better performance on test data. So we proceeded to use the simple model

(shown below).

● We also used a dropout layer with a 10% drop out rate to reduce overfitting.

● Batch size: The number of batch sizes determine how many samples a network used to

perform weight update. Smaller batch sizes are noisy and offer a regularizing effect.They

generally result in rapid learning. On the other hand, larger batch sizes result in slower,

less volatile and more stable learning processes.

● One epoch means that each sample in the training dataset has had an opportunity to

update the internal model parameters. So, one epoch consists of one or more batches. For

example, as above, an epoch that has one batch is called the batch gradient descent

learning algorithm.

From multiple trails, the resulting best model is:

56

We then fit the model using the X_train and y_train, with epoch of 100 and batch_size of

31, and 30% validation split. Since this is a time series and sequence of training instances is

important, shuffle was set to False.

This fit() function keeps track of the loss while it trains and will return a history trace. In

order to effectively diagnose the behavior of our LSTM models, we decided to plot diagnostic

line plots using the training and validation loss of our LSTM model.

We used diagnostic line plots to detect possible underfitting and overfitting. In general,

here are some examples from the book that demonstrate how to use diagnostic line plots to

understand the behavior of the model.

57

Examples of Diagnostic models for Different Performances

Source: https://machinelearningmastery.com/diagnose-overfitting-underfitting-lstm-models/

Underfit

Overfit

Ideal Model Performance

In general, we used these samples above for interpretation and making adjustments to our

LSTM model accordingly.

Evaluation- SMAPE, MSE, RMSE

MSE and SMAPE were the main model evaluation metrics used in this study. MSE is a

critical error statistic used in many machine learning algorithms and was computed directly from

an sklearn function, seen below. SMAPE was the additional metric to capture error rates for

https://machinelearningmastery.com/diagnose-overfitting-underfitting-lstm-models/

58

various model testings in this study since it provides the percentage of error which is more easily

interpreted than MSE which can have a range of values from 0 to infinity.

Here is a sample code we used for LSTM evaluations:

59

Design Document and Flowchart

The following flowchart was used to test the various models in this study. We had two

main approaches to testing the models: using date/time as the predictor, and using lagged values

as the predictor which was an engineered value. Both approaches were followed by three main

preprocessing techniques of a power transformation to make the data stationary, differencing

which is essential to time-series data to remove trends and/or seasonality, and normalization to

reduce the range of our predicted COVID-19 cases values for easier interpretation. For the model

testings that used the date feature as the predictor, the preprocessing steps were followed by

model testing for linear regression, SVR, and XGBoost. However, using the model evaluation

metrics of MSE, SMAPE, and RMSE, as well as examining the prediction plots, these attempts

were not accurate/successful.

The models that were tested using lagged values from sliding windows showed promising

results after preprocessing techniques. Therefore, additional tests to improve performance were

done including grid search for the SVR and XGBoost models. Linear regression and LSTM were

tested after preprocessing was performed and all four models were again evaluated with various

metrics including MSE, SMAPE, and RMSE.

60

61

VI. DATA ANALYSIS AND DISCUSSION

Output Generation and Analysis

I. Linear regression

The first tests performed for linear regression were to create linear predictions. For the

first attempt, the model was trained on the raw dataset for positive cases against the date

variable. The datetime variable was converted to an integer for COVID-19 day countings. As the

first date of testing in the United States and data contained in the dataset was January 22nd,

2020, this record’s date was changed to 1, and every subsequent date/record was increased by 1.

These values were used in the initial test rather than lagged values, as well as no preprocessing

techniques included. This was conducted as the first test of this model to form a baseline of error

values for eventual implementation of preprocessing techniques. It was hypothesized that if the

given preprocessing technique did not vastly improve the results of the model, it should not be

implemented in attempts to keep the transformations and resulting model as simple and

explainable as possible. The first test conducted on the raw data resulted in the following

prediction and error values with Linear Regression, as shown in Model 0.

Linear Regression Model 0: Raw Data, No Transformations:

62

The second linear prediction model tested also used the COVID Day Number as the

independent variable to predict the number of positive COVID cases. However, in this test, the

number of cases were preprocessed using power transform in an attempt to make the time-series

data more stationary and therefore easier to capture its trends. This step to create an effectively

stationary transformation proved to be more difficult than expected. As seen in the figure below,

using BoxCox() on this date-to-cases prediction yielded a cyclical s-shaped curve to the data

which was not expected, as seen in the figure below for Model 0.1. The original distribution of

cases as seen in Model 0 is fairly exponential in shape. Therefore, in performing a power

transform (of approximately a log transformation), it was expected the resulting data would be

fairly linear. This expected result was achieved by using lagged values and is explained in further

detail below.

Linear Regression Model 0.1: Power Transformation, Standardization, Normalization:

The first method to improve the results from Model 0 and 0.1 was to convert the

time-series data for dates into timestep lagged values to predict following positive case values.

63

Starting at a timestep of 1, a test was conducted for each timestep, increasing by 1 day for each

interval, and recording the resulting MSE and SMAPE, as shown in the table below. Power

transform and normalization were also performed for the subsequent tests as they were found in

all different machine learning models of this study to vastly improve the accuracy results. From a

timestep of 1 day, each succeeding test resulted in lower error values through a timestep of 6

days. We found that a timestep of 7 and 8 days slightly raised the MSE and SMAPE error values.

Therefore, a lagged value of 6 days was selected for the final linear regression model for this

study. Additional tests for this model included manually specifying the values for range

normalization to (-1,1) whereas all other tests were computed automatically with the

MinMaxScaler() sklearn function. This test resulted in higher error rates than allowing the

function to find the optimal range for normalization, therefore was not used in our final linear

regression model. A summary of test variations and results can be found in the table below.

Of all 10 models tested for linear regression including different lagged values, a lagged

value of 6 days, auto power transformation and auto range normalization performed yielded the

lowest error rates. A plot of this test is shown below.

64

II. Support Vector Regression (Linear and Nonlinear)

The first tests conducted for SVR were to explore the general fits of our data, both raw

and transformed values, with SVR under all 3 main kernels used in this model: linear, RBF

(nonlinear), and polynomial (nonlinear). This general exploration was done by feeding the model

the entirety of the raw dataset then the preprocessed dataset (power transform and

standardization). Both of these tests are shown below. Like the first attempt to power transform

the positive cases for linear regression, the right plot below shows the unexpected transform

results because it is using the date/COVID day number values rather than lagged values which

were found to smooth out the transformation into the expected linear trend. From the plot below

on the left, we find that RBF does not fit the raw time-series data in the slightest. The linear

65

kernel, similarly to the first attempt of linear regression, also does not capture the data well. A

degree 2 polynomial is fit to this data in attempts to capture its distribution. From the plot on the

right, the SVR function automatically fits a degree 3 polynomial to the data but is reversely

synced with the increases and decreases of the data. However, the RBF kernel fits the values of

the transformed data very closely, even before we transform the date values to lagged values.

The official models tested below (Model 1-8) include the lagged value transformations and

become the main models to consider for final selection.

For support vector regression, we used both linear support vector regression (LinearSVR)

and nonlinear support vector regression (SVR)from sklearn.svm module. For nonlinear support

vector regression, we went with the rbf kernel. In total, there were 12 resulting models. The

performance output for these models is included below.

66

The table below includes eight of the twelve models, in which the lagged values

remained consistent. The lag value for all of them was 7, so for each of the predictions, the

previous seven time steps were used.

(SVR) Best 2 Models

The best two models were Model 1 and Model 7:

Model 1 used LinearSVR on Box Cox transformed, MinMax scaled (values in

range[0,1]) time series data with lagged values with the previous lagged as features. The MSE

for Model 1 was 0.00009 and SMAPE was 1.145 on test data. After GridSearchCV, the optimal

values for C and epsilon were 1000 and 0.0001, respectively. Model 3.3, the same model but

larger lag value (10 instead of 7), gave very similar performance with MSE of 0.0001094 and

SMAPE of 1.072. The optimal values for C and epsilon, as given by GridSearchCV, were the

same as model -1000 and 0.0001, respectively.

67

Model 1 SVR prediction plot:

Model 7 resulted in the lowest SMAPE. Model 7 was a nonlinear SVR model (rbf

kernel) that used BoxCox transformed data and lag of 7 time steps. Interestingly, this model gave

the lowest SMAPE results even without any normalization or standardization.

Model 7 prediction plot:

68

(SVR) Performance on Raw Data

We also wanted to examine the performance of LinearSVR on raw data (untransformed

and unnormalized) with a lag value of seven. When we tested this(Model 8), our model had a

MSE of 307124112.3 and SMAPE of 1.256. But, as illustrated, still predicted quite nicely:

(SVR) Testing different lag values for different features

We wanted to test the effect of different lag values on performance of linear support

vector regression for time series forecasting. We found the greater lag values resulted in better

performance as shown in the table below:

69

LinearSVR: Experimenting Different Techniques (Normalization/Standardization/None)

Performance comparison of models 5, 5.1, and 5.5, illustrate the importance of testing

different standardization and normalization techniques. All three models were linearSVR models

with lag value of and no Box Cox transformation on time series data. They only differed in the

normalization/standardization techniques (with other variables constant) they used. Model 5,

which used the default feature range for MinMaxScaler ([0,1]), had the best performance. Model

5.1 had the next best performance with a feature range of [-1,1]. Model 5.5, which used the

StandardScaler, had the worst performance.

70

(SVR) Selected Prediction Plots

 Model 3.1: Model 3.2:

 Model 3.4: Model 5:

Model 5.5: Model 6:

 Model 7: Model 8:

71

III. XGBoost

There were 3 general approaches (a total of 18 models) our team generated to explore the

potential effects of differencing and features.

(XGBoost) Approach 1: Using Date Features (Month, Day)

For the first main approach, we decided to use month and day as 2 input features for the

model, with y as the number of COVID19 cases. Even with the Box Cox transformation and

Minmax Scaling(or Standardizing), the model resulted in very poor performance. The image

below (Model 1) was the best performance we achieved by transforming the data with BoxCox

and then standardizing it for preprocessing techniques. However, as highlighted by the image

below, even with the best model, the model was not able to make useful forecasts.

72

The performances of the models tried using month and day as features are summarized

below:

(XGBoost) Approach 2: Lagged Values Features

Next, instead of using month and day as features, we decided to use the sliding window

/lagged value approach to frame the time series data into a supervised problem. This proved to be

an incredibly effective technique to generate accurate forecasts! Overall, model 2.8 and 2.9 gave

the best performances for us, both used Box Cox transformed and scaled data (scaled values

were in range [0,1]). Model 2.8 used a lag of 2 and it resulted in the lowest SMAPE of all models

tested. Model 2.9 used a lag of 1 and it resulted in the lowest MSE of all models tested. Below

are images of model 2.8 and 2.9.

73

Plot of prediction model 2.8 (lag of 2) against true values:

Plot of prediction model 2.9 (lag of 1) against true values:

74

 The worst performing model was model 2.5, which used a lag of 10 (with Box Cox transformed

and normalized data):

In general, our finding was for all of our XGBoost models, a greater lag value results in

worse performance than using a smaller lage value(keeping other variables constant).

The performance of models using this approach are summarized below:

75

(XGBoost) Approach 3: Lagged Feature Values and Differencing

Lastly, we applied the differencing technique. As mentioned before, differencing is

applied after Box Cox transformation and before scaling/normalization. We found that all the

models that used differencing resulted in the worst performance, with the MSE errors ranging

from 46 to 200.

As indicated by the table above, increasing the level of differencing (with other variables

constants) seemed to actually increase mean squared error as shown by Model 3.5 (level one

differenced data) and 3.6 (level two differenced data).

The worst performances were given by Model 3 and model 3.1, with MSE of 192.3 and

200, respectively. Both of these models only used differencing as a preprocessing technique (no

Box Cox or normalization/scaling). Model 3 used a third level differenced data, whereas Model

3.1 used first-level differenced data. These results suggest that differencing alone is NOT enough

to generate accurate time series predictions, even with using lagged value features, highlighting

the importance of normalization, standardization and Box Cox transformation.

76

Model 3 and Model 3.1 are given below (in that order):

The best performance with the differencing technique was Model 3.8, which used lagged

value of 1, Box Cox transformed,normalized, and third- level differenced data.

77

Remaining prediction plots are included here:

Selected XGBoost Prediction Plot

Model 2.5

Model 2.6

Model 2.8

Model 2.9

78

Model 3

Model 3.1

Model 3.5

Model 3.8

Model 3.9

79

IV. LSTM Network

As mentioned before, we were not able to achieve desired performance by using LSTMs

despite multiple techniques, such as BatchNormalization and adding more neurons and layers.

By using the model included in the “Code/Implementation” section. Once, we found the best

model, we ran further experiments to examine the impact of differencing and different lagged

values on performance of LSTMs on univariate time series forecasting.

The results of our experiments for LSTMs are included below:

We found that for LSTMs, differencing resulted in greater performance! This was very

interesting to our team because we did find such performance improvements with other models

such as XGBoost and SVMs. For example by comparing trials 2, 3, 4 with their corresponding

trials 5, 6, 7 (respectively), the impact of differencing is highlighted as trials 5 ,6, 7 use the same

model, parameters, and data as trials 2, 3, 4 except with the additional step of differencing

performed after Box Cox transformation.

Moreover, another interesting finding was a general positive impact of greater lagged

values on increased performance! This can be observed by comparing trials 2 to 3: as the number

of lagged values increase from 3 to 5, the SMAPE and MSE decrease. Similarly from trials 5 to

80

7, as lagged values increased from 3 to 7 with iteration of 2, there is a clear downward trend in

SMAPE and MSE.

Compare Output Against Hypothesis

Our hypothesis had 2 components: COVID-19 case increases and model performance.

We hypothesized that as this research was conducted, the United States would continue to see an

increase of COVID-19 cases. This hypothesis was backed by various facts and options in the

Hypothesis chapter. This hypothesis has unfortunately shown to be true. Additionally, our initial

prediction for model performance was as follows (from best to worse): LSTM, SVM, XGBoost,

and Linear Regression. As stated in the hypothesis chapter, this evaluation would be performed

using various error metrics such as MSE, SMAPE, and RMSE. With all 3 metrics, we found that

our hypothesis was very inaccurate. We predicted that linear regression would provide the worst

prediction results, which is indeed the case for the raw dataset. However, with the use of

preprocessing techniques that are essential to make time-series data stationary before being

tested in models, linear regression ended up producing the lowest errors of all 4 models. We

discuss this surprising result further in the Discussion. This reflects the importance of

preprocessing techniques as well as the power of simple models and the importance to test such

models before jumping to much more complex models. There is no need to overcomplicate a

problem if it is not necessary for the data. Additionally, we hypothesized that LSTM would

perform the best for predicting COVID-19 cases but actually had the worst results of all 4 tested

models. We believe this can be attributed to the size of our dataset. Upon further research, we

discovered that for successful LSTM models, a large training dataset is required. We did

81

hypothesize that SVR would perform 2nd best, which was found to be the case. Additionally, we

grew a greater appreciation for SVR for its overall prediction accuracy. Even when predicting on

the raw dataset before preprocessing, SVR was able to capture the data well with the RBF kernel

then after transformations, the linear kernel predicted the values even more accurately.

Abnormal Case Explanation

● Differencing did not always improve performance. Usually, differencing is very

important to remove trends in the data by detecting autocorrelation and making the data

stationary. However, in this study, differencing only slightly improved the performance

for LSTM, but was not the case for any other tested model in this study for the use of

trend differencing. For example, when tested with XGBoost, adding differencing

significantly decreased the performance.

● SVR had surprisingly accurate predictions on untransformed data, in comparison

to other models. For the raw/untransformed data, SVR’s RBF kernel fits the COVID-19

case data very closely. After preprocessing techniques of lagged values, power

transformation, and normalization, the linear kernel fit the COVID-19 cases even more

accurately, to our surprise as we had seen the power of the RBF kernel in various testings

and additional research. This accuracy on the untransformed data can be attributed to the

small dataset or to poor hyperparameter tuning.

● Not all models improved with greater lagged values. With lagged values, it is

generally found that the greater the lagged value is, the better the performance is. This is

attributed to the fact that more data is being captured to make the prediction. However, in

82

this study, that was not always found to be the case. For linear regression, SVR, and

LSTM, the greater number of lagged values gave better performance. In contrast, smaller

lag values gave better performances in XGBoost.

Discussion

We believe it is generally best to start with models of lower complexity then attempt

models of more complexity or add complexity to existing models. As machine learning can

already be extremely difficult to explain and interpret results or successes of models, it is

beneficial to begin each project with simple models then based on model performance and

particular setbacks, test more complex and appropriate models. For example, we began this

project with a plan of testing 4 vastly different models as far as complexity--from linear

regression to neural networks with LSTM. In our hypothesis, we believed that LSTM would

perform the best because of its complexity and power and that linear regression would perform

the worst due to its simplicity. However, because of the preprocessing techniques used to

stabilize the time-series data in this study with power transform, as well as converting our

time-series problem into a supervised learning problem using lagged values, linear regression

computed this nonlinear prediction with great performance. Conversely, with a model as

complex as LSTM, these tests resulted in the highest errors of all models tested in this study,

most likely due to lack of data. However, SVR demonstrated surprisingly accurate results given

the limited dataset used in this study, outperforming both XGBoost and LSTM. This shows that

no model can solve all problems, no matter how simple or complex. With model selection for

machine learning applications to address various studies, it is essential to test various models

rather than assuming to know which models will or will not perform best.

83

In this project, we found that feature engineering as well as testing and selection of

preprocessing techniques were some of the most important steps for model performance. In

particular, using previous time-step values (lagged values) to predict subsequent time steps had

the most significant impact on performance. This approach was a vast improvement over using

the raw time-series data by predicting confirmed cases using the date features. Another approach

with preprocessing techniques that had incredible contributions to the success of our models was

performing power transformation of the data with BoxCox. Normalization was also helpful to

more clearly understand the successes and fallbacks of the models by scaling down the range of

cases from millions to 0 through 1. In general, using the default MinMaxScaler values of 0 to 1

for range normalization had better performance than setting a manual range of -1 to 1 or

performing standardization with StandardScaler. However, our research has shown that

StandardScaler generally performs very well which is why we emphasize the importance of

testing various preprocessing techniques to verify which have a positive impact on a given

dataset, as not all techniques contribute the same performance across all datasets.

Linear SVR was second best to linear regression prediction results in this study. We

hypothesize this was the case because with the power transform of our time-series data in order

to make the data stationary, the distribution of COVID-19 cases over time went from

approximately exponential to approximately linear after an approximate log transform of the data

in order to remove its trends. The resulting nearly linear data worked well with linear regression

after transforming the independent variable from date to sliding windows. We believe that if our

data was highly nonlinear, SVR (RBF) would have captured our data better and would have been

84

the best performing model in this study, as it tested very well with numerous variations of model

studies conducted in this research.

Linear Regression examines the linear relationship between independent variable(s) X

and dependent variable Y and fits its prediction line by minimizing the sum of squared prediction

error. Support Vector Regression, on the other hand, uses the same classification algorithm of

SVM but is applied to the prediction of continuous data rather than categorical data. A strength

of SVR is its ability to deal with non-linear data where simple linear regression cannot capture

such complexities. The best accuracy using preprocessing data transformations to make the time

series data stationary for SVR was found to be a lagged value of 7 days, performing a power

transform, and normalizing the data. These identical transformations also yielded the second

most accurate results for the Linear Regression of all tests performed for this model. However

MSE and SMAPE results between these two models reveal the strength of Linear Regression in

this study, with an MSE value of 6.44e-05 whereas the same test under SVR yielded an MSE of

9.11e-05. Similarly, Linear Regression also outperformed SVR for this test with an SMAPE of

0.987 and Linear SVR resulting in 1.145.

85

For XGBoosting, we found generally more trees with less depth gave the best

performance. The main takeaways from the testing of this model was the importance and benefit

of applying grid search and testing different methods for hyperparameter tuning for the given

dataset as there is not an ideal value for each parameter that will work with all datasets. The

tuning of these hyperparameters have been found in this study to make a major impact on model

performance. Additionally, as LSTM had the worst and very unstable model performance in this

study, this finding was examined further. For example, by not setting a random seed value in the

model run, which then does not guarantee the same data to be selected for training, the same

model parameters produced vastly different results, most likely due to the small training dataset

in this study, seen below. LSTM also took an extremely long time to tune in attempts to find the

optimal number of layers.

86

VII. CONCLUSIONS AND RECOMMENDATIONS

Summary and Conclusions

The hypothesis of this study was the performance rankings of various machine learning

models in attempts to predict COVID-19 confirmed cases in the United States using time-series

data for the virus. In testing models of linear regression, SVR, XGBoost, and LSTM, it was

hypothesized that LSTM and XGBoost would result in the lowest errors, followed by SVR and

linear regression. It was found through this project that there are various model features and

requirements to consider before making such assumptions about general model performance. For

example, we assumed that LSTM would provide strong results in this study due to the model’s

complexity whereas linear regression would show poor performance due to its simplicity.

However, after researching essential preprocessing techniques for time-series data, the

COVID-19 confirmed cases were power transformed to a semi-linear trend plot and converted to

a supervised machine learning problem through lagged values. These two critical steps improved

the results of all models in this study but linear regression especially benefited from these steps

as the power transform result was easier to fit and the lagged values predictor enabled linear

regression to make a nonlinear prediction plot. Linear regression resulted in great performance in

this study which is why we emphasize the importance and benefit of testing simpler models first

and only adding complexity if the data requires it. Additionally, as the success of linear

regression was only found after various preprocessing techniques, restructuring of the data, and

feature engineering, we also found to not underestimate the importance of these steps, as they

made vast improvements to our models.

87

Conversely, we believe LSTM had low performance in this study due to the size of the

training dataset. After further research of the model and general deep learning, it requires a large

amount of data to perform well whereas we cannot provide that at the time of this study since the

virus is still fairly new. Additionally, it was found to be extremely time consuming to select and

test different numbers of layers and neurons for this model. We believe that years from now

when this pandemic has recovered and there will be a vast amount of data on the event, LSTM

may provide excellent performance on this subject. We also hypothesized that for the course of

this study, COVID-19 cases would continue to rise in the United States which unfortunately has

shown to be true.

Recommendations for Future Studies

We believe the main contribution of this study is the testing and results provided of

various machine learning models to predict COVID-19 cases. We have addressed the strengths

and weaknesses of each model for this task as well as explaining the essential preprocessing

methods that helped improve our results. LSTM was a major limitation in this study due to our

lack of COVID-19 time-series data as it is a new and ongoing pandemic. Additionally, this

complex model requires a lot of time and understanding to tune the number of layers and

neurons. With more time devoted to this model, this may be able to be improved with tuning,

even without having to wait for more time-series data on the virus. However, we believe the

remaining three models of this study were tested extensively and have been captured in this

study with clear and helpful results for future COVID-19 studies. The work of this study can be

furthered by predicting different COVID-19 related time-series features such as number of

88

deaths over time or number of recoveries individuals over time. The models used in this study

can also be extended or additional models can be tested to account for the healthcare capacity of

each state as well as social restrictions in order to increase accuracy or to forecast cases, deaths,

and recovery rates for future dates.

89

VIII. BIBLIOGRAPHY

Abbas, K., Mikler, A. R., Gatti, R., Kaja Abbas University of North Texas, University of North

Texas, Armin R. Mikler University of North Texas, … Alma Mater Studiorum. (2005,

March 1). Temporal Analysis of Infectious Diseases: Influenza. Retrieved from

https://dl.acm.org/doi/10.1145/1066677.1066740

Ahmed, Nesreen & Atiya, Amir & Gayar, Neamat & El-Shishiny, Hisham. (2010). An Empirical

Comparison of Machine Learning Models for Time Series Forecasting. Econometric

Reviews. 29. 594-621. 10.1080/07474938.2010.481556.

Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting System. In

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD ’16). Association for Computing Machinery, New

York, NY, USA, 785–794. DOI:https://doi.org/10.1145/2939672.2939785

Eiji Aramaki, Sachiko Maskawa, and Mizuki Morita. 2011. Twitter catches the flu: detecting

influenza epidemics using Twitter. In Proceedings of the Conference on Empirical

Methods in Natural Language Processing (EMNLP ’11). Association for Computational

Linguistics, USA, 1568–1576. https://dl.acm.org/doi/10.5555/2145432.2145600

Géron, A. (2017). Hands-on machine learning with Scikit-Learn and TensorFlow concepts, tools,

and techniques to build intelligent systems O'Reilly Media Paperback .

Chniti, G., Bakir H., and Zaher, H.. 2017. E-commerce Time Series Forecasting using LSTM

Neural Network and Support Vector Regression. In Proceedings of the International

Conference on Big Data and Internet of Thing. Association for Computing Machinery,

New York, NY, USA, 80–84. https://doi.org/10.1145/3175684.3175695

https://dl.acm.org/doi/10.1145/1066677.1066740

90

Fernando, Lasantha and Lokanathan, Sriganesh and Perera, Amal and Ghouse, Azhar and

Tissera, Hasitha, Improving Disease Outbreak Forecasting Models for Efficient Targeting

of Public Health Resources (November 16, 2017). Available at SSRN:

https://ssrn.com/abstract=3072086 or http://dx.doi.org/10.2139/ssrn.3072086

Han, L., Zhang, Y., Zhang, T., Bosch, Department of Statistics, Yu Zhang Department of

Computer Science and Engineering, … Ibm. (2016, August 1). Generalized Hierarchical

Sparse Model for Arbitrary-Order Interactive Antigenic Sites Identification in Flu Virus

Data. Retrieved from https://dl.acm.org/doi/10.1145/2939672.2939786

Hyndman, R.J., & Athanasopoulos, G. (2018) Forecasting: principles and practice, 2nd edition,

OTexts: Melbourne, Australia. OTexts.com/fpp2.

Hongzhan NIE, Guohaui LIU, Xiaoman LIU, Yong WANG, School of Electrical Engineering,

Northeast China Grid Company Limited Changchun Extrahigh Voltage Bureau,

Changchun, China (2012) Hybrid of ARIMA and SVMs for Short-Term Load

Forecasting. Retrieved from

https://reader.elsevier.com/reader/sd/pii/S1876610212002391?token=283992B333225A

C0C774F4A7384FC457E7833D56846F76E256BBB4C675CEE77D98C246594EF6CCC

D0C746ECD99DE8468

Nelson M, Hill T, Remus B, O’Connor M. Can neural networks applied to time series

forecasting learn seasonal patterns: an empirical investigation. System Sciences, 1994

Proceedings of the Twenty-Sev- enth Hawaii International Conference on. 1994;

3:649–655. https://doi.org/10.1109/HICSS.1994. 323316

https://ssrn.com/abstract=3072086
https://dx.doi.org/10.2139/ssrn.3072086
https://dl.acm.org/doi/10.1145/2939672.2939786
https://reader.elsevier.com/reader/sd/pii/S1876610212002391?token=283992B333225AC0C774F4A7384FC457E7833D56846F76E256BBB4C675CEE77D98C246594EF6CCCD0C746ECD99DE8468
https://reader.elsevier.com/reader/sd/pii/S1876610212002391?token=283992B333225AC0C774F4A7384FC457E7833D56846F76E256BBB4C675CEE77D98C246594EF6CCCD0C746ECD99DE8468
https://reader.elsevier.com/reader/sd/pii/S1876610212002391?token=283992B333225AC0C774F4A7384FC457E7833D56846F76E256BBB4C675CEE77D98C246594EF6CCCD0C746ECD99DE8468

91

Novel Corona Virus 2019 Dataset. (n.d.). Retrieved from

https://www.kaggle.com/sudalairajkumar/novel-corona-virus-2019-dataset

Ranger, N. (2020, April 9). COVID-19 State Data. Retrieved from

https://www.kaggle.com/nightranger77/covid19-state-data

Ristanoski, Goce & Liu, Wei & Bailey, James. (2013). Time Series Forecasting using

Distribution Enhanced Linear Regression. 10.13140/2.1.3300.9921.

Samsudin, R.,Shabri and P. Saad, 2010. A Comparison of Time Series Forecasting using Support

Vector Machine and Artificial Neural Network Model. Journal of Applied Sciences, 10:

950-958.

Sibanda, W. Pretorius, P. Artificial Neural Networks - A review of applications of Neural

Networks in the Modeling of HIV Epidemic. International Journal of Computer

Applications. 2012; 0975-8887.

Zhang GP, Qi M. Neural network forecasting for seasonal and trend time series. European

Journal of Operational Research. 2005; 160(2):501–514.

https://doi.org/10.1016/j.ejor.2003.08.037

92

VII. APPENDIX

Input/Output Generation

Code for the Best Machine Learning Models:

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

Code for COVID 19 Investigation and Exploratory Data Analysis

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

