
1

COEN 281 Term Project

Audio Mining - Predicting voice elicited
features using data mining techniques.

Team 5

Arushi Gupta
Subrahmanya Pramod Nanduri

Aishwarya Gupte
Ruchika Garg

Surya Tamirisa

Instructor
Prof Ming Hwa Wang
Santa Clara University

2

Preface:

Audio/Voice is one of the critical areas of the advancement in the Data mining

and intelligent systems in the present and the future. This project can predict

the features of speech like Gender, Emotion, Speaker classification.

3

Acknowledgement

We would like to thank Dr. Ming-Hwa Wang for teaching us about the topics

we used in this project.

4

Table of Contents

1. Introduction

1.1. Objective

1.2. What is the problem

1.3. Why this is project related to this class

1.4. Why other approach is no good

1.5. Why you think your approach is better

1.6. Area or scope of investigation

2. Theoretical bases and literature review

2.1. Definition of the problem

2.2. Theoretical Background Of The Problem

2.3. Related research to solve the problem

2.4. Advantage/Disadvantage of those research

2.5. Your solution to solve this problem

2.6. Where your solution different from others

2.7. Why your solution is better

3. Hypothesis (or goals)

3.1 Single/multiple hypothesis

3.2 Positive or negative (only for proof correctness) hypothesis

4. Methodology

4.1 How to generate/collect input data

4.2 How to solve the problem

4.2.1 Algorithm design

4.2.2 Language used

4.2.3 Tools used

4.3 How to generate output

4.4 How to test against hypotheses

5. Implementation

5.1 Code

5

5.2 Design Document and Flowchart

6. Data Analysis and Discussion

6.1 Output Generation

6.2 Output Analysis

6.3 Compare Output against hypothesis

6.4 Abnormal Case explanation

6.5 Discussion

7. Conclusions and Recommendations

7.1 Summary and Conclusions

7.2 Recommendation for future studies

8. Bibliography

9. Appendices

9.1 Program Source Code with Documentation

9.2 Input or Output Listings

6

List of Figures:

Fig1: Project goals covering the Speaker, Emotion, Gender functionalities of

the Audio signal.

Fig 2: Shows two phases of Enrollment phase and matching phase

Fig 3: Flow Diagram for the whole project.

Fig 4: Input Label to SVM algorithm.

Fig 5: Output Hyperplane of SVM algorithm

Fig 6 : Reading male and female data

Fig 7 : Merge csv files and assign labels

Fig 8: Emotions determined based on arousal and valence values

Fig 9: Emotions determined based on arousal and valence values

Fig 10: boundaries of emotion detection through SVM

Fig 11: Valence/Arousal graph.

Fig 12: Output for Logistic Regression for Gender Detection

Fig 13 : Emotion detection through SVM.

List of Tables:

-

7

Abstract

Audio/Voice is one of the critical areas of the advancement in the Data mining

and intelligent systems in the present and the future. For instance recent

Google automated voice calling shows the amount of research going in this

area. To stay on top of this, we want to deep dive into Audio Mining, where we

would build a system that can predict the features of speech like Gender,

Emotion, Speaker classification. The proposed system will extract features

from the audio file in real time and perform analysis on these features for

classification. The model will be an ensemble of data mining algorithms to

reduce the number of false positives and improve the overall accuracy.

1. Introduction

1.1 Objective

The objective of the project is to process user’s audio, to be used for work

process automation. Given a speech input, our aim is to identify the speaker,

detect speaker’s gender, and analyze the speaker’s emotion.

1.2 What is the problem

The common misconception with audio mining is that when a user says

something, it is to be understood by the computer. However this is not the

case and even humans misunderstand what someone is saying. This is due to

various factors such as background noise, signal/noise ratio, speaker

dependent and independent features, speech variability and language

characteristics. The speech recognition technology is growing rapidly but has

still not reached its full potential. Accuracy and reliability of the system is

affected by unwanted inputs and low output as results. The first machine to

recognise speech was developed in 1920 and a significant advancement has

8

been observed since then. We need to understand what speech recognition

can be used for and what humans need it for and try to bridge the gap.

Figure 1: Project goals covering the Speaker, Emotion, Gender
functionalities of the Audio signal.

9

1.3 Why this is a project related this class

Voice mining is one of the key project that involves lot of mining techniques

and models. In this project, we are going to apply various mining models to

extract useful information from the data of voice and will train the model to

predict speaker classification, emotion prediction and gender prediction.

Machine Learning has a connection with Data mining in terms of extracting an

underlying representation and knowledge from the high dimensional data. In,

data mining, we care about understanding the key insight of the given

information which is related to our project in which we are interested in

discovering various predictions through voice that can be applied to many

industries. The approach we will take to model an accurate prediction system

of gender, speaker, emotion will utilize multiple techniques in data mining and

pattern recognition. First, by mining a large data set of voice and utilizing

techniques in data mining and voice processing that are crucial for accurate

feature extraction and predicting speaker accurately and emotions of the

speaker and gender of the speaker.

1.4. Why other approach is no good

The most fundamental issue with the current approaches of audio mining is to

choose the right type of mining algorithm and the accuracy of the

algorithm.There are two main approaches to audio data mining . Firstly,

Text-based indexing approach converts speech to text and then identifies

words in a dictionary having several hundred thousand entries. If a word or

name is not in the dictionary, the Large Vocabulary Continuous Speech

Recognizers system will choose the most similar word it can find. Secondly,

phoneme-based indexing approach analyzes and identifies sounds in a piece

of audio content to create a phonetic-based index. It then uses a dictionary of

several dozen phonemes to convert a user’s search term to the correct

phoneme string. Finally, the system looks for the search terms in the index.

Both approaches have some drawbacks as LVCSR generates wrong results

10

when the word is not found in the dictionary and phonetic-based searches can

result in more false matches than the text-based approach, particularly for

short search terms, because many words sound alike or sound like parts of

other words.

1.5. Why you think your approach is better

In our project, we are trying to build a single application that can perform all

the functionalities of audio mining like gender recognition, speaker

classification and emotion recognition. Instead of applying single model, we

will try to apply different models and check for the highest accuracy model for

particular functionality and will use that model for that particular

functionality.

Our proposed approach has the following two steps:

1. Feature Extraction: It splits the input signal into short-term windows

(frames) and computes a number of features for each frame. This

process leads to a sequence of short-term feature vectors for the whole

signal.In many cases, the signal is represented by statistics on the

extracted short-term feature sequences and extracts a number of

statistics (e.g. mean and standard deviation) over each short-term

feature sequence.Features include like Energy,entropy of energy,MFCCs

2. Regression and Segmentation: Regression is important in audio

analysis, e.g. in the context of speech emotion recognition, where the

emotional state is not a discrete class but a real-valued measurement

(e.g. arousal or valence). Segmentation is a very important processing

stage for most of audio analysis applications. The goal is to split an

uninterrupted audio signal into homogeneous segments. Segmentation

can either be

● Supervised: in that case some type of supervised knowledge is

used to classify and segment the input signals. This is either

achieved through applying a classifier in order to classify

successive fix-sized segments to a set of predefined classes, or

using HMM approach to achieve joint segmentation-classification.

11

● Unsupervised: a supervised model is not available and the

detected segments are clustered (example: speaker diarization)

1.6 Area or scope of investigation

The web ,databases and other digitized information storehouses contain a

large volume of audio content.For example newscasts,sporting events,

telephone conversations,recording of meetings, webcasts etc. User wants to

make the most of this material by searching and indexing the digitized audio

content. In this project, we are trying to do audio mining and identify speaker

classification as well as gender classification. Also, we are trying to apply data

mining models to classify speaker emotions and we will compare different

models to find out the most optimized algorithm and we are trying to improve

the accuracy of prediction.

The continued ease of collecting and making available speech from real

applications means that research can be focused on more real-world

robustness issues that appear. Obtaining speech from a wide variety of

handsets, channels and acoustic environments will allow examination of

problem cases and development and application of new or improved

techniques.

There are many other sources of speaker information in the speech signal that

can be used. These include idiolect (word usage), prosodic measures and

other long-term signal measures. The work will be aided by the increasing use

of reliable speech recognition systems for speaker recognition R&D.

High-level features not only offer the potential to improve accuracy, they may

also help improve robustness since they should be less susceptible to channel

effects.

12

2. Theoretical bases and literature review

2.1. Definition of the problem

The problem is analysing audio and mining features from the audio file to

predict speaker, emotion and gender. Our goal is to generate most accurate

model for prediction.

2.2. Theoretical Background Of The Problem

MFCCs are an accurate indicator of a speaker’s gender. Mel-frequency cepstral

coefficients together constitute a Mel-frequency cepstrum. MFCCs are derived

in the following fashion -

Firstly, Fourier transform of a signal is taken, then powers of the spectrum are

mapped above onto the mel scale, using triangular overlapping windows. The

logs of the powers at each of the mel frequencies are taken. The discrete

cosine transform of the list of mel log powers are taken as if it were a signal.

The MFCCs are the amplitudes of the resulting spectrum.

2.3 Related research to solve the problem

The problem involves analysis of audio to predict speaker, emotion and

gender. So research done as a part of audio mining project is focused on each

of these sub-tasks.

Gender prediction - Gender has two classes - male and female. To predict

gender, the insights gleaned from papers referred are as follows -

Gender was classified on basis of five modalities namely acoustic, linguistic,

visual, thermal and physiological. Gender was predicted based on both single

and combined modalities. It was found that highest accuracy using thermal

regions - face, forehead, periorbital(eyes), cheeks, and nose was that from

face. Considering physiological signals, the best results were obtained after

combining all signals. The best results were obtained when vocal features

13

including MFCC were used. Linguistic features were not as useful as compared

to the rest of the features. In case of visual features, the best results were

obtained when all the features including face gestures, hand gestures and

both, highest accuracy was obtained after all features were combined. It was

concluded that vocal features were the most accurate indicator of gender.

Moreover, gender can be recognised from audio from the features - Pitch,

signals, Mel Frequency Cepstral Coefficients(MFCC).

Emotion Prediction - Emotions can be classified into three classes - positive,

negative and neutral. Models are built for binary task of classifying sentiment

into positive and negative classes and three way task of classifying into

positive negative and neutral classes. The experiment was conducted with

three types of models - unigram model, a feature based model and tree kernel

based model. It was found that tree kernels outperform unigram and featured

based models. Combining unigrams with feature based model outperforms

combination of kernels with feature based model.

Speaker prediction - To predict speaker, features are derived from voice

biometrics. To perform this, following insights were gleaned from the

research papers referred.

The steps involved are training phase and matching phase. In the training

phase, input speaker signal is pre-processed and its features are extracted. In

matching phase, the speaker is identified by comparing the test speaker’s

voice features with existing models stored in database.

2.4 Advantages/Disadvantages of the Research
The research suggests that the use of MFCC over other Automatic Speech

Recognition algorithms like, BFCC(Bark frequency Cepstral coefficient),

LPCC(Mel Frequency Cepstral Coefficient), etc, will yield high accuracy rate.

By using three classes of emotion rather than two, we will be able to

differentiate the ones in the border, as neutral. And for this classification we

14

will be using Kernel method, which outperforms, the n-gram method, and best

system method.

The only and major disadvantage of MFCC is by the shape of the filter. Several

filter coefficients might be negative because those might be the components of

eigenvector of a covariance matrix, which means this may result in the output

filter to be negative, thus fails to be converted to the log spectral domain.

2.5 Solution to solve this problem
To solve this typical Audio mining problem statement, we are going to

integrate the SVM based techniques to classify various voice features.

2.6 Where your solution is different from others
We are going to try out SVM based technique instead of the traditional Vector

distance model. We are also going to experiment other techniques like

Random forest to see the performance.

2.7 Why your solution is better

For this classification we will be using SVM method, which out performs, the

methods. We also build a whole framework where multiple voice features are

extracted out of the single point system for uniform access. To understand the

performance, our experiments with other models too will give comparitive

analysis.

15

3. Hypothesis (or goals)

The goal of the project is to develop a user-friendly and efficient system for

determining various speech characteristics. The system receives an input in

the form of a digital audio file and analysis it frame by frame. Given an audio

file, we want the system to be able to classify who is the speaker and what is

the gender and emotion of the speaker. There are many algorithms to solve

this problem and we select the best ones so that we can find the best features.

Through a series of algorithms, the system evaluates the probabilities of each

hypothesis.

3.1 Multiple hypothesis
Our model will reduce the number of false positives to improve the overall

accuracy of the system. In other words, our model should have a low error

rate.

3.2 Positive Hypothesis
Our goal is to take real time audio files from different geographical regions

and create a system to get the best results using an ensemble of data mining

algorithms.

16

4. Methodology

The project is divided into two phases.

1. Enrolment Phase or Training Phase: The enrolment or training phase is

the initial phase where the input speaker signal is pre-processed and its

features are extracted. Pre-processing is a form of cleansing to make it

suitable to identify and extract characteristic features of the speaker

signal. The process of feature extraction will enable the presentation of

the speaker vocal characteristics to construct a model for that particular

speaker.

2. Matching Phase: The matching phrase is responsible to identity the

voice functionalities by comparing the test voice prints with the existing

models stored in the database during the enrolment phase; the

comparison of unique characteristic features is what defines ’matching’

So the input is passed through the enrollment phase and then into the

matching phase which does the match with the existing samples.

We follow the sample process to extract multiple voice functionalities of

Gender, voice and speaker.

We build a framework where we can extend to add further more

functionalities into the system.

The figure which describes the above process is as shown below.

17

Figure 2: Shows two phases of Enrollment phase and matching phase

18

Deeper steps covering these two phases are as given below.

4.1 How to generate/collect input data

Test Input: To test the working of the system, input data can be generated by

taking a Audio signal , which can be taken by either recording and feeding the

voice signal or by importing the wav file into the system.

Training Dataset input:
Dataset that is used for training the system can be fed using a standard csv file

of the features extracted or by feeding the audio signal. If the audio signal is

used , we need an intermediate library which will convert the input signal to

the format of the features. For the purpose of the demonstration, we are going

to convert the speech signal to feature format by using pyAudio analysis open

source library.

4.2 How to solve the problem
4.2.1 Algorithm design :

The simplified version of the problem we have at hand is to predict the voice

related critical features like Gender, Speaker and Emotion .

To solve this, we follow the below process:

Input Parsing & Feature Extraction:
We take the training data collected from various public datasets available and

extract the voice signals into various features as per the format we need.

To achieve this voice interpretation, we use an open-source library called

pyAudioAnalysis to do the voice conversion to MFCC features.

PyAudioAnalysis:
PyAudioAnalysis is a Python library covering a wide range of audio analysis

tasks. Through pyAudioAnalysis we can:

19

● Extract audio features and representations (e.g. mfccs, spectrogram,

chromagram)

● Train, parameter tune and evaluate classifiers of audio segments

● Perform supervised segmentation

● Perform unsupervised segmentation

● Extract audio thumbnails

● Train and use audio regression models

● Apply dimensionality reduction to visualize audio data and content

similarities

Features from Dataset:
Using PyAudioAnalysis, we extract the features from the audio signal . The

features that we target to use are

Duration: length of signal

Meanfreq: mean frequency (in kHz)

SD: standard deviation of frequency

Median: median frequency (in kHz)

MFCC : Mel-frequency cepstral coefficients (MFCCs) are coefficients that

collectively make up an MFCC.

Each extracted feature data is tagged into respective label , for example for

Gender we label the data as Male and Female, where are for Emotion we tag

the labels are Angry, Happy and so on.

20

Figure 3: Flow Diagram for the whole project.

21

Algorithm & Actual Process:

➔ Input data set contains the voice signals that are parsed and MFCC

features are extracted using the PyAudioAnalysis library and tagged as

per the respective labels.

➔ Once we have the extracted feature set, we train the model using the

SVM (Simple vector machine) algorithm to classify the voice features as

per the desired label. During the training phase, each and every dataset

item is given as the input to the Simple Vector machine algorithm for

analysis of future data.

➔ We have the model trained with the training data based out of SVM and

other algorithms, we get the model that can actually classify the future

inputs.

➔ Once we have the model ready, we give the test input to check the

accuracy of the model. Depending on the output, we tune various

parameters of the system and consider various features for further dry

runs to optimize the maximum efficiency.

➔ Now any test voice that needs to be checked with the model , is taken

either by recording or by giving a wav file to the system.

➔ Our system converts the wav file into features and runs through the

model and gives the output to the user.

Simple Vector Machine algorithm:
We plan to use SVM as our algorithm to train the model based out of

supervised learning.

A Support Vector Machine (SVM) is a discriminative classifier formally defined

by a separating hyperplane. In other words, given labeled training data

(supervised learning), the algorithm outputs an optimal hyperplane which

categorizes new examples. In two dimensional space this hyperplane is a line

dividing a plane in two parts where in each class lay in either side.Suppose

you are given plot of two label classes on graph as shown in image. Can you

decide a separating line for the classes? This is what SVM does.

22

Fig 4: Input Label to SVM algorithm.

Fig 5: Output Hyperplane of SVM algorithm:

23

Since this is a best fit for use, we use SVM for training and classification of

voice features.

We use scikit learn

4.2.2 Language used

Python 2.7+

4.2.3 Tools used
● PyAudioAnalysis library.

● Python utilities:

○ Matplotlib: Matplotlib is a plotting library for the Python

programming language and its numerical mathematics extension

NumPy.

○ Scipy & Sklearn: Scikit-learn (formerly scikits.learn) is a free

software machine learning library for the Python programming

language.Its features various classification, regression and

clustering algorithms including support vector machines, random

forests, gradient boosting, k-means and DBSCAN, and is designed

to interoperate with the Python numerical and scientific libraries

NumPy and SciPy.

○ Hmmlearn

○ Simplejson: Simplejson exposes an API familiar to users of the

standard library marshal and pickle modules. It is the externally

maintained version of the json library contained in Python 2.6, but

maintains compatibility with Python 2.5 and (currently) has

significant performance advantages, even without using the

optional C extension for speedups. simplejson is also supported

on Python 3.3+.

○ Numpy: NumPy is a library for the Python programming language,

adding support for large, multi-dimensional arrays and matrices,

along with a large collection of high-level mathematical functions

to operate on these arrays

24

4.3 How to generate output :
To generate the output, we need to train the model and give an input file.

To train the model ,we follow the protocol as

python train_audiomining.py “dataset.path”

4.4 How to test against hypotheses
To generate the output, the protocol we follow is

python audiomining.py “input.wav”

Here audiominig.py is the python file that we write for the purpose of the

demonstration. It takes basic input of input file path , defaulting to the current

directory. Audiomining.py detects the voice features accordingly.

25

5. Implementation

5.1 Code

Gender Recognition:

Train Model for gender detection:
import os

import cPickle

import numpy as np

from scipy.io.wavfile import read

from sklearn.mixture import GMM

import python_speech_features as mfcc

from sklearn import preprocessing

import warnings

import csv

import pandas as pd

gender="female"

val=0

warnings.filterwarnings("ignore")

def get_MFCC(sr,audio):

 features = mfcc.mfcc(audio,sr, 0.025, 0.01, 13,appendEnergy

= False)

 features = preprocessing.scale(features)

 return features

#path to training data

source =

"/Users/arushigupta148/Desktop/pygender/train_data/youtube/"+gen

der+"/"

#path to save trained model

dest = "/Users/arushigupta148/Desktop/pygender/"

files = [os.path.join(source,f) for f in os.listdir(source)

if

 f.endswith('.wav')]

features = np.asarray(())

26

for f in files:

 sr,audio = read(f)

 vector = get_MFCC(sr,audio)

 if features.size == 0:

 features = vector

 else:

 features = np.vstack((features, vector))

gmm = GMM(n_components = 8, n_iter = 200,

covariance_type='diag',

 n_init = 3)

gmm.fit(features)

picklefile = f.split("/")[-2].split(".wav")[0]+".gmm"

#Create csv file

csvfile="/Users/arushigupta148/Desktop/"+gender+".csv"

with open(csvfile, "w") as output:

 writer = csv.writer(output, lineterminator='\n')

 writer.writerows(features)

#Add new column to csv file

df = pd.read_csv(gender+".csv")

df[val] = val

df.to_csv(gender+".csv")

model saved as male.gmm

cPickle.dump(gmm,open(dest + picklefile,'w'))

print 'modeling completed for gender:',picklefile

Test Model for gender detection:
import os

import cPickle

import numpy as np

from scipy.io.wavfile import read

import python_speech_features as mfcc

from sklearn import preprocessing

import warnings

warnings.filterwarnings("ignore")

def get_MFCC(sr,audio):

27

 features = mfcc.mfcc(audio,sr, 0.025, 0.01, 13,appendEnergy

= False)

 feat = np.asarray(())

 for i in range(features.shape[0]):

 temp = features[i,:]

 if np.isnan(np.min(temp)):

 continue

 else:

 if feat.size == 0:

 feat = temp

 else:

 feat = np.vstack((feat, temp))

 features = feat;

 features = preprocessing.scale(features)

 return features

#path to test data

sourcepath =

"/Users/arushigupta148/Desktop/pygender/test_data/AudioSet/femal

e_clips/"

#path to saved models

modelpath = "/Users/arushigupta148/Desktop/pygender/"

gmm_files = [os.path.join(modelpath,fname) for fname in

 os.listdir(modelpath) if fname.endswith('.gmm')]

models = [cPickle.load(open(fname,'r')) for fname in

gmm_files]

genders = [fname.split("/")[-1].split(".gmm")[0] for fname

 in gmm_files]

files = [os.path.join(sourcepath,f) for f in

os.listdir(sourcepath)

 if f.endswith(".wav")]

for f in files:

 print f.split("/")[-1]

 sr, audio = read(f)

 features = get_MFCC(sr,audio)

 scores = None

 log_likelihood = np.zeros(len(models))

 for i in range(len(models)):

 gmm = models[i] #checking with each model one

by one

 scores = np.array(gmm.score(features))

 log_likelihood[i] = scores.sum()

28

 winner = np.argmax(log_likelihood)

 print "\tdetected as - ", genders[winner],"\n\tscores:female

",log_likelihood[0],",male ", log_likelihood[1],"\n"

Logistic Regression:

Regression can be rather important in audio analysis. The input files are taken

in csv format. The data from the female and male csv files are read and their

first columns are dropped to be merged into one file.

Figure 6 : Reading male and female data

The two csv files are merged together into a new csv file. The variable X stores

the features and the y variable has the labels for the data files.

Figure 7 : Merge csv files and assign labels

29

Extract the training and testing data, the testing size here is taken as 1 percent

of the entire file size.

Figure 8: Emotions determined based on arousal and valence values

Emotion Detection:

The values for valence and arousal are calculated and accordingly the emotion

of the speaker is determined. Four emotions are classified based on the values

of arousal and valence.

Figure 9: Emotions determined based on arousal and valence values

Speaker Recognition:

#!/usr/bin/env python2

-*- coding: UTF-8 -*-

File: speaker-recognition.py

Date: Sun Feb 22 22:36:46 2015 +0800

30

Author: Yuxin Wu <ppwwyyxxc@gmail.com>

import argparse

import sys

import glob

import os

import itertools

import scipy.io.wavfile as wavfile

sys.path.append(os.path.join(

 os.path.dirname(os.path.realpath(__file__)),

 'gui'))

from gui.interface import ModelInterface

from gui.utils import read_wav

from filters.silence import remove_silence

def get_args():

 desc = "Speaker Recognition Command Line Tool"

 epilog = """

Wav files in each input directory will be labeled as the

basename of the directory.

Note that wildcard inputs should be *quoted*, and they will be

sent to glob.glob module.

Examples:

 Train (enroll a list of person named person*, and mary, with

wav files under corresponding directories):

 ./speaker-recognition.py -t enroll -i "./bob/ ./mary/

./person*" -m model.out

 Predict (predict the speaker of all wav files):

 ./speaker-recognition.py -t predict -i "./*.wav" -m

model.out

"""

 parser =

argparse.ArgumentParser(description=desc,epilog=epilog,

formatter_class=argparse.RawDescriptionHelpFormatter)

 parser.add_argument('-t', '--task',

 help='Task to do. Either "enroll" or

"predict"',

 required=True)

 parser.add_argument('-i', '--input',

31

 help='Input Files(to predict) or

Directories(to enroll)',

 required=True)

 parser.add_argument('-m', '--model',

 help='Model file to save(in enroll) or

use(in predict)',

 required=True)

 ret = parser.parse_args()

 return ret

def task_enroll(input_dirs, output_model):

 m = ModelInterface()

 input_dirs = [os.path.expanduser(k) for k in

input_dirs.strip().split()]

 dirs = itertools.chain(*(glob.glob(d) for d in input_dirs))

 dirs = [d for d in dirs if os.path.isdir(d)]

 files = []

 if len(dirs) == 0:

 #print "No valid directory found!"

 sys.exit(1)

 for d in dirs:

 label = os.path.basename(d.rstrip('/'))

 wavs = glob.glob(d + '/*.wav')

 print (wavs)

 if len(wavs) == 0:

 print ("No wav file found in {0}".format(d))

 continue

 print ("Label {0} has files {1}".format(label,

','.join(wavs)))

 for wav in wavs:

 fs, signal = read_wav(wav)

 m.enroll(label, fs, signal)

 m.train()

 m.dump(output_model)

def task_predict(input_files, input_model):

 m = ModelInterface.load(input_model)

 for f in glob.glob(os.path.expanduser(input_files)):

 fs, signal = read_wav(f)

 label = m.predict(fs, signal)

 print (f, '->', label)

32

if __name__ == '__main__':

 global args

 args = get_args()

 task = args.task

 if task == 'enroll':

 task_enroll(args.input, args.model)

 elif task == 'predict':

 task_predict(args.input, args.model)

5.2 Design Document and Flowchart
The project is designed in three modules. Voice for gender detection

was processed by GMM and logistic regression. As we have to differentiate

between male and female, we chose Logistic regression, as dependent variable

is dichotomous The accuracy GMM was 86% for both male and female The

logistic regression model achieves an accuracy of 72% on the training set and

71% on the testing set. This is clearly an improvement over the baseline

algorithms. Speaker identification uses the GMM algorithm and Emotion

detection is done by SVM.

First the data is trained with a training set. Based on this, the

algorithm/program will yield results for the test dataset.

Emotion Detection in detail:
From the above figure, it is shown how emotions are classified in SVM

algorithm. Out of which, we have chosen only 4 emotions, namely, happy,

angry, sad and calm.

33

Fig 10: boundaries of emotion detection through SVM

If you observe, we have chosen the elements of differentiation, from four

different quadrants. From this we have now clearly divided our graph as

below.

34

Fig 11: Valence/Arousal graph.

35

6. Data Analysis and Discussion
6.1 Output Generation

The input dataset containing voice .wav format files, which are first used to

train the data. After training, the algorithm is tested with test data to check

the results.

6.2 Output Analysis

Front end Screen

Gender Identification Output:

Logistic regression used for gender detection yields 80.6% accuracy.

36

Figure 12: Output for Logistic Regression for Gender Detection

37

Emotion Identification:
The below figure shows the output for Emotion detection through SVM.

Fig 13 : Emotion detection through SVM.

The first column represents the resulting MSE for the respective SVM C param.

The second comuns shows the MSE achieved on the training dataset (this is to

provide a level of "overfitting"), while the last column shows the "baseline"

MSE, i.e. the MSE achieved when the unknown variable is always set equal to

the average value of the training set.

Speaker Recognition Output:

38

6.3 Compare Output against hypothesis

Hypothesis: Our goal is to take real time audio files from different

geographical regions and create a system to get the best results using an

ensemble of data mining algorithms.

We have created an ensemble of logistic regression and gaussian mixture

model for gender detection. The program takes an audio wav file and

determines the gender and emotion of the speaker. We also populated the

dataset with our voice samples for training the speaker recognition dataset

and testing the dataset with another wav file to determine the speaker.

6.4 Abnormal Case explanation
With less samples in the training sets, these algorithms will have a very low

accuracy. The accuracy is pretty high, like mentioned in the beginning of the

chapter, provided, the train data has a decent number of samples.

6.5 Discussion
Although Logistic regression is one of the important algorithms for gender

classification, GMM out performs it, as it yields higher accuracy.

39

40

7. Conclusions and Recommendations

7.1 Summary and Conclusions

In this project, we have implemented 3 different data mining techniques,

gender detection, speaker prediction and emotion analysis. We have

combined these three data mining techniques, to build an application, which

reads, audio, and implements the above. Gender detection uses GMM

algorithm, speaker prediction uses GMM algorithm, and emotion analysis uses

SVM algorithm.

7.2 Recommendation for future studies

This project can further be designed with higher accuracy, as an automation

system like google’s duplex, which depends on all the three parameters which

we have worked upon. The boundaries of emotion detection can be

redesigned, and can always be explored.

41

8. Bibliography

[1] Salekin, Asif, et al. "Distant Emotion Recognition." Proceedings of the ACM

on Interactive, Mobile, Wearable and Ubiquitous Technologies 1.3 (2017): 96.

[2] Li, Ying, Jose D. Contreras, and Luis J. Salazar. "Predicting voice elicited

emotions." Proceedings of the 21th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. ACM, 2015.

[3] Meo, Rosa, and Emilio Sulis. "Processing affect in social media: a

comparison of methods to distinguish emotions in tweets." ACM Transactions

on Internet Technology (TOIT)17.1 (2017): 7.

[4] Agarwal, Apoorv, et al. "Sentiment analysis of twitter data." Proceedings of

the workshop on languages in social media. Association for Computational

Linguistics, 2011

[5] Li, Panpan, et al. "Short Text Emotion Analysis Based on Recurrent Neural

Network." Proceedings of the 6th International Conference on Information

Engineering. ACM, 2017.

[6] Abouelenien, Mohamed, et al. "Gender-based multimodal deception

detection." Proceedings of the Symposium on Applied Computing. ACM, 2017.

[7] Abouelenien, Mohamed, et al. "Multimodal gender detection." Proceedings

of the 19th ACM International Conference on Multimodal Interaction. ACM,

2017

[8] Yoo, In-Chul, Hyeontaek Lim, and Dongsuk Yook. "Formant-based robust

voice activity detection." IEEE/ACM Transactions on Audio, Speech and

Language Processing (TASLP) 23.12 (2015): 2238-2245.

42

[9] Ramdinmawii, Esther, and V. K. Mittal. "Gender identification from speech

signal by examining the speech production characteristics." Signal Processing

and Communication (ICSC), 2016 International Conference on. IEEE, 2016

[10] Campos, Victor de Abreu, and Daniel Carlos Guimarães Pedronette.

"Effective Speaker Retrieval and Recognition through Vector Quantization and

Unsupervised Distance Learning." Proceedings of the 1st International

Workshop on Multimedia Analysis and Retrieval for Multimodal Interaction.
ACM, 2016.

[11] Tirumala, Sreenivas Sremath, and Seyed Reza Shahamiri. "A review on

Deep Learning approaches in Speaker Identification." Proceedings of the 8th

international conference on signal processing systems. ACM, 2016.

43

9. Appendices

9.1 Program Source Code with Documentation

Gender Recognition:

Train Model for gender detection:
import os

import cPickle

import numpy as np

from scipy.io.wavfile import read

from sklearn.mixture import GMM

import python_speech_features as mfcc

from sklearn import preprocessing

import warnings

import csv

import pandas as pd

gender="female"

val=0

warnings.filterwarnings("ignore")

def get_MFCC(sr,audio):

 features = mfcc.mfcc(audio,sr, 0.025, 0.01, 13,appendEnergy

= False)

 features = preprocessing.scale(features)

 return features

#path to training data

source =

"/Users/arushigupta148/Desktop/pygender/train_data/youtube/"+gen

der+"/"

#path to save trained model

dest = "/Users/arushigupta148/Desktop/pygender/"

files = [os.path.join(source,f) for f in os.listdir(source)

if

 f.endswith('.wav')]

features = np.asarray(())

44

for f in files:

 sr,audio = read(f)

 vector = get_MFCC(sr,audio)

 if features.size == 0:

 features = vector

 else:

 features = np.vstack((features, vector))

gmm = GMM(n_components = 8, n_iter = 200,

covariance_type='diag',

 n_init = 3)

gmm.fit(features)

picklefile = f.split("/")[-2].split(".wav")[0]+".gmm"

#Create csv file

csvfile="/Users/arushigupta148/Desktop/"+gender+".csv"

with open(csvfile, "w") as output:

 writer = csv.writer(output, lineterminator='\n')

 writer.writerows(features)

#Add new column to csv file

df = pd.read_csv(gender+".csv")

df[val] = val

df.to_csv(gender+".csv")

model saved as male.gmm

cPickle.dump(gmm,open(dest + picklefile,'w'))

print 'modeling completed for gender:',picklefile

Test Model for gender detection:
import os

import cPickle

import numpy as np

from scipy.io.wavfile import read

import python_speech_features as mfcc

from sklearn import preprocessing

import warnings

warnings.filterwarnings("ignore")

45

def get_MFCC(sr,audio):

 features = mfcc.mfcc(audio,sr, 0.025, 0.01, 13,appendEnergy

= False)

 feat = np.asarray(())

 for i in range(features.shape[0]):

 temp = features[i,:]

 if np.isnan(np.min(temp)):

 continue

 else:

 if feat.size == 0:

 feat = temp

 else:

 feat = np.vstack((feat, temp))

 features = feat;

 features = preprocessing.scale(features)

 return features

#path to test data

sourcepath =

"/Users/arushigupta148/Desktop/pygender/test_data/AudioSet/femal

e_clips/"

#path to saved models

modelpath = "/Users/arushigupta148/Desktop/pygender/"

gmm_files = [os.path.join(modelpath,fname) for fname in

 os.listdir(modelpath) if fname.endswith('.gmm')]

models = [cPickle.load(open(fname,'r')) for fname in

gmm_files]

genders = [fname.split("/")[-1].split(".gmm")[0] for fname

 in gmm_files]

files = [os.path.join(sourcepath,f) for f in

os.listdir(sourcepath)

 if f.endswith(".wav")]

for f in files:

 print f.split("/")[-1]

 sr, audio = read(f)

 features = get_MFCC(sr,audio)

 scores = None

 log_likelihood = np.zeros(len(models))

 for i in range(len(models)):

 gmm = models[i] #checking with each model one

by one

 scores = np.array(gmm.score(features))

46

 log_likelihood[i] = scores.sum()

 winner = np.argmax(log_likelihood)

 print "\tdetected as - ", genders[winner],"\n\tscores:female

",log_likelihood[0],",male ", log_likelihood[1],"\n"

Speaker Recognition:

#!/usr/bin/env python2

-*- coding: UTF-8 -*-

File: speaker-recognition.py

Date: Sun Feb 22 22:36:46 2015 +0800

Author: Yuxin Wu <ppwwyyxxc@gmail.com>

import argparse

import sys

import glob

import os

import itertools

import scipy.io.wavfile as wavfile

sys.path.append(os.path.join(

 os.path.dirname(os.path.realpath(__file__)),

 'gui'))

from gui.interface import ModelInterface

from gui.utils import read_wav

from filters.silence import remove_silence

def get_args():

 desc = "Speaker Recognition Command Line Tool"

 epilog = """

Wav files in each input directory will be labeled as the

basename of the directory.

Note that wildcard inputs should be *quoted*, and they will be

sent to glob.glob module.

Examples:

 Train (enroll a list of person named person*, and mary, with

wav files under corresponding directories):

 ./speaker-recognition.py -t enroll -i "./bob/ ./mary/

./person*" -m model.out

 Predict (predict the speaker of all wav files):

 ./speaker-recognition.py -t predict -i "./*.wav" -m

model.out

47

"""

 parser =

argparse.ArgumentParser(description=desc,epilog=epilog,

formatter_class=argparse.RawDescriptionHelpFormatter)

 parser.add_argument('-t', '--task',

 help='Task to do. Either "enroll" or

"predict"',

 required=True)

 parser.add_argument('-i', '--input',

 help='Input Files(to predict) or

Directories(to enroll)',

 required=True)

 parser.add_argument('-m', '--model',

 help='Model file to save(in enroll) or

use(in predict)',

 required=True)

 ret = parser.parse_args()

 return ret

def task_enroll(input_dirs, output_model):

 m = ModelInterface()

 input_dirs = [os.path.expanduser(k) for k in

input_dirs.strip().split()]

 dirs = itertools.chain(*(glob.glob(d) for d in input_dirs))

 dirs = [d for d in dirs if os.path.isdir(d)]

 files = []

 if len(dirs) == 0:

 #print "No valid directory found!"

 sys.exit(1)

 for d in dirs:

 label = os.path.basename(d.rstrip('/'))

 wavs = glob.glob(d + '/*.wav')

 print (wavs)

 if len(wavs) == 0:

 print ("No wav file found in {0}".format(d))

 continue

 print ("Label {0} has files {1}".format(label,

','.join(wavs)))

 for wav in wavs:

48

 fs, signal = read_wav(wav)

 m.enroll(label, fs, signal)

 m.train()

 m.dump(output_model)

def task_predict(input_files, input_model):

 m = ModelInterface.load(input_model)

 for f in glob.glob(os.path.expanduser(input_files)):

 fs, signal = read_wav(f)

 label = m.predict(fs, signal)

 print (f, '->', label)

if __name__ == '__main__':

 global args

 args = get_args()

 task = args.task

 if task == 'enroll':

 task_enroll(args.input, args.model)

 elif task == 'predict':

 task_predict(args.input, args.model)

Emotion Recognition:
import subprocess

filename="audioAnalysis.py regressionFile -i hahaha.wav --model

svm --regression data/svmSpeechEmotion], stdout=subprocess.PIPE,

shell=True"

proc = subprocess.Popen(["pythonw"+filename])

(out, err) = proc.communicate()

print "program output:", out

arr=out.split()

arr[1]=float(arr[1])

arr[3]=float(arr[3])

if arr[1]>0 and arr[3]>0:

 print "happy"

elif arr[1]>0 and arr[3]<0:

 print "angry"

elif arr[1]<0 and arr[3]>0:

 print "calm"

else:

 print "sad"

49

9.2 Input or Output Listings
Input:

Voice.wav

Training set consists of the audio files of male and females for gender

detection. Total dataset consists of around 1000 files.

For emotion recognition we had around 50 audio files for which model is

trained based on the features of the voice and it would generate the valence

and arousal of the voice file.

Speaker recognition, we took 10 samples of each of our team member and

then trained the model to recognize the individual voice

Output:

1. Based on the training set, the output of the gender detection model

would be male or female.

2. The output of emotion recognition would be angry,happy,sad and calm

based on the generated output of the valence and arousal values.

3. The output of the speaker recognition tells who is the speaker and

differentiates between two different speakers.

