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Preface: 
 

Audio/Voice is one of the critical areas of the advancement in the Data mining 

and intelligent systems in the present and the future. This project can predict 

the features of speech like Gender, Emotion, Speaker classification. 

 

 

 

 

  



3 

Acknowledgement 
 

We would like to thank Dr. Ming-Hwa Wang for teaching us about the topics 

we used in this project. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



4 

Table of Contents 

1.  Introduction 

1.1. Objective  

1.2. What is the problem  

1.3. Why this is project related to this class  

1.4. Why other approach is no good  

1.5. Why you think your approach is better   

1.6. Area or scope of investigation  

 

2.  Theoretical bases and literature review 

2.1. Definition of the problem  

2.2. Theoretical Background Of The Problem  

2.3. Related research to solve the problem  

2.4. Advantage/Disadvantage of those research  

2.5. Your solution to solve this problem  

2.6. Where your solution different from others  

2.7. Why your solution is better  

 

3.  Hypothesis (or goals)  

3.1 Single/multiple hypothesis  

3.2 Positive or negative (only for proof correctness) hypothesis  

 

4.  Methodology  

4.1 How to generate/collect input data  

4.2 How to solve the problem  

4.2.1 Algorithm design  

4.2.2 Language used  

4.2.3 Tools used  

4.3 How to generate output  

4.4 How to test against hypotheses  

 

5.  Implementation 

5.1 Code 



5 

5.2 Design Document and Flowchart 

 

6.  Data Analysis and Discussion 

6.1 Output Generation 

6.2 Output Analysis 

6.3 Compare Output against hypothesis 

6.4 Abnormal Case explanation 

6.5 Discussion 

 

7.  Conclusions and Recommendations 

7.1 Summary and Conclusions 

7.2 Recommendation for future studies 

 

8.  Bibliography 

 

9.  Appendices 

9.1 Program Source Code with Documentation 

9.2 Input or Output Listings 

 

  

 



6 

List of Figures: 
 

Fig1: Project goals covering the Speaker, Emotion, Gender functionalities of 

the Audio signal. 

Fig 2: Shows two phases of Enrollment phase and matching phase 

Fig 3: Flow Diagram for the whole project.  

Fig 4: Input Label to SVM algorithm.  

Fig 5: Output Hyperplane of SVM algorithm 

Fig 6 : Reading male and female data 

Fig 7 : Merge csv files and assign labels 

Fig 8: Emotions determined based on arousal and valence values 

Fig 9: Emotions determined based on arousal and valence values 

Fig 10: boundaries of emotion detection through SVM 

Fig 11: Valence/Arousal graph. 

Fig 12: Output for Logistic Regression for Gender Detection 

Fig 13 : Emotion detection through SVM. 

 

 

List of Tables: 
 

-  

  



7 

 

 

Abstract 
 

Audio/Voice is one of the critical areas of the advancement in the Data mining              

and intelligent systems in the present and the future. For instance recent            

Google automated voice calling shows the amount of research going in this            

area. To stay on top of this, we want to deep dive into Audio Mining, where we                 

would build a system that can predict the features of speech like Gender,             

Emotion, Speaker classification. The proposed system will extract features         

from the audio file in real time and perform analysis on these features for              

classification. The model will be an ensemble of data mining algorithms to            

reduce the number of false positives and improve the overall accuracy. 

 

 

1. Introduction 

 

1.1 Objective 

The objective of the project is to process user’s audio, to be used for work 

process automation. Given a speech input, our aim is to identify the speaker, 

detect speaker’s gender, and analyze the speaker’s emotion. 

 

1.2 What is the problem  

The common misconception with audio mining is that when a user says 

something, it is to be understood by the computer. However this is not the 

case and even humans misunderstand what someone is saying. This is due to 

various factors such as background noise, signal/noise ratio, speaker 

dependent and independent features, speech variability and language 

characteristics. The speech recognition technology is growing rapidly but has 

still not reached its full potential. Accuracy and reliability of the system is 

affected by unwanted inputs and low output as results. The first machine to 

recognise speech was developed in 1920 and a significant advancement has 
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been observed since then. We need to understand what speech recognition 

can be used for and what humans need it for and try to bridge the gap. 

 

 

 

Figure 1: Project goals covering the Speaker, Emotion, Gender 
functionalities of the Audio signal.  
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1.3 Why this is a project related this class  
 

Voice mining is one of the key project that involves lot of mining techniques 

and models. In this project, we are going to apply various mining models to 

extract useful information from the data of voice and will train the model to 

predict speaker classification, emotion prediction and gender prediction. 

Machine Learning has a connection with Data mining in terms of extracting an 

underlying representation and knowledge from the high dimensional data. In, 

data mining, we care about understanding the key insight of the given 

information which is related to our project in which we are interested in 

discovering various predictions through voice that can be applied to many 

industries. The approach we will take to model an accurate prediction system 

of gender, speaker, emotion will utilize multiple techniques in data mining and 

pattern recognition. First, by mining a large data set of voice and utilizing 

techniques in data mining and voice processing that are crucial for accurate 

feature extraction and predicting speaker accurately and emotions of the 

speaker and gender of the speaker. 

 

1.4. Why other approach is no good  
 

The most fundamental issue with the current approaches of audio mining is to             

choose the right type of mining algorithm and the accuracy of the            

algorithm.There are two main approaches to audio data mining . Firstly,           

Text-based indexing approach converts speech to text and then identifies          

words in a dictionary having several hundred thousand entries. If a word or             

name is not in the dictionary, the Large Vocabulary Continuous Speech           

Recognizers system will choose the most similar word it can find. Secondly,            

phoneme-based indexing approach analyzes and identifies sounds in a piece          

of audio content to create a phonetic-based index. It then uses a dictionary of              

several dozen phonemes to convert a user’s search term to the correct            

phoneme string. Finally, the system looks for the search terms in the index.             

Both approaches have some drawbacks as LVCSR generates wrong results          
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when the word is not found in the dictionary and phonetic-based searches can             

result in more false matches than the text-based approach, particularly for           

short search terms, because many words sound alike or sound like parts of             

other words. 

 

1.5. Why you think your approach is better  
 

In our project, we are trying to build a single application that can perform all               

the functionalities of audio mining like gender recognition, speaker         

classification and emotion recognition. Instead of applying single model, we          

will try to apply different models and check for the highest accuracy model for              

particular functionality and will use that model for that particular          

functionality. 

Our proposed approach has the following two steps:  

1. Feature Extraction: It splits the input signal into short-term windows          

(frames) and computes a number of features for each frame. This           

process leads to a sequence of short-term feature vectors for the whole            

signal.In many cases, the signal is represented by statistics on the           

extracted short-term feature sequences and extracts a number of         

statistics (e.g. mean and standard deviation) over each short-term         

feature sequence.Features include like Energy,entropy of energy,MFCCs 

2. Regression and Segmentation: Regression is important in audio        

analysis, e.g. in the context of speech emotion recognition, where the           

emotional state is not a discrete class but a real-valued measurement           

(e.g. arousal or valence). Segmentation is a very important processing          

stage for most of audio analysis applications. The goal is to split an             

uninterrupted audio signal into homogeneous segments. Segmentation       

can either be 

● Supervised: in that case some type of supervised knowledge is          

used to classify and segment the input signals. This is either           

achieved through applying a classifier in order to classify         

successive fix-sized segments to a set of predefined classes, or          

using  HMM approach to achieve joint segmentation-classification. 



11 

● Unsupervised: a supervised model is not available and the         

detected segments are clustered (example: speaker diarization) 

 

1.6 Area or scope of investigation  

The web ,databases and other digitized information storehouses contain a          

large volume of audio content.For example newscasts,sporting events,        

telephone conversations,recording of meetings, webcasts etc. User wants to         

make the most of this material by searching and indexing the digitized audio             

content. In this project, we are trying to do audio mining and identify speaker              

classification as well as gender classification. Also, we are trying to apply data             

mining models to classify speaker emotions and we will compare different           

models to find out the most optimized algorithm and we are trying to improve              

the accuracy of prediction. 

The continued ease of collecting and making available speech from real           

applications means that research can be focused on more real-world          

robustness issues that appear. Obtaining speech from a wide variety of           

handsets, channels and acoustic environments will allow examination of         

problem cases and development and application of new or improved          

techniques. 

There are many other sources of speaker information in the speech signal that             

can be used. These include idiolect (word usage), prosodic measures and           

other long-term signal measures. The work will be aided by the increasing use             

of reliable speech recognition systems for speaker recognition R&D.         

High-level features not only offer the potential to improve accuracy, they may            

also help improve robustness since they should be less susceptible to channel            

effects. 
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2.  Theoretical bases and literature review 

 

2.1. Definition of the problem  

The problem is analysing audio and mining features from the audio file to 

predict speaker, emotion and gender. Our goal is to generate most accurate 

model for prediction. 

 
2.2. Theoretical Background Of The Problem  
 

MFCCs are an accurate indicator of a speaker’s gender. Mel-frequency cepstral 

coefficients together constitute a Mel-frequency cepstrum. MFCCs are derived 

in the following fashion -  

Firstly, Fourier transform of a signal is taken, then powers of the spectrum are 

mapped above onto the mel scale, using triangular overlapping windows. The 

logs of the powers at each of the mel frequencies are taken. The discrete 

cosine transform of the list of mel log powers are taken as if it were a signal. 

The MFCCs are the amplitudes of the resulting spectrum. 

 

2.3 Related research to solve the problem 

 

The problem involves analysis of audio to predict speaker, emotion and 

gender. So research done as a part of audio mining project is focused on each 

of these sub-tasks.  

 

Gender prediction - Gender has two classes - male and female. To predict 

gender, the insights gleaned from papers referred are as follows -  

Gender was classified on basis of five modalities namely acoustic, linguistic, 

visual, thermal and physiological. Gender was predicted based on both single 

and combined modalities. It was found that highest accuracy using thermal 

regions - face, forehead, periorbital(eyes), cheeks, and nose was that from 

face.  Considering physiological signals, the best results were obtained after 

combining all signals. The best results were obtained when vocal features 
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including MFCC were used. Linguistic features were not as useful as compared 

to the rest of the features. In case of visual features, the best results were 

obtained when all the features including face gestures, hand gestures and 

both, highest accuracy was obtained after all features were combined. It was 

concluded that vocal features were the most accurate indicator of gender. 

Moreover, gender can be recognised from audio from the features - Pitch, 

signals, Mel Frequency Cepstral Coefficients(MFCC). 

 

Emotion Prediction - Emotions can be classified into three classes - positive, 

negative and neutral. Models are built for binary task of classifying sentiment 

into positive and negative classes and three way task of classifying into 

positive negative and neutral classes. The experiment was conducted with 

three types of models - unigram model, a feature based model and tree kernel 

based model. It was found that tree kernels outperform unigram and featured 

based models. Combining unigrams with feature based model outperforms 

combination of kernels with feature based model.  

 

Speaker prediction - To predict speaker, features are derived from voice 

biometrics. To perform this, following insights were gleaned from the 

research papers referred.  

The steps involved are training phase and matching phase. In the training 

phase, input speaker signal is pre-processed and its features are extracted. In 

matching phase, the speaker is identified by comparing the test speaker’s 

voice features with existing models stored in database. 

 

2.4 Advantages/Disadvantages of the Research 
The research suggests that the use of MFCC over other Automatic Speech 

Recognition algorithms like, BFCC(Bark frequency Cepstral coefficient), 

LPCC(Mel Frequency Cepstral Coefficient), etc, will yield high accuracy rate.  

 

By using three classes of emotion rather than two, we will be able to 

differentiate the ones in the border, as neutral. And for this classification we 
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will be using Kernel method, which outperforms, the n-gram method, and best 

system method.  

 

The only and  major disadvantage of MFCC is by the shape of the filter. Several 

filter coefficients might be negative because those might be the components of 

eigenvector of a covariance matrix, which means this may result in the output 

filter to be negative, thus fails to be converted to the log spectral domain. 

 

2.5 Solution to solve this problem 
To solve this typical Audio mining problem statement, we are going to 

integrate the SVM based techniques to classify  various voice features.  

 

2.6 Where your solution is different from others 
We are going to try out SVM based technique instead of the traditional Vector 

distance model. We are also going to experiment other techniques like 

Random forest to see the performance.  

 

2.7 Why your solution is better 

 

For this classification we will be using SVM method, which out performs, the 

methods. We also build a whole framework where multiple voice features are 

extracted out of the single point system for uniform access. To understand the 

performance, our experiments with other models too will give comparitive 

analysis.  
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3.  Hypothesis (or goals)  
 

The goal of the project is to develop a user-friendly and efficient system for              

determining various speech characteristics. The system receives an input in          

the form of a digital audio file and analysis it frame by frame. Given an audio                

file, we want the system to be able to classify who is the speaker and what is                 

the gender and emotion of the speaker. There are many algorithms to solve             

this problem and we select the best ones so that we can find the best features.                

Through a series of algorithms, the system evaluates the probabilities of each            

hypothesis. 

 

3.1 Multiple hypothesis 
Our model will reduce the number of false positives to improve the overall             

accuracy of the system. In other words, our model should have a low error              

rate. 

 

3.2 Positive Hypothesis  
Our goal is to take real time audio files from different geographical regions 

and create a system to get the best results using an ensemble of data mining 

algorithms.  
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4.  Methodology  
 

The project is divided into two phases.  

 

1. Enrolment Phase or Training Phase: The enrolment or training phase is 

the initial phase where the input speaker signal is pre-processed and its 

features are extracted. Pre-processing is a form of cleansing to make it 

suitable to identify and extract characteristic features of the speaker 

signal. The process of feature extraction will enable the presentation of 

the speaker vocal characteristics to construct a model for that particular 

speaker. 

 

2. Matching Phase: The matching phrase is responsible to identity the 

voice functionalities by comparing the test voice prints with the existing 

models stored in the database during the enrolment phase; the 

comparison of unique characteristic features is what defines ’matching’ 

 

So the input is passed through the enrollment phase and then into the 

matching phase which does the match with the existing samples.  

We follow the sample process to extract multiple voice functionalities of  

Gender, voice and speaker.  

We build a framework where we can extend to add further more 

functionalities into the system.  

 

The figure which describes the above process is as shown below.  
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Figure 2: Shows two phases of Enrollment phase and matching phase 
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Deeper steps covering these two phases are as given below.  

 
4.1 How to generate/collect input data  
 

Test Input: To test the working of the system, input data can be generated by 

taking a Audio signal , which can be taken by either recording and feeding the 

voice signal or by importing the wav file into the system.  

 

Training Dataset input:  
Dataset that is used for training the system can be fed using a standard csv file 

of the features extracted or by feeding the audio signal. If the audio signal is 

used , we need an intermediate library which will convert the input signal to 

the format of the features. For the purpose of the demonstration, we are going 

to convert the speech signal to feature format by using pyAudio analysis open 

source library.  

 

 

4.2 How to solve the problem  
4.2.1 Algorithm design :  

The simplified version of the problem we have at hand is to predict the voice 

related critical features like Gender, Speaker and Emotion .  

To solve this, we follow the below process:  

 

Input Parsing & Feature Extraction:  
We take the training data collected from various public datasets available and 

extract the voice signals into various features as per the format we need.  

To achieve this voice interpretation, we use an open-source library called 

pyAudioAnalysis to do the voice conversion to MFCC features.  

 

PyAudioAnalysis:  
PyAudioAnalysis is a Python library covering a wide range of audio analysis 

tasks. Through pyAudioAnalysis we can: 
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● Extract audio features and representations (e.g. mfccs, spectrogram, 

chromagram) 

● Train, parameter tune and evaluate classifiers of audio segments 

● Perform supervised segmentation  

● Perform unsupervised segmentation 

● Extract audio thumbnails 

● Train and use audio regression models  

● Apply dimensionality reduction to visualize audio data and content 

similarities 

 

Features from Dataset:  
Using PyAudioAnalysis, we extract the features from the audio signal . The 

features that we target to use are  

 

Duration: length of signal 

Meanfreq: mean frequency (in kHz) 

SD: standard deviation of frequency 

Median: median frequency (in kHz) 

MFCC : Mel-frequency cepstral coefficients (MFCCs) are coefficients that 

collectively make up an MFCC. 

 

Each extracted feature data is tagged into respective label , for example for 

Gender we label the data as Male and Female, where are for Emotion we tag 

the labels are Angry, Happy and so on.  
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Figure 3: Flow Diagram for the whole project.  
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Algorithm  & Actual Process:  
 

➔ Input data set contains the voice signals that are parsed and MFCC 

features are extracted using the PyAudioAnalysis library and tagged as 

per the respective labels.  

➔ Once we have the extracted feature set, we train the model using the 

SVM (Simple vector machine) algorithm to classify the voice features as 

per the desired label. During the training phase, each and every dataset 

item is given as the input to the Simple Vector machine algorithm for 

analysis of future data.  

➔ We have the model trained with the training data based out of SVM and 

other algorithms, we get the model that can actually classify the future 

inputs.  

➔ Once we have the model ready, we give the test input to  check the 

accuracy of the model. Depending on the output, we tune various 

parameters of the system and consider various features for further dry 

runs to optimize the maximum efficiency.  

➔ Now any test voice that needs to be checked with the model , is taken 

either by recording or by giving a wav file to the system.  

➔ Our system converts the wav file into features and runs through the 

model and gives the output to the user.  

 

Simple Vector Machine algorithm:  
We plan to use SVM as our algorithm to train the model based out of 

supervised learning.  

A Support Vector Machine (SVM) is a discriminative classifier formally defined 

by a separating hyperplane. In other words, given labeled training data 

(supervised learning), the algorithm outputs an optimal hyperplane which 

categorizes new examples. In two dimensional space this hyperplane is a line 

dividing a plane in two parts where in each class lay in either side.Suppose 

you are given plot of two label classes on graph as shown in image. Can you 

decide a separating line for the classes? This is what SVM does.  
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Fig 4: Input Label to SVM algorithm.  
 

 

 

Fig 5: Output Hyperplane of SVM algorithm:  
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Since this is a best fit for use, we use SVM for training and classification of 

voice features.  

We use scikit learn  

 

4.2.2 Language used  
 

Python 2.7+ 

 

4.2.3 Tools used  
● PyAudioAnalysis library.  

● Python utilities:  

○  Matplotlib: Matplotlib is a plotting library for the Python 

programming language and its numerical mathematics extension 

NumPy. 

○  Scipy & Sklearn: Scikit-learn (formerly scikits.learn) is a free 

software machine learning library for the Python programming 

language.Its features various classification, regression and 

clustering algorithms including support vector machines, random 

forests, gradient boosting, k-means and DBSCAN, and is designed 

to interoperate with the Python numerical and scientific libraries 

NumPy and SciPy. 

○  Hmmlearn 

○ Simplejson: Simplejson exposes an API familiar to users of the 

standard library marshal and pickle modules. It is the externally 

maintained version of the json library contained in Python 2.6, but 

maintains compatibility with Python 2.5 and (currently) has 

significant performance advantages, even without using the 

optional C extension for speedups. simplejson is also supported 

on Python 3.3+. 

○ Numpy: NumPy is a library for the Python programming language, 

adding support for large, multi-dimensional arrays and matrices, 

along with a large collection of high-level mathematical functions 

to operate on these arrays 
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4.3 How to generate output :  
To generate the output, we need to train the model and give an input file.  

To train the model ,we follow the protocol as  

 

python train_audiomining.py  “dataset.path” 

 

4.4 How to test against hypotheses  
To generate the output, the protocol we follow is 

 

python audiomining.py “input.wav” 

 

Here audiominig.py is the python file that we write for the purpose of the 

demonstration. It takes basic input of input file path , defaulting to the current 

directory. Audiomining.py detects the voice features accordingly.  
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5.  Implementation 
 

5.1 Code 
 
Gender Recognition: 

Train Model for gender detection: 
import os 

import cPickle 

import numpy as np 

from scipy.io.wavfile import read 

from sklearn.mixture import GMM  

import python_speech_features as mfcc 

from sklearn import preprocessing 

import warnings 

import csv 

import pandas as pd 

 

gender="female" 

val=0 

 

 

warnings.filterwarnings("ignore") 

 

def get_MFCC(sr,audio): 

    features = mfcc.mfcc(audio,sr, 0.025, 0.01, 13,appendEnergy 

= False) 

    features = preprocessing.scale(features) 

    return features 

 

#path to training data 

source   = 

"/Users/arushigupta148/Desktop/pygender/train_data/youtube/"+gen

der+"/" 

#path to save trained model  

dest     = "/Users/arushigupta148/Desktop/pygender/"  

files    = [os.path.join(source,f) for f in os.listdir(source) 

if  

             f.endswith('.wav')]  

features = np.asarray(()) 
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for f in files: 

    sr,audio = read(f) 

    vector   = get_MFCC(sr,audio) 

    if features.size == 0: 

        features = vector 

    else: 

        features = np.vstack((features, vector)) 

 

gmm = GMM(n_components = 8, n_iter = 200, 

covariance_type='diag', 

        n_init = 3) 

gmm.fit(features) 

picklefile = f.split("/")[-2].split(".wav")[0]+".gmm" 

 

 

#Create csv file 

 

csvfile="/Users/arushigupta148/Desktop/"+gender+".csv"  

with open(csvfile, "w") as output: 

    writer = csv.writer(output, lineterminator='\n') 

    writer.writerows(features)  

 

 

#Add new column to csv file 

df = pd.read_csv(gender+".csv") 

df[val] = val 

df.to_csv(gender+".csv")  

  

  

# model saved as male.gmm 

cPickle.dump(gmm,open(dest + picklefile,'w')) 

print 'modeling completed for gender:',picklefile 

 

 

Test Model for gender detection: 
import os 

import cPickle 

import numpy as np 

from scipy.io.wavfile import read 

import python_speech_features as mfcc 

from sklearn import preprocessing 

import warnings 

warnings.filterwarnings("ignore") 

def get_MFCC(sr,audio): 



27 

    features = mfcc.mfcc(audio,sr, 0.025, 0.01, 13,appendEnergy 

= False) 

    feat     = np.asarray(()) 

    for i in range(features.shape[0]): 

        temp = features[i,:] 

        if np.isnan(np.min(temp)): 

            continue 

        else: 

            if feat.size == 0: 

                feat = temp 

            else: 

                feat = np.vstack((feat, temp)) 

    features = feat; 

    features = preprocessing.scale(features) 

    return features 

 

#path to test data 

sourcepath = 

"/Users/arushigupta148/Desktop/pygender/test_data/AudioSet/femal

e_clips/"  

#path to saved models 

modelpath  = "/Users/arushigupta148/Desktop/pygender/"  

 

gmm_files = [os.path.join(modelpath,fname) for fname in  

              os.listdir(modelpath) if fname.endswith('.gmm')] 

 

models    = [cPickle.load(open(fname,'r')) for fname in 

gmm_files] 

genders   = [fname.split("/")[-1].split(".gmm")[0] for fname  

              in gmm_files] 

files     = [os.path.join(sourcepath,f) for f in 

os.listdir(sourcepath)  

              if f.endswith(".wav")]  

 

for f in files: 

    print f.split("/")[-1] 

    sr, audio  = read(f) 

    features   = get_MFCC(sr,audio) 

    scores     = None 

    log_likelihood = np.zeros(len(models))  

    for i in range(len(models)): 

        gmm    = models[i]         #checking with each model one 

by one 

        scores = np.array(gmm.score(features)) 

        log_likelihood[i] = scores.sum() 
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    winner = np.argmax(log_likelihood) 

    print "\tdetected as - ", genders[winner],"\n\tscores:female 

",log_likelihood[0],",male ", log_likelihood[1],"\n" 

 

Logistic Regression: 
 

Regression can be rather important in audio analysis. The input files are taken             

in csv format. The data from the female and male csv files are read and their                

first columns are dropped to be merged into one file. 

 

 

Figure 6 : Reading male and female data 

 

 

The two csv files are merged together into a new csv file. The variable X stores 

the features and the y variable has the labels for the data files. 

 

 

Figure 7 : Merge csv files and assign labels 
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Extract the training and testing data, the testing size here is taken as 1 percent               

of the entire file size. 

 

 

Figure 8: Emotions determined based on arousal and valence values 

 

 

Emotion Detection: 
 

The values for valence and arousal are calculated and accordingly the emotion            

of the speaker is determined. Four emotions are classified based on the values             

of arousal and valence. 

 

 

Figure 9: Emotions determined based on arousal and valence values 

 
Speaker Recognition: 
 
#!/usr/bin/env python2 

# -*- coding: UTF-8 -*- 

# File: speaker-recognition.py 

# Date: Sun Feb 22 22:36:46 2015 +0800 



30 

# Author: Yuxin Wu <ppwwyyxxc@gmail.com> 

 

import argparse 

import sys 

import glob 

import os 

import itertools 

import scipy.io.wavfile as wavfile 

 

sys.path.append(os.path.join( 

    os.path.dirname(os.path.realpath(__file__)), 

    'gui')) 

from gui.interface import ModelInterface 

from gui.utils import read_wav 

from filters.silence import remove_silence 

 

def get_args(): 

    desc = "Speaker Recognition Command Line Tool" 

    epilog = """ 

Wav files in each input directory will be labeled as the 

basename of the directory. 

Note that wildcard inputs should be *quoted*, and they will be 

sent to glob.glob module. 

 

Examples: 

    Train (enroll a list of person named person*, and mary, with 

wav files under corresponding directories): 

    ./speaker-recognition.py -t enroll -i "./bob/ ./mary/ 

./person*" -m model.out 

 

    Predict (predict the speaker of all wav files): 

    ./speaker-recognition.py -t predict -i "./*.wav" -m 

model.out 

""" 

    parser = 

argparse.ArgumentParser(description=desc,epilog=epilog, 

 

formatter_class=argparse.RawDescriptionHelpFormatter) 

 

    parser.add_argument('-t', '--task', 

                       help='Task to do. Either "enroll" or 

"predict"', 

                       required=True) 

 

    parser.add_argument('-i', '--input', 
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                       help='Input Files(to predict) or 

Directories(to enroll)', 

                       required=True) 

 

    parser.add_argument('-m', '--model', 

                       help='Model file to save(in enroll) or 

use(in predict)', 

                       required=True) 

 

    ret = parser.parse_args() 

    return ret 

 

def task_enroll(input_dirs, output_model): 

    m = ModelInterface() 

    input_dirs = [os.path.expanduser(k) for k in 

input_dirs.strip().split()] 

    dirs = itertools.chain(*(glob.glob(d) for d in input_dirs)) 

    dirs = [d for d in dirs if os.path.isdir(d)] 

    files = [] 

    if len(dirs) == 0: 

        #print "No valid directory found!" 

        sys.exit(1) 

    for d in dirs: 

        label = os.path.basename(d.rstrip('/')) 

 

        wavs = glob.glob(d + '/*.wav') 

        print (wavs) 

        if len(wavs) == 0: 

            print ("No wav file found in {0}".format(d)) 

            continue 

        print ("Label {0} has files {1}".format(label, 

','.join(wavs))) 

        for wav in wavs: 

            fs, signal = read_wav(wav) 

            m.enroll(label, fs, signal) 

 

    m.train() 

    m.dump(output_model) 

 

def task_predict(input_files, input_model): 

    m = ModelInterface.load(input_model) 

    for f in glob.glob(os.path.expanduser(input_files)): 

        fs, signal = read_wav(f) 

        label = m.predict(fs, signal) 

        print (f, '->', label) 
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if __name__ == '__main__': 

    global args 

    args = get_args() 

 

    task = args.task 

    if task == 'enroll': 

        task_enroll(args.input, args.model) 

    elif task == 'predict': 

        task_predict(args.input, args.model) 

 

 

 

5.2 Design Document and Flowchart 
The project is designed in three modules. Voice for gender detection           

was processed by GMM and logistic regression. As we have to differentiate            

between male and female, we chose Logistic regression, as dependent variable           

is dichotomous The accuracy GMM was 86% for both male and female The             

logistic regression model achieves an accuracy of 72% on the training set and             

71% on the testing set. This is clearly an improvement over the baseline             

algorithms. Speaker identification uses the GMM algorithm and Emotion         

detection is done by SVM.  

First the data is trained with a training set. Based on this, the              

algorithm/program will yield results for the test dataset.  

Emotion Detection in detail: 
From the above figure, it is shown how emotions are classified in SVM 

algorithm. Out of which, we have chosen only 4 emotions, namely, happy, 

angry, sad and calm. 
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Fig 10: boundaries of emotion detection through SVM 

 

If you observe, we have chosen the elements of differentiation, from four            

different quadrants. From this we have now clearly divided our graph as            

below. 
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Fig 11: Valence/Arousal graph. 
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6.  Data Analysis and Discussion 
6.1 Output Generation 

The input dataset containing voice .wav format files, which are first used to 

train the data.  After training, the algorithm is tested with test data to check 

the results. 

6.2 Output Analysis 

Front end Screen 

 

Gender Identification Output: 

Logistic regression used for gender detection yields 80.6% accuracy. 
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Figure 12: Output for Logistic Regression for Gender Detection 
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Emotion Identification: 
The below figure shows the output for Emotion detection through SVM.

 

Fig 13 : Emotion detection through SVM. 

The first column represents the resulting MSE for the respective SVM C param.             

The second comuns shows the MSE achieved on the training dataset (this is to              

provide a level of "overfitting"), while the last column shows the "baseline"            

MSE, i.e. the MSE achieved when the unknown variable is always set equal to              

the average value of the training set. 

Speaker Recognition Output: 
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6.3 Compare Output against hypothesis 
 
Hypothesis: Our goal is to take real time audio files from different            

geographical regions and create a system to get the best results using an             

ensemble of data mining algorithms.  

We have created an ensemble of logistic regression and gaussian mixture           

model for gender detection. The program takes an audio wav file and            

determines the gender and emotion of the speaker. We also populated the            

dataset with our voice samples for training the speaker recognition dataset           

and testing the dataset with another wav file to determine the speaker. 

 

6.4 Abnormal Case explanation 
With less samples in the training sets, these algorithms will have a very low 

accuracy. The accuracy is pretty high, like mentioned in the beginning of the 

chapter, provided, the train data has a decent number of samples. 
 

6.5 Discussion 
Although Logistic regression is one of the important algorithms for gender 

classification, GMM out performs it, as it yields higher accuracy.  
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7.  Conclusions and Recommendations 
 
7.1 Summary and Conclusions 
 
In this project, we have implemented 3 different data mining techniques,           

gender detection, speaker prediction and emotion analysis. We have         

combined these three data mining techniques, to build an application, which           

reads, audio, and implements the above. Gender detection uses GMM          

algorithm, speaker prediction uses GMM algorithm, and emotion analysis uses          

SVM algorithm. 

 

7.2 Recommendation for future studies 
 
This project can further be designed with higher accuracy, as an automation            

system like google’s duplex, which depends on all the three parameters which            

we have worked upon. The boundaries of emotion detection can be           

redesigned, and can always be explored. 
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9.  Appendices 
 
9.1 Program Source Code with Documentation 
 

Gender Recognition: 

Train Model for gender detection: 
import os 

import cPickle 

import numpy as np 

from scipy.io.wavfile import read 

from sklearn.mixture import GMM  

import python_speech_features as mfcc 

from sklearn import preprocessing 

import warnings 

import csv 

import pandas as pd 

 

gender="female" 

val=0 

 

 

warnings.filterwarnings("ignore") 

 

def get_MFCC(sr,audio): 

    features = mfcc.mfcc(audio,sr, 0.025, 0.01, 13,appendEnergy 

= False) 

    features = preprocessing.scale(features) 

    return features 

 

#path to training data 

source   = 

"/Users/arushigupta148/Desktop/pygender/train_data/youtube/"+gen

der+"/" 

#path to save trained model  

dest     = "/Users/arushigupta148/Desktop/pygender/"  

files    = [os.path.join(source,f) for f in os.listdir(source) 

if  

             f.endswith('.wav')]  

features = np.asarray(()) 
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for f in files: 

    sr,audio = read(f) 

    vector   = get_MFCC(sr,audio) 

    if features.size == 0: 

        features = vector 

    else: 

        features = np.vstack((features, vector)) 

 

gmm = GMM(n_components = 8, n_iter = 200, 

covariance_type='diag', 

        n_init = 3) 

gmm.fit(features) 

picklefile = f.split("/")[-2].split(".wav")[0]+".gmm" 

 

 

#Create csv file 

 

csvfile="/Users/arushigupta148/Desktop/"+gender+".csv"  

with open(csvfile, "w") as output: 

    writer = csv.writer(output, lineterminator='\n') 

    writer.writerows(features)  

 

 

#Add new column to csv file 

df = pd.read_csv(gender+".csv") 

df[val] = val 

df.to_csv(gender+".csv")  

  

  

# model saved as male.gmm 

cPickle.dump(gmm,open(dest + picklefile,'w')) 

print 'modeling completed for gender:',picklefile 

 

 

Test Model for gender detection: 
import os 

import cPickle 

import numpy as np 

from scipy.io.wavfile import read 

import python_speech_features as mfcc 

from sklearn import preprocessing 

import warnings 

warnings.filterwarnings("ignore") 
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def get_MFCC(sr,audio): 

    features = mfcc.mfcc(audio,sr, 0.025, 0.01, 13,appendEnergy 

= False) 

    feat     = np.asarray(()) 

    for i in range(features.shape[0]): 

        temp = features[i,:] 

        if np.isnan(np.min(temp)): 

            continue 

        else: 

            if feat.size == 0: 

                feat = temp 

            else: 

                feat = np.vstack((feat, temp)) 

    features = feat; 

    features = preprocessing.scale(features) 

    return features 

 

#path to test data 

sourcepath = 

"/Users/arushigupta148/Desktop/pygender/test_data/AudioSet/femal

e_clips/"  

#path to saved models 

modelpath  = "/Users/arushigupta148/Desktop/pygender/"  

 

gmm_files = [os.path.join(modelpath,fname) for fname in  

              os.listdir(modelpath) if fname.endswith('.gmm')] 

 

models    = [cPickle.load(open(fname,'r')) for fname in 

gmm_files] 

genders   = [fname.split("/")[-1].split(".gmm")[0] for fname  

              in gmm_files] 

files     = [os.path.join(sourcepath,f) for f in 

os.listdir(sourcepath)  

              if f.endswith(".wav")]  

 

for f in files: 

    print f.split("/")[-1] 

    sr, audio  = read(f) 

    features   = get_MFCC(sr,audio) 

    scores     = None 

    log_likelihood = np.zeros(len(models))  

    for i in range(len(models)): 

        gmm    = models[i]         #checking with each model one 

by one 

        scores = np.array(gmm.score(features)) 
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        log_likelihood[i] = scores.sum() 

    winner = np.argmax(log_likelihood) 

    print "\tdetected as - ", genders[winner],"\n\tscores:female 

",log_likelihood[0],",male ", log_likelihood[1],"\n" 

 

Speaker Recognition: 
 
#!/usr/bin/env python2 

# -*- coding: UTF-8 -*- 

# File: speaker-recognition.py 

# Date: Sun Feb 22 22:36:46 2015 +0800 

# Author: Yuxin Wu <ppwwyyxxc@gmail.com> 

 

import argparse 

import sys 

import glob 

import os 

import itertools 

import scipy.io.wavfile as wavfile 

 

sys.path.append(os.path.join( 

    os.path.dirname(os.path.realpath(__file__)), 

    'gui')) 

from gui.interface import ModelInterface 

from gui.utils import read_wav 

from filters.silence import remove_silence 

 

def get_args(): 

    desc = "Speaker Recognition Command Line Tool" 

    epilog = """ 

Wav files in each input directory will be labeled as the 

basename of the directory. 

Note that wildcard inputs should be *quoted*, and they will be 

sent to glob.glob module. 

 

Examples: 

    Train (enroll a list of person named person*, and mary, with 

wav files under corresponding directories): 

    ./speaker-recognition.py -t enroll -i "./bob/ ./mary/ 

./person*" -m model.out 

 

    Predict (predict the speaker of all wav files): 

    ./speaker-recognition.py -t predict -i "./*.wav" -m 

model.out 
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""" 

    parser = 

argparse.ArgumentParser(description=desc,epilog=epilog, 

 

formatter_class=argparse.RawDescriptionHelpFormatter) 

 

    parser.add_argument('-t', '--task', 

                       help='Task to do. Either "enroll" or 

"predict"', 

                       required=True) 

 

    parser.add_argument('-i', '--input', 

                       help='Input Files(to predict) or 

Directories(to enroll)', 

                       required=True) 

 

    parser.add_argument('-m', '--model', 

                       help='Model file to save(in enroll) or 

use(in predict)', 

                       required=True) 

 

    ret = parser.parse_args() 

    return ret 

 

def task_enroll(input_dirs, output_model): 

    m = ModelInterface() 

    input_dirs = [os.path.expanduser(k) for k in 

input_dirs.strip().split()] 

    dirs = itertools.chain(*(glob.glob(d) for d in input_dirs)) 

    dirs = [d for d in dirs if os.path.isdir(d)] 

    files = [] 

    if len(dirs) == 0: 

        #print "No valid directory found!" 

        sys.exit(1) 

    for d in dirs: 

        label = os.path.basename(d.rstrip('/')) 

 

        wavs = glob.glob(d + '/*.wav') 

        print (wavs) 

        if len(wavs) == 0: 

            print ("No wav file found in {0}".format(d)) 

            continue 

        print ("Label {0} has files {1}".format(label, 

','.join(wavs))) 

        for wav in wavs: 
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            fs, signal = read_wav(wav) 

            m.enroll(label, fs, signal) 

 

    m.train() 

    m.dump(output_model) 

 

def task_predict(input_files, input_model): 

    m = ModelInterface.load(input_model) 

    for f in glob.glob(os.path.expanduser(input_files)): 

        fs, signal = read_wav(f) 

        label = m.predict(fs, signal) 

        print (f, '->', label) 

 

if __name__ == '__main__': 

    global args 

    args = get_args() 

 

    task = args.task 

    if task == 'enroll': 

        task_enroll(args.input, args.model) 

    elif task == 'predict': 

        task_predict(args.input, args.model) 

 

Emotion Recognition: 
import subprocess 

filename="audioAnalysis.py regressionFile -i hahaha.wav --model 

svm --regression data/svmSpeechEmotion], stdout=subprocess.PIPE, 

shell=True" 

proc = subprocess.Popen(["pythonw"+filename]) 

(out, err) = proc.communicate() 

print "program output:", out 

arr=out.split() 

 

arr[1]=float(arr[1]) 

arr[3]=float(arr[3]) 

 

if arr[1]>0 and arr[3]>0: 

    print "happy" 

elif arr[1]>0 and arr[3]<0: 

    print "angry" 

elif arr[1]<0 and arr[3]>0: 

    print "calm" 

else: 

    print "sad" 
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9.2 Input or Output Listings 
Input: 

Voice.wav 

Training set consists of the audio files of male and females for gender 

detection. Total dataset consists of around 1000 files. 

For emotion recognition we had around 50 audio files  for which model is 

trained based on the features of the voice and it would generate the valence 

and arousal of the voice file. 

Speaker recognition, we took 10 samples of each of our team member and 

then trained the model to recognize the individual voice 

 

Output: 

1. Based on the training set, the output of the gender detection model 

would be male or female. 

2. The output of emotion recognition would be angry,happy,sad and calm 

based on the generated output of the valence and arousal values. 

3. The output of the speaker recognition tells who is the speaker and 

differentiates between two different speakers. 

 

 

 

 

 


