

1

Deep Semantic Hashing

Matthew Findlay
Isaac Jorgensen

Esai Morales
Kevin Velcich

June 12, 2018

2

Acknowledgements

Thank you to Dr. Wang for teaching COEN 281: Pattern Recognition and Data Mining,

teaching us crucial information in the field. Additionally, thank you for the help and

guidance for this project. Additionally, we would like to thank the researchers who have

provided valuable and important insights for our solution to the semantic hashing

problem.

3

Contents

Acknowledgements 2

List of Tables and Figures 4

Theoretical Bases and Literature Review 8
Related Research 10
Our Solution 20

Hypothesis 22

Methodology 23

Implementation 29

Data Analysis and Discussion 30

Conclusion and Recommendations 32
Summary and Conclusions 32
Recommendations for Future Studies 32

Bibliography 34

Appendix 36

4

List of Tables and Figures

1. Table 1: SHTTM Results 14

2. Table 2: DSH-GANs Results 18

3. Figure 1: Architecture of RNN. 24

4. Figure 2: Architecture of LSTM. 25

5. Figure 3: Architecture of proposed model. 27

6. Table 3: LSH and Semantic Hashing Results 30

5

Introduction

It is our goal to develop a method which utilizes a Recurrent Neural Network with

long short-term memory for hashing documents while maintaining the integrity of the

structure of the text and also preserving its semantic meaning.

Similarity search is an increasingly popular problem. Its objective is to identify

similar documents given an input document or query, to be used in applications such as

search engines, document detection, collaborative filtering, caching, etc. The first

proposed methods for similarity search provided accurate and reliable results. However,

as a result of the explosive growth of data on the Internet, traditional similarity methods

have resulted less impactful. Many of these original methods require computations in

high dimensional matrix spaces that become impossible to compute given the large

amount of information to be searched. To address this issue, hashing was introduced.

Hashing documents provides a method of reducing a document’s dimensionality

allowing similarity computations to be performed much more quickly and efficiently in a

lower dimensionality space. However, an optimal method of determining the best

hashing function continues to be heavily researched and improved upon. The best

hashing functions aim to not only maintain the similarity, but identify and preserve the

semantics of a document as well.

6

In COEN 281: Pattern Recognition and Data Mining, we covered

locality-sensitive hashing (LSH), a method used in similarity search which addresses

the shortcomings of traditional similarity search methods. LSH reduces the

dimensionality of its input with the objective of preserving the similarity between a set of

items. This allows for efficient computing of similar items. This project relates to the

course as it analyzes the drawbacks to LSH and proposes a method of hashing which in

addition to maintaining similarity, captures the semantic meaning of the items.

There are many methods that exist for hashing documents based off of the

structure of the text in those documents. The general use of this is for finding similar

documents. However, simply hashing documents based on structure is not enough. For

example, consider the following two short texts: “I bought an Apple mouse” and “I

bought an apple and a mouse”. These two strings are extremely similar in structure.

With most traditional hashing methods, these sentences would hash to the same or

nearly the same location. However, in actuality, these sentences have two completely

different meanings. While these are short texts, the same principle applies to

full-fledged documents, just on a larger scale. It is for the reason provided in the

example that current approaches are not ideal. In essence, they ignore the core

component behind all text, its meaning. By taking semantics into account, our method of

hashing documents will be able to group similar texts more accurately. There has been

a limited amount of research into doing this specifically. Additionally, while semantic

hashing was originally introduced in 2009, there has not been enough research which

7

combines the promising and modern technology of deep learning with semantic

hashing. To further improve upon what work has been done for semantic hashing, we

intend to explore the potential use of Recurrent Neural Networks to aid in the hashing of

especially long documents. Recurrent Neural Networks are designed to perform with

sequences of information and are frequently used for language applications such as text

translation. For this reason, we believe utilizing a recurrent neural network with long

short-term memory is a perfect candidate for combining semantic hashing with deep

learning and can provide a hashing mechanism which can capture semantic meaning

with high accuracy.

Current methods of document/text similarity comparison through hashing are

using the wrong metrics for similarity. We will correct that by combining the disciplines

of semantic hashing and neural networks to successfully hash and compare documents

based on their semantic meaning.

8

Theoretical Bases and Literature Review

The objective of our project is to create a model which produces hash codes for

documents which maintain similarity between hash codes of documents both in

structure and in meaning. In order to evaluate this, we use the following formula to

calculate the performance of our results:

erformance P = 100

∑
100

i=1
Ri

Where ​R​i​ is whether document i is relevant. Precision measures how many selected

items are relevant. To evaluate the performance of our hash codes, for each test

document in our test data, for the top one hundred hash codes with the closests

hamming distance, how many are actually similar/relevant documents. For each method

we are comparing with, the total performance or average precision reveals how well the

hashing function preserves the similarity and semantics of a document when hashing.

So much information in the world has been documented and archived. With the

advent of the internet, the amount of such information has exploded. Given so much

work already done, it simply does not make sense to reinvent the wheel each time we

need to understand or create something. For this reason, having the ability to search

currently existing databases of information in an efficient and effective manner is vital.

To achieve this, we must be able to accurately compare text and documents.

9

From this problem has arisen the solution of document comparison for similarity

through the use of hashing. The usefulness of semantic hashing, as it’s called, rests on

the fact that using a methods like TF-IDF and standard text hashing merely account for

the structure of a document through word ordering or frequency while leaving out

meaning, the most important component of any text. By accounting for the semantic

meanings of words and phrases, we will be able to match documents that are similar in

content, not just structure.

Our solution will be implementing semantic hashing, similarly to how the articles

we researched did. The key difference will be that we intend to use Recurrent Neural

Networks (RNN). The major benefit of the RNN model that we will implement is that it

works well on long documents, meaning that it is able to interpret the definition of a

word or phrase even if the appropriate context was given much earlier in the document.

This key difference should make our implementation even more robust than the

semantic hashing methods that have come before.

10

Related Research

Self-Taught Hashing for Fast Similarity Search

As previously stated, the number of applications that semantic hashing has is

very large and continues to grow with advancements in the internet. The premise of

Semantic Hashing is the creation of very compact binary sequences used to represent a

document. Ultimately, similar documents will be mapped to similar codes that are within

a very short hamming distance of each other. Once these documents have been

mapped, comparisons for finding the most similar documents rely on simple XOR

operations among codes that easily fit into main memory. Additionally, the semantic

hashing methodology yields a very pragmatic approach for finding new similar

documents. The practical tasks of Information Retrieval, more specifically tasks such as

plagiarism detection, involve checking the similarity of a single document, or input

query, against a very large set of documents. In most cases, finding all similarities

among all documents is not merely practical or useful at all. However, finding the most

similar documents to the input query is in most cases, the most useful application. Let’s

say we have a document that can be represented with the very short binary code of

‘1111’. If this document is the input query, then we can retrieve the most similar

documents from a corpus with shortest hamming distance of 1 which would include

those mapped to hash codes of ‘1110’ or ‘0111’.

11

Ultimately, this article addresses the problem of designing binary codes for

unseen documents from the corpus. The approach is to use unsupervised learning to

learn the hash codes of a corpus of documents. From this stage, the use of a

supervised approach can be applied to the learning of a new hashcode for any new

query document. In essence, this allows the hash function to be trained according to the

corpus and tested against any input query. However, the research paper simply

proposes a framework that can be used for new query documents. Although the

approach hopes to accelerate similarity searches, its focus is on speeding up the

process for a new document query, unseen by the corpus.

Semantic Hashing using Tags and Topic Modeling

In their paper “Semantic Hashing using Tags and Topic Modeling”, researchers

Wang, Zhang, and Si identified two major issues with existing semantic hashing. The

first issue identified is that tag information is often not fully utilized or incorrectly used. In

most real world applications, documents are frequently associated with tags, which

provide context on the meaning and usage of a document. These tags can be extremely

useful when trying to capture semantic meaning. Many implementations completely

ignored associated document tags or alternatively used them limitedly. Ignoring the

descriptive document tags can certainly hinder the performance of a hashing method.

Alternatively, for the methods that do utilize the document tags, they often do not

account for documents where tags are missing. A real application requires the

allowance of tags to be present or missing, as documents frequently are absent of tags.

12

The second issue identified was that many methods use document similarity in the

original keyword feature space when constructing the hashing function. The main issue

with this is that they fail to capture semantic meaning. While documents with similar

words are likely to be similar, the converse is not necessarily true; documents with

differing words may be semantically similar. Many methods would categorize two

different documents under the same topic as different if they have a large vocabulary

gap.

To address these issues, the researchers proposed a hashing method which

takes into account both the documents tags as well as computing document similarity

through the topic of a document rather than the words in the document itself. In order to

incorporate document tags, they had to account for two main challenges. The first is

that they have to find a way to incorporate the document tags into the hashing function.

Secondly, document tags may be missing, so they need to account for situations for

incomplete or missing tags. Wang, Zhang, and Si solved the first problem by matrix

factorization with a latent factor model. For each tag, a latent variable is introduced,

indicating the correlation between tags and hashing codes. A tag consistency

component is then calculated using the following equation:

13

Where T​ij​ is a binary label for the i-th tag and the j-th item, is a weighted sumyui
T

j

revealing the relationship between the i-th rag and the j-th document, and the second

term is introduced to avoid overfitting with a fixed hyperparameter alpha. To address

the second issue, a confidence matrix is constructed, where each document has a value

for each tag. When that value is large, then we can trust the tag information for that

document. In order to avoid calculating document similarity in the original keyword

feature space, the proposed method is by running latent dirichlet allocation (LDA)

through the documents to discover a set of latent topics. Each document has a

distribution describing how each topic relates to that document. Therefore documents

with similar semantic meaning will have similar distributions.

The overall algorithm functions by following the steps as listed. First is the

running of LDA through the training documents to discover a set of topics and calculate

the distributions for how each document relates to those topics. Next, the confidence

matrix is constructed describing how much a tag is trusted for each document. Next the

optimal hash codes are computed by minimizing the distance between similar

documents (ones with similar distributions). Next, the following equation is used to find

an optimal hashing function W:

14

This function aims to minimize the distance between the optimal hash codes computed

and the outputted hash codes from the hash function for each document.

In order to evaluate how well their proposed hashing method functions, they

compared their algorithm to five other top-performing hash functions with four different

data-sets. In order to measure their performance, the top 100 nearest neighbors for a

given document were found, and the precision (relevant/total) was calculated. Their

results showed that their proposed method, SHTTM outperformed all previous methods

they compared against. Table 1 displays the exact numbers retrieved for each dataset

along with the different hashing methods for different bit sizes.

Table 1: ​Precision of the top 100 retrieved documents on the four datasets with different

hashing bits for STTM, compared against other top performing semantic hashing

methods.

15

The proposed method provides very compelling reasons for including tag

information when hashing. However, their method of using LDA to discover topics, while

intuitive and high performing, has shortcomings. The main issue is that a document is

categorized on the basis of its topic(s). However documents can be much more

nuanced; topics can have subtopics and LDA may not capture the different subtopics.

While it proved to be a reliable method for semantic hashing, we believe that a more

accurate method should be able to capture more precise semantics rather than the

topics of a document.

Understanding Short Texts through Semantic Enrichment and Hashing

Finding similar documents in large data sets is hard enough, especially when

measuring similarity based on semantic meaning instead of text content. This becomes

even more difficult when dealing with short texts. Short text does not provide the same

contextual clues or themes that a full fledged document might provide. Because of that,

the writers of this article decided to implement a special case of semantic hashing

specifically for short text.

The proposed solution in this article consists of two main parts: enriching the

short text, and hashing the text with a Deep Neural Network (DNN). By enriching the

short text, the authors hoped to magnify the semantic meaning of the words in that text.

They achieved this by using conceptualization and co-occurring terms.

16

Conceptualization evaluates the probability of word taking on one of its definitions at

that moment. This probability determines how likely a word is to mean one specific

definition. This is based off of the few words that surround the target word for context.

Because this is not very strong in a short text, conceptualization is used in conjunction

with co-occurring terms. A score is assigned to a combination of words based on how

often that combination of words occurs together based on their semantic meanings in

the current context. Together, these methods magnify the semantic meaning of the

short text.

Once these values have been calculated, they are used in a DNN to hash the

original text. This DNN takes the text as a vector and passes it through 3

auto-encoders. These auto-encoders are what take into account the previously

calculated scores and values to train the DNN. By passing the text through this network,

they are able to create a binary hash of the text that has been weighted based off of the

calculated values. As a result each binary hash vector should be different yet still true to

the original text’s meaning.

The authors of this paper did test their method afterwards. They first tested the

semantic enrichment portion first. By comparing it against methods that sites like

Wikipedia used, they were able to prove that their method is more accurate than what is

currently being utilized on the web. In addition, they also tested the DNN and compared

17

against methods such as TF-IDF. Over all, the new implementation laid out in the paper

was more successful and accurate than anything that currently exists.

Deep Semantic Hashing with Generative Adversarial Networks

This paper proposed a method for deep semantic hashing which uses a

generative adversarial network for image search. Typically in semantic hashing,

supervised models which learn a hash function from labeled images tend to outperform

unsupervised models. The paper lists the reasoning for this is because similarity criteria

does not always depend on the contents but sometimes can depend on image

annotators. However, the main issue with this is that retrieving labeling images is not a

simple task and they stress the importance to develop a model that does not require

labeled images.

The goal of their paper was to generate synthetic images for learning a hash

function while leveraging general adversarial networks. The intuition behind general

adversarial networks is to train a conditional generator and discriminator that are able to

produce an image given class labels.

The main model produced was deep semantic hashing with general adversarial

networks (DSH-GANs). A real input image must have labels that allows the control of

the generator to produce similar images. Additionally, non-relevant labels need to be

selected so the generator can produce dissimilar images. Finally, the images will go

18

through a deep convolutional neural network to learn to low level features of the image.

The output of the convolutional neural network is fed into three different networks: a

hash stream, classification stream, and an adversary stream. The hash stream uses a

maximum margin as a rank loss function in order to learn a hashing function. The

classification stream forces images with similar labels to have similar hash codes, and

conversely, images with separate labels will have dissimilar hash functions. Lastly, the

adversary stream is apart of the GAN.

To test their proposed semantic hashing method, they conducted extensive

evaluations on two image datasets. They then calculated the accuracy of their

DSH-GANs model compared to 11 other models, showing that theirs outperforms.

Table 2:​ Accuracy in terms of MAP. The MAP performance is calculated on the

top five thousand returned images.

19

Table 2 displays the precise results found for each hashing method. As shown

DSH-GANs performs very well. Outperforming most methods significantly. The only

comparable method was DPSH.

While we found their usage of a general adversarial network had promising

results, the basis of their research seemed too restricted. The strongest methods should

be able to excel whether information is labeled or unlabeled. However, their approach

into incorporating deep learning into the problem of semantic hashing shows that deep

learning should not be overlooked and helped guide our approach in this problem.

20

Our Solution

Our proposed solution to this problem is to utilize long short-term memory in

recurrent neural networks in order to create a model to accurately preserve the

semantics of a document when generating hash codes. Recurrent neural networks are

a form of neural networks where internal states are used. Simply put, recurrent neural

networks can use information from previous iterations when computing an output.

Recurrent neural networks were designed to perform with sequences of information and

are frequently used for language applications such as text translation. However

recurrent neural networks alone have a few issues including that maintaining states is

computationally expensive as well as gradient issues when training. A popular method

to solve these issues in large scale data applications is long short-term memory

(LSTM). LSTM is an abstraction that is used alongside recurrent neural networks and is

used to maintain, update, and regulate the states of the network models. Therefore, for

semantic hashing, we believe using a recurrent neural network with long short-term

memory will hold promising results.

Firstly our proposed solution is unique from most semantic hashing methods as it

attempts to combine deep learning with semantic hashing. Deep learning is a subfield of

machine learning that has recently emerged because of the complex computations that

were previously impossible. Deep learning has continuously proved itself to be a viable

solution for various problems with extremely strong results. Few methods of semantic

21

hashing have connected the problem with deep learning, so only limited research has

been performed. However, deep learning with semantic hashing is not unexplored.

Limited research has proven its strength and viability as a solution for semantic hashing.

However, utilizing recurrent neural networks with long short-term memory has been

absent in the realm of semantic hashing.

We believe our solution will be superior as the inclusion of recurrent neural

networks has strong intuition behind it. As previously mentioned recurrent neural

networks were designed specifically for sequential data, and are very powerful when

used with text. The inclusion of long short-term memory allows this method to function

with large scale data, which semantic hashing requires. Recurrent neural networks with

long short-term memory were design to perform for problems very similar to semantic

hashing. Our deep learning model is precisely selected and constructed for the exact

problem.

22

Hypothesis

Current semantic hashing methods fail to take word orderings into account when

creating hash codes for documents. The bag of words and TF-IDF scorings do an

excellent job at representing documents as a distribution, however, documents are not

interpreted by humans as distributions of words when being read. Therefore, we

propose an RNN based semantic hashing method that will take sentence orderings into

account when creating unique hashcodes. We hypothesize that sentence ordering has

a significant impact on the semantic meaning of documents, and that our hashing

function must take sentence ordering into account to properly capture semantic

meaning. We will test an RNN based hashing architecture with the positive hypothesis

that it will perform better than non-RNN hashing architectures.

23

Methodology

The following four public datasets with be used for input data. 1. Reuters Corpus

Volume 1 (RCV1). RCV1 is a collection of manually labeled newswire stories provided

by reuters. There are a total of 800,000 stories and 103 classes. 2. Reuters21578​2 ​, this

is a collection of 10,788 documents with 90 classes on news topics that have been

manually labelled. 3. 20Newsgroups3 dataset which is a collection of 18,828 news

articles contained 20 unique classes. 4. TMC4 which is a dataset of air traffic reports

provided by NASA. This dataset contains 28,515 documents that are all multi labelled.

Each of the four datasets will be randomly split into 3 subsets: training (80%),

testing (10%), and validation (10%). The training set will be used to learn the mapping

of document to hash code. The validation set will be used for classifier hyperparameter

tuning of our model. The validation set is necessary to avoid hyperparameters that are

bias towards our dataset. The testing set will be used to compare our performance

against other models. The testing set must be separate as we do not want out mapping

to overfit to the data we provide it. Essentially, if we do not have a seperate testing set

our model may ‘memorize’ the optimal hash codes for the documents it has seen,

meaning it will have poor performance on new documents.

In order to build a model that understands the semantic meaning from sentence

orderings we will leverage Recurrent Neural Networks with Long Short Term Memory​1​.

24

Recurrent neural networks allow for neural networks to have a sense of state along with

outputs, giving them the ability to work with temporal datasets (​Fig 1.)

Figure 1. ​The simplest RNN architecture. The Output at time t is a function of the

current state of the RNN, which is then a function of the previous state and the input into

25

the RNN. The architecture on the left shows a graphical representation of the RNN,

while the architecture on the right is an ‘unrolled’ RNN architecture used for visualization

purposes.

The issue with the RNN architecture above is that the information from previous

states is lost over several timesteps​2​. Because of the long term memory issues

experienced with RNNs, we proposal using an LSTM​3​ architecture in our model (​Fig 2.)​.

LSTMs are a special kind of RNN capable of learning long term dependencies, they

have been widely adopted by the deep learning community because they offer much

better performance than typical RNNs. LSTMs work like RNN’s with the repeated

unfolded structure, however, they contain 4 neural network layers within them instead of

1.

26

Figure 2.​ The architecture of an LSTM. Several gates are used to decide if states need

to be dropped or altered. C​t​ represents the cell state. F​t ​ is the forget gate, which

decides if Cell state needs to be forgotten. I​t ​is a gate that can add new information to

the Cell state. O​t ​decides on the output of the LSTM.

We plan on inputting sentences one at a time into the LSTM. At the last time

step, the output will be our hashed code. This is similar to a ‘many to one’ LSTM

architecture (​Figure 3)​. Sentences will be converted to vectors using TF-IDF and bag of

words models. Essentially, the LSTM will first hash a sentence, then hash the resulting

sentence and hash code repeatedly until the final hashed code is outputted. We think

this will produce better semantic meaning than the naive method of feeding and entire

document representation into the model at once.

27

Figure 3.​ Architecture of our proposal model. Sentences are fed one at a time into a

LSTM model trained to generate hashed outputs.

In order to back propagate error through the LSTM, we will reconstruct our

sentences from the hashed-code, and use the reconstruction error as a loss function in

the RNN.

We plan to implement our model using Python and the Keras deep learning

package. Keras is a high level neural-networks API that runs on top of tensorflow. Keras

28

will ease our development time while still allowing for the dataflow optimizations

experienced when using tensorflow.

To test our hypothesis, we will calculate the precision of the top 100 retrieved

documents on the 4 datasets we are using. We will compare our performance to the

performance of baselines including : Locality Sensitive Hashing (LSH)​4​ , Spectral

Hashing (SpH)​5​, Self-taught Hashing (STH)​6​, Stacked Restricted Boltzmann Machines

(Stacked RBMs)​7​, Supervised Hashing with Kernels (KSH)​8​, and Semantic Hashing

using Tags and Topic Modeling (SHTTM)​9​.

29

Implementation

In order to implement the design that we came up with, we first needed to select

what data sets and tools we were going to use. For our data set, we chose to use the 20

Newsgroups data set. The specific set that we used was pre-labelled by topic. The tools

we relied on included Word2Vec, to create vectors of hashes of each document. In

addition we used Keras on a Tensorflow backend to build the Recurrent Neural

Network (RNN).

Our implementation begins by training an RNN with the 20 Newsgroups data set.

Our RNN model is “seq2seq”, a model provided by Tensorflow, which includes recurrent

neural networks in it’s list of specialties. The seq2seq model relies on on a DataUtils

class which performs all of the data (i.e. 20 Newsgroups) and auxiliary setup necessary

to run the model. The model is created and trained on the 20 Newsgroups training set.

The data, in this case, are documents labelled by topic. By feeding this into our RNN

with their labels as is standard in supervised learning, we teach the model to generate

hash codes with the help of Word2Vec. This is performed in the hidden layer of our

RNN. Word2Vec is a pre-trained shallow neural network that creates vectors from

characters or words. The vectors that are output are intended to be as close in

numerical similarity as the original documents are in topic similarity.

30

Data Analysis and Discussion

To test the accuracy of our model, we measure the precision of both the LSH

categorizations and our semantic hashing categorizations. In the case of LSH, we took

the cosine distance of all of the vectors, and grouped together the top one hundred. By

taking the ratio of the largest similarly labelled group divided by one hundred, we were

able get an accuracy score for how well LSH worked. We implemented the same

method on our semantic hashing, however, we used hamming distance instead cosine.

After running this test multiple times (Table 3), we noticed that our implementation

outperformed LSH consistently. The following table shows a sample precision for 10

different document queries.

LSH Semantic
Hashing

0.231021 0.225643

0.051623 0.124423

0.171394 0.210243

0.142467 0.160547

0.231191 0.254238

0.070721 0.129378

0.160164 0.202190

0.150156 0.199121

0.221101 0.176368

0.184203 0.172601

31

Table 3. Results from 10 tests performed to compare the two methods.

As shown in Table 3, Semantic hashing outperformed LSH marginally. The overall

average mean precision for the top 100 documents retrieved for semantic hashing

ended up at roughly .185 while LSH received an average mean precision of .165. This

is about a 15% improvement from LSH.

In our hypothesis, we predicted that semantic hashing would perform better than

non-RNN hashing architectures. Based on our results gathered in Table 3, we found

that our implementation of semantic hashing can outperform LSH, a basic version of

hashing. However, when comparing LSH to other semantic hashing methods, the top

performers typically perform around 100-200% better than LSH. So while our

implementation is not a useful alternative to top hashing methods, it was able to

outperform several famous hashing methods. Because of this, we believe that our

project shows a lot of promise in utilizing RNNs for semantic hashings, and with more

time and resources, RNNs could potentially prove to be an optimal solution to semantic

hashing. Overall, using word orderings for semantic hashing proved to show working

results, however due to limited time, we were unable to optimize the RNN. While we

were unable to prove our hypothesis that RNNs would outperform other top semantic

hashing methods, our results provide evidence that this may be true.

32

Conclusion and Recommendations

Summary and Conclusions

Our results, to some degree, demonstrate the effectiveness of the application of

Recurrent Neural Networks, specifically, Long short-term memory, on Semantic

Hashing. Let’s begin by analyzing the results that were gathered. While our results were

consistently better than LSH, the ratio of correctly grouped hashes was not very high. It

ran between 16-18%. We were successful in developing a better method of finding

similar documents, but not to the extent that we initially anticipated.

Recommendations for Future Studies

There exist many possibilities and directions where our studies on deep semantic

hashing could be driven towards. Specifically, we would like to emphasize a few future

improvements that we hypothesize could vastly improve our system’s performance.

Possibilities for improvement include, but are not limited to, increasing the training time

and size, improving the algorithmic efficiency of our code, and feeding inputs

word-by-word or sentence-by-sentence.

The first improvement, deals with increasing the training time for our model. Due to time

constraints, deadlines, and work setbacks, it was impossible to train the neural network

for an ideal time frame, at least not one which we were satisfied could perform as well

33

as we had initially predicted. This is one of the reasons why we believe that our

precision was low. Furthermore, our current training time was around 8 hours, however,

the machine specifications and environment were perhaps not up to par with

state-of-the-art, industry standards. Some libraries which we used, like Tensorflow,

require or benefit from a high amount of memory or GPUs to handle large datasets

adequately. Therefore, given more time and better conditions, we believe our overall

precision would benefit.

Another topic of further research and improvement is the algorithmic efficiency of our

model. Perhaps our methods are not as optimized heavily and therefore it is necessary

to continue working and improving the algorithm and code so that it runs in an

acceptable time frame.

A third area for future recommendations and additions is to get the Recurrent Neural

Network to predict the original documents from a simple word2vec input. This would

essentially reconstruct the document given the word2vec and could have many potential

uses in a variety of applications.

Finally, we feel that the results could be greatly improved if the RNN was fed input in a

word-by-word or sentence-by-sentence fashion. This would preserve the structural

integrity of the text and would inherently aid in maintaining semantics throughout.

34

Bibliography

1) Has¸im Sak, Andrew Senior, Franc¸oise Beaufays, Long Short-Term Memory

Recurrent Neural Network Architectures for Large Scale Acoustic Modeling.

INTERSPEECH, ​2014

2) Claudio Gallicchio, Short-Term memory of Deep RNN. ​26th European

Symposium on Artificial Neural Networks, Computational Intelligence and

Machine Learning (ESANN)​, Bruges (Belgium), 25-27 April 2018

3) Klaus Greff​, ​Rupesh Kumar Srivastava​, ​Jan Koutník​, ​Bas R. Steunebrink​, ​Jürgen

Schmidhuber​ LSTM: A Space Search Odyssey. ​IEEE Transactions on Neural

Networks and Learning Systems (Volume: 28, Issue: 10, Oct. 2017)​ Pages:

2222 - 2232

4) M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive hashing

scheme based on p-stable distributions. ​In Proceedings of the twentieth annual

symposium on Computational geometry​, pages 253–262. ACM, 2004.

5) Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In ​NIPS​, pages

1753–1760, 2009.

6) D. Zhang, J. Wang, D. Cai, and J. Lu. Self-taught hashing for fast similarity

search. In ​SIGIR​, pages 18–25. ACM, 2010.

7) R. Salakhutdinov and G. Hinton. Semantic hashing. ​International Journal of

Approximate Reasoning​, 50(7):969–978, 2009.

https://arxiv.org/search?searchtype=author&query=Greff%2C+K
https://arxiv.org/search?searchtype=author&query=Srivastava%2C+R+K
https://arxiv.org/search?searchtype=author&query=Koutn%C3%ADk%2C+J
https://arxiv.org/search?searchtype=author&query=Steunebrink%2C+B+R
https://arxiv.org/search?searchtype=author&query=Schmidhuber%2C+J
https://arxiv.org/search?searchtype=author&query=Schmidhuber%2C+J

35

8) W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang. Supervised hashing with

kernels. In ​CVPR​, pages 2074–2081. IEEE, 2012.

9) Q. Wang, D. Zhang, and L. Si. Semantic hashing using tags and topic modeling.

In ​SIGIR​, pages 213–222. ACM, 2013.

10) Z. Qiu, T. Yao, Y. Pan, and T. Mei. Deep Semantic Hashing with Generative

Adversarial Networks. In ​SIGIR,​ pages 225-234. ACM, 2017.

11)“20 Newsgroups.” ​Home Page for 20 Newsgroups Data Set​,

qwone.com/~jason/20Newsgroups/.

36

Appendix

A. Source Code
a. dataonefile.py

import os

path = '/mnt/c/Users/Kevin/Desktop/Deep-Semantic-Hashing/20news-bydate-train'

total_files = 0

file_output = open('20news.data', 'w')

for (dirpath, dirnames, filenames) in os.walk(path):

 total_files = len(filenames)

 for filename in filenames:

 if filename == '.DS_Store':

 continue

 filedir = os.path.join(dirpath, filename)

 category = filedir.split('/')[-2]

 with open(filedir, 'r') as content_file:

 content = content_file.read()

 file_output.write(category + ', ' + repr(content))

 file_output.write('\n')

print 'Converted ' + str(total_files) + ' documents into single file \'20news.data\''

b. LSH.py
import binascii

import random

num_hashes = 128

num_docs = 377

37

shingle_length = 8

data_file = '20news.data'

doc_shingle_sets = {}

doc_id_to_category = {}

next_prime = 379 #

http://compoasso.free.fr/primelistweb/page/prime/liste_online_en.php

def get_index(row, col):

 if row == col:

 sys.stderr.write("Incorrect Access")

 sys.exit(1)

 if col < row:

 temp =row

 row = col

 col = temp

 return int(row * (num_docs - (row + 1) / 2.0) + col - row) - 1

def generate_hash(k):

 # Create a list of 'k' random values.

 rand_list = []

 while k > 0:

 # Get a random shingle ID.

 rand_idx = random.randint(0, doc_count)

 # Ensure that each random number is unique.

 while rand_idx in rand_list:

 rand_idx = random.randint(0, doc_count)

 # Add the random number to the list.

 rand_list.append(rand_idx)

 k = k - 1

 return rand_list

data_file = open(data_file, "rU")

docs = []

38

doc_count = 0

all_shingles = set()

for i in range(0, num_docs):

 doc = data_file.readline()

 category = doc.split(',')[0]

 doc = doc.split(',')[1:]

 doc = ','.join(doc)

 doc = doc.split('\'')[1:-1]

 doc = '\''.join(doc)

 doc = str(doc)

 docs.append(doc_count)

 shingles_in_doc = set()

 shingles = [doc[i: i + shingle_length] for i in range(len(doc))][: -shingle_length]

 for shingle in shingles:

 crc = binascii.crc32(shingle) & 0xffffffff

 shingles_in_doc.add(crc)

 all_shingles.add(crc)

 doc_shingle_sets[doc_count] = shingles_in_doc

 doc_id_to_category[doc_count] = category

 doc_count += 1

 data_file.close()

a = generate_hash(num_hashes)

b = generate_hash(num_hashes)

sigs_list = []

for doc_id in docs:

 shingle_id_set = doc_shingle_sets[doc_id]

 doc_sig = []

 for i in range(0, num_hashes):

 min_hash_code = next_prime + 1

 for shingle_id in shingle_id_set:

 hash_code = (a[i] * shingle_id + b[i]) % next_prime

39

 if hash_code < min_hash_code:

 min_hash_code = hash_code

 doc_sig.append(min_hash_code)

 sigs_list.append(doc_sig)

file_output = open('hash_codes.out', 'w')

for i, hash_code in enumerate(sigs_list):

 if len(hash_code) != num_hashes:

 print 'Bad hash code'

 file_output.write(str(hash_code) + ', ' + str(doc_id_to_category[docs[i]]) + '\n')

c. Demo.py

from __future__ import print_function

from keras.models import Model

from keras.layers import Input, LSTM, Dense

import numpy as np

import seq2seq

import utils

import sklearn

import numpy as np

import sys

from itertools import chain

import time

def hamming_dist(s1, s2):

 assert len(s1) == len(s2)

 return sum(c1 != c2 for c1, c2 in zip(s1, s2))

def precision(top100, query_class):

 count = 0

 for _, c in top100:

 if c == query_class:

 count+=1

 a_precision = float(count)/100

40

 print ("Average precision, ", a_precision)

 return a_precision

if __name__ == "__main__":

 print("\n\nLoading pre-trained model weights...")

 time.sleep(6)

 data_path = '20news-bydate-train'

 utils.DataUtils.get_20news_dataset(data_path)

 batch_size = 64 # Batch size for training.

 epochs = 100 # Number of epochs to train for.

 latent_dim = 256 # Latent dimensionality of the encoding space.

 num_samples = 10000 # Number of samples to train on.

 # Path to the data txt file on disk.

 encoder_input_data, decoder_input_data, decoder_target_data, num_encoder_tokens,

num_decoder_tokens = utils.DataUtils.prep_train_data(0, 1000)

 seq_model = seq2seq.seq2seq(latent_dim, num_encoder_tokens, num_decoder_tokens)

 seq_model.load_existing()

 #enc_test, _, _, _, _= utils.DataUtils.prep_train_data(1000, 1100)

 for seq_index in range(1):

 print("\nSelecting document...")

 time.sleep(5)

 print("\nHashing document\n")

 input_seq = encoder_input_data[seq_index: seq_index + 1]

 states_value = np.array(seq_model.hash(input_seq))

 hash_code = utils.hash(states_value)

 hash_class = utils.DataUtils.Y_train[seq_index].split(".")[0].strip(",")

 h = ''

 for val in hash_code:

 h+=str(val)

 print("Hash value of document: \n", h)

 print ("\nClass of hashed document: ", hash_class)

 print("\n")

 time.sleep(5)

41

 input_path = "hashed_documents/all_hash_values.txt"

 hash_dict = {}

 sim_dict = {}

 precisions = []

 print("Getting hash values of other documents...\n")

 time.sleep(5)

 with open(input_path, "r") as f:

 classes = {}

 for line in f.readlines():

 hash, c = line.split("]")

 c = c.split(".")[0].strip(",")

 if c in classes:

 classes[c]+=1

 else:

 classes[c] = 1

 hash_string = ''

 for val in hash:

 if val == '1' or val == '0':

 hash_string+=val

 hash_dict[hash_string] = c

 query = h

 query_class = hash_class

 top100 = []

 print("\nComparing hash values, finding 100 most similar\n")

 for key, key_class in hash_dict.items():

 sim = hamming_dist(query, key)

 top100.append([sim, key_class])

 top100 = sorted(top100, key=lambda x: x[0], reverse=True)

 print("\nClasses of most relevant documents:\n")

 for i, v in enumerate(top100):

 print(str(i) + ". " + "sim: " + str(v[0]) + " class: " + str(v[1]))

 if (i == 100):

 break

 precisions.append(precision(top100[:100], query_class))

42

 avg_precisions = np.array(precisions)

d. Evaluate.py

import numpy as np

import sys

from itertools import chain

from sklearn.metrics import average_precision_score

input_path = sys.argv[1]

hash_dict = {}

sim_dict = {}

precisions = []

def hamming_dist(s1, s2):

 assert len(s1) == len(s2)

 return sum(c1 != c2 for c1, c2 in zip(s1, s2))

def precision(top100, query_class, classes):

 count = 0

 for _, c in top100:

 if c == query_class:

 print (c)

 print (query_class)

 count+=1

 a_precision = float(count)/100

 print ("Average precision, ", a_precision)

 return a_precision

with open(input_path, "r") as f:

 classes = {}

 for line in f.readlines():

 hash, c = line.split("]")

 c = c.split(".")[0].strip(",")

 if c in classes:

 classes[c]+=1

 else:

43

 classes[c] = 1

 hash_string = ''

 for val in hash:

 if val == '1' or val == '0':

 hash_string+=val

 hash_dict[hash_string] = c

for query, query_class in hash_dict.items():

 top100 = []

 for key, key_class in hash_dict.items():

 sim = hamming_dist(query, key)

 top100.append([sim, key_class])

 top100 = sorted(top100, key=lambda x: x[0], reverse=True)

 if len(top100) > 100:

 top100 = top100[:100]

 precisions.append(precision(top100, query_class, classes))

avg_precisions = np.array(precisions)

print("Mean average precision: ", np.average(avg_precisions))

with open("Mean_average_precision_result.txt", "w") as f:

 f.write("Mean average precision of RNN hasher: ")

 f.write(str(np.average(avg_precisions)))

e. Seq2seq.py

from keras.models import Model

from keras.layers import Input, LSTM, Dense

import numpy as np

from keras import backend as K

import sys

import utils

import word2vec

import gensim

import word2vec

44

def get_session(gpu_num="2", gpu_fraction=0.2):

 import tensorflow as tf

 import os

 os.environ["CUDA_VISIBLE_DEVICES"]=gpu_num

 num_threads = os.environ.get('OMP_NUM_THREADS')

 gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_fraction)

 if num_threads:

 return tf.Session(config=tf.ConfigProto(

 gpu_options=gpu_options, intra_op_parallelism_threads=num_threads))

 else:

 return tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

class seq2seq(object):

 def __init__(self, latent_dim, num_encoder_tokens, num_decoder_tokens):

 self._training_model = None

 self._hashing_model = None

 self.hashing_inputs = None

 self.hashing_states = None

 self.latent_dim = latent_dim

 self.num_encoder_tokens = num_encoder_tokens

 self.num_decoder_tokens = num_decoder_tokens

 @property

 def training_model(self):

 return self._training_model

 @training_model.setter

 def training_model(self, val):

 if self._training_model == None:

 self._training_model = val

 else:

 print("Attempted to train model twice, exiting...")

 sys.exit(0)

 @property

 def hashing_model(self):

45

 return self._hashing_model

 @hashing_model.setter

 def hashing_model(self, val):

 if self._hashing_model == None:

 self._hashing_model = val

 else:

 print("Hashing model created twice, exiting...")

 sys.exit(0)

 def _build_training(self):

 #Encoder portion

 encoder_inputs = Input(shape=(None, self.num_encoder_tokens))

 encoder = LSTM(self.latent_dim, return_state=True)

 encoder_outputs, state_h, state_c = encoder(encoder_inputs)

 encoder_states = [state_h, state_c]

 #decoder portion

 decoder_inputs = Input(shape=(None, self.num_decoder_tokens))

 decoder_lstm = LSTM(self.latent_dim, return_sequences=True, return_state=True)

 decoder_outputs, _, _ = decoder_lstm(decoder_inputs,

initial_state=encoder_states)

 decoder_dense = Dense(self.num_decoder_tokens, activation='softmax')

 decoder_outputs = decoder_dense(decoder_outputs)

 self.hashing_inputs = encoder_inputs

 self.hashing_states = encoder_states

 self.training_model = Model([encoder_inputs, decoder_inputs], decoder_outputs)

 def _build_hashing_function(self):

 self.hashing_model = Model(self.hashing_inputs, self.hashing_states)

 def load_existing(self, weight_path="s2s_training_weights.h5"):

 self._build_training()

 self.training_model.load_weights(weight_path)

 def train(self, encoder_input_data, decoder_input_data, decoder_target_data,

 optimizer="rmsprop", loss='categorical_crossentropy', batch_size=100,

epochs=10, validation_split=0.2):

 self._build_training()

46

 self.training_model.compile(optimizer=optimizer, loss=loss)

 self.training_model.fit([encoder_input_data, decoder_input_data],

 decoder_target_data, batch_size=batch_size, epochs=epochs,

validation_split=0.2)

 self.training_model.save("s2s_training_weights.h5")

 def hash(self, input_data):

 if self.hashing_model == None:

 self._build_hashing_function()

 states = self.hashing_model.predict(input_data)

 return states

if __name__ == "__main__":

 K.set_session(get_session())

 data_path = '20news-bydate-train'

 utils.DataUtils.get_20news_dataset(data_path)

 batch_size = 64 # Batch size for training.

 epochs = 100 # Number of epochs to train for.

 latent_dim = 256 # Latent dimensionality of the encoding space.

 num_samples = 10000 # Number of samples to train on.

 # Path to the data txt file on disk.

 # Vectorize the data.

 encoder_input_data, decoder_input_data, decoder_target_data, num_encoder_tokens,

num_decoder_tokens = utils.DataUtils.prep_train_data(0, 1000)

 seq_model = seq2seq(latent_dim, num_encoder_tokens, num_decoder_tokens)

 seq_model.train(encoder_input_data, decoder_input_data, decoder_target_data)

 #enc_test, _, _, _, _= utils.DataUtils.prep_train_data(1000, 1100)

 with open("hash_values_random.txt", "w") as f:

 for seq_index in range(1000):

 input_seq = encoder_input_data[seq_index: seq_index + 1]

 states_value = np.array(seq_model.hash(input_seq))

 hash_code = utils.hash(states_value)

47

 print("Hash value: \n", hash_code)

 f.write(''.join(str(hash_code)))

 f.write(',')

 f.write(str(utils.DataUtils.Y_train[seq_index]))

 f.write('\n')

f. Utils.py

import os

import scipy

import tqdm

import numpy as np

def hash(states):

 state_string = states.flatten()

 return [1 if i >0 else 0 for i in state_string]

def map(file_path):

 with open(file_path, "r") as f:

 for line in f.readlines():

 pass

class DataUtils(object):

 #X train contains vector of words representations

 #Y train contains labels

 #Files is the name of the file info originated from

 #Ordered by index

 #Converted to numpy arrays after calling

 X_train = []

 Y_train = []

 files = []

 word_vec_train = []

 @staticmethod

 def get_20news_dataset(file_path):

 for dname in os.listdir(file_path):

 if(dname != ".DS_Store"):

48

 dname = os.path.join(file_path, dname)

 for fname in os.listdir(dname):

 fname = os.path.join(dname, fname)

 try:

 with open(fname, "rb") as f:

 file_array = []

 DataUtils.files.append(fname)

 for line in f.readlines():

 for word in line.split():

 file_array.append(word)

 DataUtils.X_train.append(file_array)

 DataUtils.Y_train.append(dname.split("/")[1])

 except FileNotFoundError:

 print ("Did not find file: ", fname)

 DataUtils.X_train = np.array(DataUtils.X_train)

 DataUtils.Y_train = np.array(DataUtils.Y_train)

 from sklearn.utils import shuffle

 DataUtils.X_train, DataUtils.Y_train = shuffle(DataUtils.X_train,

DataUtils.Y_train, random_state=42)

 DataUtils.files = np.array(DataUtils.files)

 @staticmethod

 def get_vector_embeddings():

 # Load Google's pre-trained Word2Vec model.

 model =

gensim.models.KeyedVectors.load_word2vec_format('./GoogleNews-vectors-negative300.bin'

, binary=True)

 #Create word2vec matrix

 for doc in utils.DataUtils.X_train:

 doc_vec = []

 for word in doc:

 try:

 try:

 doc_vec.append(model.get_vector(word.decode('utf-8')))

 except UnicodeDecodeError:

 #ignore broken embeddings

 pass

49

 except KeyError:

 print("Word not in vocab, skipping")

 DataUtils.word_vec_train.append(doc_vec)

 @staticmethod

 def prep_train_data(start_ind=0, end_ind=100):

 input_texts = []

 target_texts = []

 input_characters = set()

 target_characters = set()

 for doc in DataUtils.X_train[start_ind:end_ind]:

 for words in doc:

 try:

 w = words.decode('utf-8')

 input_text = w

 target_text = w

 # We use "tab" as the "start sequence" character

 # for the targets, and "\n" as "end sequence" character.

 target_text = '\t' + target_text + '\n'

 input_texts.append(input_text)

 target_texts.append(target_text)

 for char in input_text:

 if char not in input_characters:

 input_characters.add(char)

 for char in target_text:

 if char not in target_characters:

 target_characters.add(char)

 except UnicodeDecodeError:

 pass

 input_characters = sorted(list(input_characters))

 target_characters = sorted(list(target_characters))

 num_encoder_tokens = len(input_characters)

 num_decoder_tokens = len(target_characters)

 max_encoder_seq_length = max([len(txt) for txt in input_texts])

 max_decoder_seq_length = max([len(txt) for txt in target_texts])

 input_token_index = dict(

50

 [(char, i) for i, char in enumerate(input_characters)])

 target_token_index = dict(

 [(char, i) for i, char in enumerate(target_characters)])

 encoder_input_data = np.zeros(

 (len(input_texts), max_encoder_seq_length,

num_encoder_tokens),

 dtype='float32')

 decoder_input_data = np.zeros(

 (len(input_texts), max_decoder_seq_length,

num_decoder_tokens),

 dtype='float32')

 decoder_target_data = np.zeros(

 (len(input_texts), max_decoder_seq_length,

num_decoder_tokens),

 dtype='float32')

 for i, (input_text, target_text) in enumerate(zip(input_texts, target_texts)):

 for t, char in enumerate(input_text):

 encoder_input_data[i, t, input_token_index[char]] = 1.

 for t, char in enumerate(target_text):

 # decoder_target_data is ahead of decoder_input_data by one timestep

 decoder_input_data[i, t, target_token_index[char]] = 1.

 if t > 0:

 # decoder_target_data will be ahead by one timestep

 # and will not include the start character.

 decoder_target_data[i, t - 1, target_token_index[char]] = 1.

 return encoder_input_data, decoder_input_data, decoder_target_data,

num_encoder_tokens, num_decoder_tokens

g. wordvec.py

import os

import gensim

import word2vec

51

#Initializes an iterator class that will iterate through all of the docs in the corpus

and

#create a vector for each doc containing vectors of each line containing a vector of

each word

class MySentences(object):

 def __init__(self, dirname):

 self.dirname = dirname

 def __iter__(self):

 for dname in os.listdir(self.dirname):

 #print(dname)

 if(dname != ".DS_Store"):

 dname = os.path.join(self.dirname, dname)

 for fname in os.listdir(dname):

 for line in open(os.path.join(dname, fname)):

 yield line.split()

#creating the vectors from the address provided below, will read a directory of

directories containing the docs

#other directory arrangements will not work in this version

sentences = MySentences('./20news-bydate-train/') # a memory-friendly iterator

list(sentences)

#print(list(sentences))

#passing the vectors into word2vec, dimesion of 256 currently

model = gensim.models.word2vec.Word2Vec(sentences, size=256, sorted_vocab=1)

#model.save('wv.txt')

print(model)

#print(model.wv.vocab)

#each input prints out the vector for the word, just hit "return" to end, or type a

word not in the corpus

word = 'empty_string'

while (word != '\n'):

 word = raw_input("Enter a word: ")

 print(model.wv[word])

#model.build_vocab(sentences)

#print(model)

#print(model.wv.vocab)

52

B. Input/Output

These sets are too large to put into a document such as this. The inputs
can be found at the link provided by citation 11. The relevant outputs are
shown in Table 3.

