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Introduction 

It is our goal to develop a method which utilizes a Recurrent Neural Network with 

long short-term memory for hashing documents while maintaining the integrity of the 

structure of the text and also preserving its semantic meaning. 

 

Similarity search is an increasingly popular problem. Its objective is to identify 

similar documents given an input document or query, to be used in applications such as 

search engines, document detection, collaborative filtering, caching, etc. The first 

proposed methods for similarity search provided accurate and reliable results. However, 

as a result of the explosive growth of data on the Internet, traditional similarity methods 

have resulted less impactful. Many of these original methods require computations in 

high dimensional matrix spaces that become impossible to compute given the large 

amount of information to be searched. To address this issue, hashing was introduced. 

Hashing documents provides a method of reducing a document’s dimensionality 

allowing similarity computations to be performed much more quickly and efficiently in a 

lower dimensionality space. However, an optimal method of determining the best 

hashing function continues to be heavily researched and improved upon. The best 

hashing functions aim to not only maintain the similarity, but identify and preserve the 

semantics of a document as well.  

 



 
 

6 

In COEN 281: Pattern Recognition and Data Mining, we covered 

locality-sensitive hashing (LSH), a method used in similarity search which addresses 

the shortcomings of traditional similarity search methods. LSH reduces the 

dimensionality of its input with the objective of preserving the similarity between a set of 

items. This allows for efficient computing of similar items. This project relates to the 

course as it analyzes the drawbacks to LSH and proposes a method of hashing which in 

addition to maintaining similarity, captures the semantic meaning of the items. 

 

There are many methods that exist for hashing documents based off of the 

structure of the text in those documents. The general use of this is for finding similar 

documents. However, simply hashing documents based on structure is not enough. For 

example, consider the following two short texts: “I bought an Apple mouse” and “I 

bought an apple and a mouse”. These two strings are extremely similar in structure. 

With most traditional hashing methods, these sentences would hash to the same or 

nearly the same location. However, in actuality, these sentences have two completely 

different meanings. While these are short texts, the same principle applies to 

full-fledged documents, just on a larger scale. It is for the reason provided in the 

example that current approaches are not ideal. In essence, they ignore the core 

component behind all text, its meaning. By taking semantics into account, our method of 

hashing documents will be able to group similar texts more accurately. There has been 

a limited amount of research into doing this specifically. Additionally, while semantic 

hashing was originally introduced in 2009, there has not been enough research which 
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combines the promising and modern technology of deep learning with semantic 

hashing. To further improve upon what work has been done for semantic hashing, we 

intend to explore the potential use of Recurrent Neural Networks to aid in the hashing of 

especially long documents. Recurrent Neural Networks are designed to perform with 

sequences of information and are frequently used for language applications such as text 

translation. For this reason, we believe utilizing a recurrent neural network with long 

short-term memory is a perfect candidate for combining semantic hashing with deep 

learning and can provide a hashing mechanism which can capture semantic meaning 

with high accuracy.  

 

Current methods of document/text similarity comparison through hashing are 

using the wrong metrics for similarity. We will correct that by combining the disciplines 

of semantic hashing and neural networks to successfully hash and compare documents 

based on their semantic meaning. 
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Theoretical Bases and Literature Review 

The objective of our project is to create a model which produces hash codes for 

documents which maintain similarity between hash codes of documents both in 

structure and in meaning. In order to evaluate this, we use the following formula to 

calculate the performance of our results: 

 

erformance P = 100

∑
100

i=1
Ri

 

 

Where ​R​i​ is whether document i is relevant. Precision measures how many selected 

items are relevant. To evaluate the performance of our hash codes, for each test 

document in our test data, for the top one hundred hash codes with the closests 

hamming distance, how many are actually similar/relevant documents. For each method 

we are comparing with, the total performance or average precision reveals how well the 

hashing function preserves the similarity and semantics of a document when hashing. 

 

So much information in the world has been documented and archived. With the 

advent of the internet, the amount of such information has exploded. Given so much 

work already done, it simply does not make sense to reinvent the wheel each time we 

need to understand or create something. For this reason, having the ability to search 

currently existing databases of information in an efficient and effective manner is vital. 

To achieve this, we must be able to accurately compare text and documents.  
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From this problem has arisen the solution of document comparison for similarity 

through the use of hashing. The usefulness of semantic hashing, as it’s called, rests on 

the fact that using a methods like TF-IDF and standard text hashing merely account for 

the structure of a document through word ordering or frequency while leaving out 

meaning, the most important component of any text. By accounting for the semantic 

meanings of words and phrases, we will be able to match documents that are similar in 

content, not just structure. 

  

Our solution will be implementing semantic hashing, similarly to how the articles 

we researched did. The key difference will be that we intend to use Recurrent Neural 

Networks (RNN). The major benefit of the RNN model that we will implement is that it 

works well on long documents, meaning that it is able to interpret the definition of a 

word or phrase even if the appropriate context was given much earlier in the document. 

This key difference should make our implementation even more robust than the 

semantic hashing methods that have come before. 
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Related Research 

Self-Taught Hashing for Fast Similarity Search 

As previously stated, the number of applications that semantic hashing has is 

very large and continues to grow with advancements in the internet. The premise of 

Semantic Hashing is the creation of very compact binary sequences used to represent a 

document. Ultimately, similar documents will be mapped to similar codes that are within 

a very short hamming distance of each other. Once these documents have been 

mapped, comparisons for finding the most similar documents rely on simple XOR 

operations among codes that easily fit into main memory. Additionally, the semantic 

hashing methodology yields a very pragmatic approach for finding new similar 

documents. The practical tasks of Information Retrieval, more specifically tasks such as 

plagiarism detection, involve checking the similarity of a single document, or input 

query, against a very large set of documents. In most cases, finding all similarities 

among all documents is not merely practical or useful at all. However, finding the most 

similar documents to the input query is in most cases, the most useful application. Let’s 

say we have a document that can be represented with the very short binary code of 

‘1111’. If this document is the input query, then we can retrieve the most similar 

documents from a corpus with shortest hamming distance of 1 which would include 

those mapped to hash codes of ‘1110’ or ‘0111’.  
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Ultimately, this article addresses the problem of designing binary codes for 

unseen documents from the corpus. The approach is to use unsupervised learning to 

learn the hash codes of a corpus of documents. From this stage, the use of a 

supervised approach can be applied to the learning of a new hashcode for any new 

query document. In essence, this allows the hash function to be trained according to the 

corpus and tested against any input query. However, the research paper simply 

proposes a framework that can be used for new query documents. Although the 

approach hopes to accelerate similarity searches, its focus is on speeding up the 

process for a new document query, unseen by the corpus. 

 

Semantic Hashing using Tags and Topic Modeling 

In their paper “Semantic Hashing using Tags and Topic Modeling”, researchers 

Wang, Zhang, and Si identified two major issues with existing semantic hashing. The 

first issue identified is that tag information is often not fully utilized or incorrectly used. In 

most real world applications, documents are frequently associated with tags, which 

provide context on the meaning and usage of a document. These tags can be extremely 

useful when trying to capture semantic meaning. Many implementations completely 

ignored associated document tags or alternatively used them limitedly. Ignoring the 

descriptive document tags can certainly hinder the performance of a hashing method. 

Alternatively, for the methods that do utilize the document tags, they often do not 

account for documents where tags are missing. A real application requires the 

allowance of tags to be present or missing, as documents frequently are absent of tags. 
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The second issue identified was that many methods use document similarity in the 

original keyword feature space when constructing the hashing function. The main issue 

with this is that they fail to capture semantic meaning. While documents with similar 

words are likely to be similar, the converse is not necessarily true; documents with 

differing words may be semantically similar. Many methods would categorize two 

different documents under the same topic as different if they have a large vocabulary 

gap.  

 

To address these issues, the researchers proposed a hashing method which 

takes into account both the documents tags as well as computing document similarity 

through the topic of a document rather than the words in the document itself. In order to 

incorporate document tags, they had to account for two main challenges. The first is 

that they have to find a way to incorporate the document tags into the hashing function. 

Secondly, document tags may be missing, so they need to account for situations for 

incomplete or missing tags. Wang, Zhang, and Si solved the first problem by matrix 

factorization with a latent factor model. For each tag, a latent variable is introduced, 

indicating the correlation between tags and hashing codes. A tag consistency 

component is then calculated using the following equation: 
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Where T​ij​ is a binary label for the i-th tag and the j-th item,  is a weighted sumyui
T

j  

revealing the relationship between the i-th rag and the j-th document, and the second 

term is introduced to avoid overfitting with a fixed hyperparameter alpha. To address   

the second issue, a confidence matrix is constructed, where each document has a value 

for each tag. When that value is large, then we can trust the tag information for that 

document. In order to avoid calculating document similarity in the original keyword 

feature space, the proposed method is by running latent dirichlet allocation (LDA) 

through the documents to discover a set of latent topics. Each document has a 

distribution describing how each topic relates to that document. Therefore documents 

with similar semantic meaning will have similar distributions.  

 

The overall algorithm functions by following the steps as listed. First is the 

running of LDA through the training documents to discover a set of topics and calculate 

the distributions for how each document relates to those topics. Next, the confidence 

matrix is constructed describing how much a tag is trusted for each document. Next the 

optimal hash codes are computed by minimizing the distance between similar 

documents (ones with similar distributions). Next, the following equation is used to find 

an optimal hashing function W: 
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This function aims to minimize the distance between the optimal hash codes computed 

and the outputted hash codes from the hash function for each document.  

 

In order to evaluate how well their proposed hashing method functions, they 

compared their algorithm to five other top-performing hash functions with four different 

data-sets. In order to measure their performance, the top 100 nearest neighbors for a 

given document were found, and the precision (relevant/total) was calculated. Their 

results showed that their proposed method, SHTTM outperformed all previous methods 

they compared against. Table 1 displays the exact numbers retrieved for each dataset 

along with the different hashing methods for different bit sizes. 

 

 

 

Table 1: ​Precision of the top 100 retrieved documents on the four datasets with different 

hashing bits for STTM, compared against other top performing semantic hashing 

methods.  
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The proposed method provides very compelling reasons for including tag 

information when hashing. However, their method of using LDA to discover topics, while 

intuitive and high performing, has shortcomings. The main issue is that a document is 

categorized on the basis of its topic(s). However documents can be much more 

nuanced; topics can have subtopics and LDA may not capture the different subtopics. 

While it proved to be a reliable method for semantic hashing, we believe that a more 

accurate method should be able to capture more precise semantics rather than the 

topics of a document. 

 

Understanding Short Texts through Semantic Enrichment and Hashing 

Finding similar documents in large data sets is hard enough, especially when 

measuring similarity based on semantic meaning instead of text content. This becomes 

even more difficult when dealing with short texts. Short text does not provide the same 

contextual clues or themes that a full fledged document might provide. Because of that, 

the writers of this article decided to implement a special case of semantic hashing 

specifically for short text. 

 

The proposed solution in this article consists of two main parts: enriching the 

short text, and hashing the text with a Deep Neural Network (DNN). By enriching the 

short text, the authors hoped to magnify the semantic meaning of the words in that text. 

They achieved this by using conceptualization and co-occurring terms. 
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Conceptualization evaluates the probability of word taking on one of its definitions at 

that moment. This probability determines how likely a word is to mean one specific 

definition. This is based off of the few words that surround the target word for context. 

Because this is not very strong in a short text, conceptualization is used in conjunction 

with co-occurring terms. A score is assigned to a combination of words based on how 

often that combination of words occurs together based on their semantic meanings in 

the current context. Together, these methods magnify the semantic meaning of the 

short text. 

 

Once these values have been calculated, they are used in a DNN to hash the 

original text. This DNN takes the text as a vector and passes it through 3 

auto-encoders. These auto-encoders are what take into account the previously 

calculated scores and values to train the DNN. By passing the text through this network, 

they are able to create a binary hash of the text that has been weighted based off of the 

calculated values. As a result each binary hash vector should be different yet still true to 

the original text’s meaning. 

  

The authors of this paper did test their method afterwards. They first tested the 

semantic enrichment portion first. By comparing it against methods that sites like 

Wikipedia used, they were able to prove that their method is more accurate than what is 

currently being utilized on the web. In addition, they also tested the DNN and compared 
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against methods such as TF-IDF. Over all, the new implementation laid out in the paper 

was more successful and accurate than anything that currently exists. 

 

Deep Semantic Hashing with Generative Adversarial Networks 

This paper proposed a method for deep semantic hashing which uses a 

generative adversarial network for image search. Typically in semantic hashing, 

supervised models which learn a hash function from labeled images tend to outperform 

unsupervised models. The paper lists the reasoning for this is because similarity criteria 

does not always depend on the contents but sometimes can depend on image 

annotators. However, the main issue with this is that retrieving labeling images is not a 

simple task and they stress the importance to develop  a model that does not require 

labeled images. 

 

The goal of their paper was to generate synthetic images for learning a hash 

function while leveraging general adversarial networks. The intuition behind general 

adversarial networks is to train a conditional generator and discriminator that are able to 

produce an image given class labels.  

 

The main model produced was deep semantic hashing with general adversarial 

networks (DSH-GANs). A real input image must have labels that allows the control of 

the generator to produce similar images. Additionally, non-relevant labels need to be 

selected so the generator can produce dissimilar images. Finally, the images will go 
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through a deep convolutional neural network to learn to low level features of the image. 

The output of the convolutional neural network is fed into three different networks: a 

hash stream, classification stream, and an adversary stream. The hash stream uses a 

maximum margin as a rank loss function in order to learn a hashing function. The 

classification stream forces images with similar labels to have similar hash codes, and 

conversely, images with separate labels will have dissimilar hash functions. Lastly, the 

adversary stream is apart of the GAN. 

 

To test their proposed semantic hashing method, they conducted extensive 

evaluations on two image datasets. They then calculated the accuracy of their 

DSH-GANs model compared to 11 other models, showing that theirs outperforms.  

 

 

Table 2:​ Accuracy in terms of MAP. The MAP performance is calculated on the 

top five thousand returned images.  
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Table 2 displays the precise results found for each hashing method. As shown 

DSH-GANs performs very well. Outperforming most methods significantly. The only 

comparable method was DPSH.  

 

While we found their usage of a general adversarial network had promising 

results, the basis of their research seemed too restricted. The strongest methods should 

be able to excel whether information is labeled or unlabeled. However, their approach 

into incorporating deep learning into the problem of semantic hashing shows that deep 

learning should not be overlooked and helped guide our approach in this problem.  
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Our Solution 

Our proposed solution to this problem is to utilize long short-term memory in 

recurrent neural networks in order to create a model to accurately preserve the 

semantics of a document when generating hash codes. Recurrent neural networks are 

a form of neural networks where internal states are used. Simply put, recurrent neural 

networks can use information from previous iterations when computing an output. 

Recurrent neural networks were designed to perform with sequences of information and 

are frequently used for language applications such as text translation. However 

recurrent neural networks alone have a few issues including that maintaining states is 

computationally expensive as well as gradient issues when training. A popular method 

to solve these issues in large scale data applications is long short-term memory 

(LSTM). LSTM is an abstraction that is used alongside recurrent neural networks and is 

used to maintain, update, and regulate the states of the network models. Therefore, for 

semantic hashing, we believe using a recurrent neural network with long short-term 

memory will hold promising results.  

 

Firstly our proposed solution is unique from most semantic hashing methods as it 

attempts to combine deep learning with semantic hashing. Deep learning is a subfield of 

machine learning that has recently emerged because of the complex computations that 

were previously impossible. Deep learning has continuously proved itself to be a viable 

solution for various problems with extremely strong results. Few methods of semantic 
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hashing have connected the problem with deep learning, so only limited research has 

been performed. However, deep learning with semantic hashing is not unexplored. 

Limited research has proven its strength and viability as a solution for semantic hashing. 

However, utilizing recurrent neural networks with long short-term memory has been 

absent in the realm of semantic hashing. 

 

We believe our solution will be superior as the inclusion of recurrent neural 

networks has strong intuition behind it. As previously mentioned recurrent neural 

networks were designed specifically for sequential data, and are very powerful when 

used with text. The inclusion of long short-term memory allows this method to function 

with large scale data, which semantic hashing requires. Recurrent neural networks with 

long short-term memory were design to perform for problems very similar to semantic 

hashing. Our deep learning model is precisely selected and constructed for the exact 

problem.  
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Hypothesis 

Current semantic hashing methods fail to take word orderings into account when 

creating hash codes for documents. The bag of words and TF-IDF scorings do an 

excellent job at representing documents as a distribution, however, documents are not 

interpreted by humans as distributions of words when being read. Therefore, we 

propose an RNN based semantic hashing method that will take sentence orderings into 

account when creating unique hashcodes. We hypothesize that sentence ordering has 

a significant impact on the semantic meaning of documents, and that our hashing 

function must take sentence ordering into account to properly capture semantic 

meaning. We will test an RNN based hashing architecture with the positive hypothesis 

that it will perform better than non-RNN hashing architectures. 
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Methodology 

The following four public datasets with be used for input data. 1. Reuters Corpus 

Volume 1 (RCV1). RCV1 is a collection of manually labeled newswire stories provided 

by reuters. There are a total of 800,000 stories and 103 classes. 2. Reuters21578​2 ​, this 

is a collection of 10,788 documents with 90 classes on news topics that have been 

manually labelled. 3. 20Newsgroups3 dataset which is a collection of 18,828 news 

articles contained 20 unique classes. 4. TMC4 which is a dataset of air traffic reports 

provided by NASA. This dataset contains 28,515 documents that are all multi labelled. 

 

Each of the four datasets will be randomly split into 3 subsets: training (80%), 

testing (10%), and validation (10%). The training set will be used to learn the mapping 

of document to hash code. The validation set will be used for classifier hyperparameter 

tuning of our model. The validation set is necessary to avoid hyperparameters that are 

bias towards our dataset. The testing set will be used to compare our performance 

against other models. The testing set must be separate as we do not want out mapping 

to overfit to the data we provide it. Essentially, if we do not have a seperate testing set 

our model may ‘memorize’ the optimal hash codes for the documents it has seen, 

meaning it will have poor performance on new documents. 

 

In order to build a model that understands the semantic meaning from sentence 

orderings we will leverage Recurrent Neural Networks with Long Short Term Memory​1​. 
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Recurrent neural networks allow for neural networks to have a sense of state along with 

outputs, giving them the ability to work with temporal datasets (​Fig 1.) 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. ​The simplest RNN architecture. The Output at time t is a function of the 

current state of the RNN, which is then a function of the previous state and the input into 
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the RNN. The architecture on the left shows a graphical representation of the RNN, 

while the architecture on the right is an ‘unrolled’ RNN architecture used for visualization 

purposes. 

 

The issue with the RNN architecture above is that the information from previous 

states is lost over several timesteps​2​. Because of the long term memory issues 

experienced with RNNs, we proposal using an LSTM​3​ architecture in our model (​Fig 2.)​. 

LSTMs are a special kind of RNN capable of learning long term dependencies, they 

have been widely adopted by the deep learning community because they offer much 

better performance than typical RNNs. LSTMs work like RNN’s with the repeated 

unfolded structure, however, they contain 4 neural network layers within them instead of 

1. 
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Figure 2.​ The architecture of an LSTM. Several gates are used to decide if states need 

to be dropped or altered. C​t​ represents the cell state. F​t ​ is the forget gate, which 

decides if Cell state needs to be forgotten. I​t ​is a gate that can add new information to 

the Cell state. O​t ​decides on the output of the LSTM. 

 

We plan on inputting sentences one at a time into the LSTM. At the last time 

step, the output will be our hashed code. This is similar to a ‘many to one’ LSTM 

architecture (​Figure 3)​. Sentences will be converted to vectors using TF-IDF and bag of 

words models. Essentially, the LSTM will first hash a sentence, then hash the resulting 

sentence and hash code repeatedly until the final hashed code is outputted. We think 

this will produce better semantic meaning than the naive method of feeding and entire 

document representation into the model at once. 
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Figure 3.​ Architecture of our proposal model. Sentences are fed one at a time into a 

LSTM model trained to generate hashed outputs. 

 

In order to back propagate error through the LSTM, we will reconstruct our 

sentences from the hashed-code, and use the reconstruction error as a loss function in 

the RNN. 

 

We plan to implement our model using Python and the Keras deep learning 

package. Keras is a high level neural-networks API that runs on top of tensorflow. Keras 
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will ease our development time while still allowing for the dataflow optimizations 

experienced when using tensorflow.  

 

To test our hypothesis, we will calculate the precision of the top 100 retrieved 

documents on the 4 datasets we are using. We will compare our performance to the 

performance of baselines including : Locality Sensitive Hashing (LSH)​4​ , Spectral 

Hashing (SpH)​5​, Self-taught Hashing (STH)​6​, Stacked Restricted Boltzmann Machines 

(Stacked RBMs)​7​, Supervised Hashing with Kernels (KSH)​8​, and Semantic Hashing 

using Tags and Topic Modeling (SHTTM)​9​. 

 

 

 

 

  



 
 

29 

Implementation 

In order to implement the design that we came up with, we first needed to select 

what data sets and tools we were going to use. For our data set, we chose to use the 20 

Newsgroups data set. The specific set that we used was pre-labelled by topic. The tools 

we relied on included Word2Vec, to create vectors of hashes of each document. In 

addition we used  Keras on a Tensorflow backend to build the Recurrent Neural 

Network (RNN).  

Our implementation begins by training an RNN with the 20 Newsgroups data set. 

Our RNN model is “seq2seq”, a model provided by Tensorflow, which includes recurrent 

neural networks in it’s list of specialties. The seq2seq model relies on on a DataUtils 

class which performs all of the data (i.e. 20 Newsgroups) and auxiliary setup necessary 

to run the model. The model is created and trained on the 20 Newsgroups training set. 

The data, in this case, are documents labelled by topic. By feeding this into our RNN 

with their labels as is standard in supervised learning, we teach the model to generate 

hash codes with the help of Word2Vec. This is performed in the hidden layer of our 

RNN. Word2Vec is a pre-trained shallow neural network that creates vectors from 

characters or words. The vectors that are output are intended to be as close in 

numerical similarity as the original documents are in topic similarity.  
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Data Analysis and Discussion 

To test the accuracy of our model, we measure the precision of both the LSH 

categorizations and our semantic hashing categorizations. In the case of LSH, we took 

the cosine distance of all of the vectors, and grouped together the top one hundred. By 

taking the ratio of the largest similarly labelled group divided by one hundred, we were 

able get an accuracy score for how well LSH worked. We implemented the same 

method on our semantic hashing, however, we used hamming distance instead cosine. 

After running this test multiple times (Table 3), we noticed that our implementation 

outperformed LSH consistently. The following table shows a sample precision for 10 

different document queries.  

LSH Semantic 
Hashing 

0.231021 0.225643 

0.051623 0.124423 

0.171394 0.210243 

0.142467 0.160547 

0.231191 0.254238 

0.070721 0.129378 

0.160164 0.202190 

0.150156 0.199121 

0.221101 0.176368 

0.184203 0.172601 
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Table 3. Results from 10 tests performed to compare the two methods. 

 

As shown in Table 3, Semantic hashing outperformed LSH marginally. The overall 

average mean precision for the top 100 documents retrieved for semantic hashing 

ended up at roughly .185 while LSH received an average mean precision of .165. This 

is about a 15% improvement from LSH.  

 

In our hypothesis, we predicted that semantic hashing would perform better than 

non-RNN hashing architectures. Based on our results gathered in Table 3, we found 

that our implementation of semantic hashing can outperform LSH, a basic version of 

hashing. However, when comparing LSH to other semantic hashing methods, the top 

performers typically perform around 100-200% better than LSH. So while our 

implementation is not a useful alternative to top hashing methods, it was able to 

outperform several famous hashing methods. Because of this, we believe that our 

project shows a lot of promise in utilizing RNNs for semantic hashings, and with more 

time and resources, RNNs could potentially prove to be an optimal solution to semantic 

hashing. Overall, using word orderings for semantic hashing proved to show working 

results, however due to limited time, we were unable to optimize the RNN. While we 

were unable to prove our hypothesis that RNNs would outperform other top semantic 

hashing methods, our results provide evidence that this may be true.  
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Conclusion and Recommendations 

Summary and Conclusions 

Our results, to some degree, demonstrate the effectiveness of the application of 

Recurrent Neural Networks, specifically, Long short-term memory, on Semantic 

Hashing. Let’s begin by analyzing the results that were gathered. While our results were 

consistently better than LSH, the ratio of correctly grouped hashes was not very high. It 

ran between 16-18%. We were successful in developing a better method of finding 

similar documents, but not to the extent that we initially anticipated. 

 

Recommendations for Future Studies  

There exist many possibilities and directions where our studies on deep semantic 

hashing could be driven towards. Specifically, we would like to emphasize a few future 

improvements that we hypothesize could vastly improve our system’s performance. 

Possibilities for improvement include, but are not limited to, increasing the training time 

and size, improving the algorithmic efficiency of our code, and feeding inputs 

word-by-word or sentence-by-sentence.  

 

The first improvement, deals with increasing the training time for our model. Due to time 

constraints, deadlines, and work setbacks, it was impossible to train the neural network 

for an ideal time frame, at least not one which we were satisfied could perform as well 
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as we had initially predicted. This is one of the reasons why we believe that our 

precision was low. Furthermore, our current training time was around 8 hours, however, 

the machine specifications and environment were perhaps not up to par with 

state-of-the-art, industry standards. Some libraries which we used, like Tensorflow, 

require or benefit from a high amount of memory or GPUs to handle large datasets 

adequately. Therefore, given more time and better conditions, we believe our overall 

precision would benefit.  

 

Another topic of further research and improvement is the algorithmic efficiency of our 

model. Perhaps our methods are not as optimized heavily and therefore it is necessary 

to continue working and improving the algorithm and code so that it runs in an 

acceptable time frame.  

 

A third area for future recommendations and additions is to get the Recurrent Neural 

Network to predict the original documents from a simple word2vec input. This would 

essentially reconstruct the document given the word2vec and could have many potential 

uses in a variety of applications.  

 

Finally, we feel that the results could be greatly improved if the RNN was fed input in a 

word-by-word or sentence-by-sentence fashion. This would preserve the structural 

integrity of the text and would inherently aid in maintaining semantics throughout.  
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Appendix 

A. Source Code 
a. dataonefile.py 

import os 

 

path = '/mnt/c/Users/Kevin/Desktop/Deep-Semantic-Hashing/20news-bydate-train' 

 

total_files = 0 

file_output = open('20news.data', 'w') 

 

for (dirpath, dirnames, filenames) in os.walk(path): 

   total_files = len(filenames) 

 

   for filename in filenames: 

       if filename == '.DS_Store': 

           continue 

 

       filedir = os.path.join(dirpath, filename) 

       category = filedir.split('/')[-2] 

 

       with open(filedir, 'r') as content_file: 

           content = content_file.read() 

           file_output.write(category + ', ' + repr(content)) 

           file_output.write('\n') 

 

print 'Converted ' + str(total_files) + ' documents into single file \'20news.data\'' 

 

 
 

b. LSH.py 
import binascii 

import random 

 

num_hashes = 128 

num_docs = 377 
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shingle_length = 8 

data_file = '20news.data' 

doc_shingle_sets = {} 

doc_id_to_category = {} 

next_prime = 379 # 

http://compoasso.free.fr/primelistweb/page/prime/liste_online_en.php 

 

 

 

def get_index(row, col): 

 if row == col: 

   sys.stderr.write("Incorrect Access") 

   sys.exit(1) 

 

 if col < row: 

   temp =row 

   row = col 

   col = temp 

 

 return int(row * (num_docs - (row + 1) / 2.0) + col - row) - 1 

 

def generate_hash(k): 

 # Create a list of 'k' random values. 

 rand_list = [] 

  while k > 0: 

   # Get a random shingle ID. 

   rand_idx = random.randint(0, doc_count) 

   # Ensure that each random number is unique. 

   while rand_idx in rand_list: 

     rand_idx = random.randint(0, doc_count) 

  

   # Add the random number to the list. 

   rand_list.append(rand_idx) 

   k = k - 1 

 return rand_list 

 

data_file = open(data_file, "rU") 

 

docs = [] 
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doc_count = 0 

all_shingles = set() 

 

for i in range(0, num_docs): 

 doc = data_file.readline() 

 category = doc.split(',')[0] 

 doc = doc.split(',')[1:] 

 doc = ','.join(doc) 

 doc = doc.split('\'')[1:-1] 

 doc = '\''.join(doc) 

 doc = str(doc) 

 docs.append(doc_count) 

 

 shingles_in_doc = set() 

 shingles = [doc[i: i + shingle_length] for i in range(len(doc))][: -shingle_length] 

 

 for shingle in shingles: 

     crc = binascii.crc32(shingle) & 0xffffffff 

     shingles_in_doc.add(crc) 

     all_shingles.add(crc) 

 

 doc_shingle_sets[doc_count] = shingles_in_doc 

 doc_id_to_category[doc_count] = category 

 doc_count += 1 

 data_file.close()  

 

a = generate_hash(num_hashes) 

b = generate_hash(num_hashes) 

 

sigs_list = [] 

for doc_id in docs: 

 shingle_id_set = doc_shingle_sets[doc_id] 

  doc_sig = [] 

 for i in range(0, num_hashes): 

   min_hash_code = next_prime + 1 

 

   for shingle_id in shingle_id_set: 

     hash_code = (a[i] * shingle_id + b[i]) % next_prime 
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     if hash_code < min_hash_code: 

       min_hash_code = hash_code 

 

   doc_sig.append(min_hash_code) 

 sigs_list.append(doc_sig) 

 

file_output = open('hash_codes.out', 'w') 

for i, hash_code in enumerate(sigs_list): 

 if len(hash_code) != num_hashes: 

   print 'Bad hash code' 

 file_output.write(str(hash_code) + ', ' + str(doc_id_to_category[docs[i]]) + '\n') 

 

 

 
c. Demo.py 

from __future__ import print_function 

 

from keras.models import Model 

from keras.layers import Input, LSTM, Dense 

import numpy as np 

import seq2seq 

import utils 

import sklearn 

import numpy as np 

import sys 

from itertools import chain 

import time 

 

def hamming_dist(s1, s2): 

   assert len(s1) == len(s2) 

   return sum(c1 != c2 for c1, c2 in zip(s1, s2)) 

 

def precision(top100, query_class): 

   count = 0 

   for _, c in top100: 

       if c == query_class: 

           count+=1 

   a_precision = float(count)/100 
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   print ("Average precision, ", a_precision) 

   return a_precision 

 

if __name__ == "__main__": 

 

   print("\n\nLoading pre-trained model weights...") 

   time.sleep(6) 

   data_path = '20news-bydate-train' 

   utils.DataUtils.get_20news_dataset(data_path) 

 

   batch_size = 64  # Batch size for training. 

   epochs = 100  # Number of epochs to train for. 

   latent_dim = 256  # Latent dimensionality of the encoding space. 

   num_samples = 10000  # Number of samples to train on. 

   # Path to the data txt file on disk. 

 

   encoder_input_data, decoder_input_data, decoder_target_data, num_encoder_tokens, 

num_decoder_tokens = utils.DataUtils.prep_train_data(0, 1000) 

   seq_model = seq2seq.seq2seq(latent_dim, num_encoder_tokens, num_decoder_tokens) 

   seq_model.load_existing() 

 

   #enc_test, _, _, _, _= utils.DataUtils.prep_train_data(1000, 1100) 

   for seq_index in range(1): 

       print("\nSelecting document...") 

       time.sleep(5) 

       print("\nHashing document\n") 

       input_seq = encoder_input_data[seq_index: seq_index + 1] 

       states_value = np.array(seq_model.hash(input_seq)) 

       hash_code = utils.hash(states_value) 

       hash_class = utils.DataUtils.Y_train[seq_index].split(".")[0].strip(",") 

       h = '' 

       for val in hash_code: 

           h+=str(val) 

       print("Hash value of document: \n", h) 

       print ("\nClass of hashed document: ", hash_class) 

       print("\n") 

 

   time.sleep(5) 
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   input_path = "hashed_documents/all_hash_values.txt" 

   hash_dict = {} 

   sim_dict = {} 

   precisions = [] 

   print("Getting hash values of other documents...\n") 

   time.sleep(5) 

 

   with open(input_path, "r") as f: 

       classes = {} 

       for line in f.readlines(): 

           hash, c = line.split("]") 

           c = c.split(".")[0].strip(",") 

           if c in classes: 

               classes[c]+=1 

           else: 

               classes[c] = 1 

           hash_string = '' 

           for val in hash: 

               if val == '1' or val == '0': 

                   hash_string+=val 

 

           hash_dict[hash_string] = c 

 

   query = h 

   query_class = hash_class 

   top100 = [] 

   print("\nComparing hash values, finding 100 most similar\n") 

   for key, key_class in hash_dict.items(): 

       sim = hamming_dist(query, key) 

       top100.append([sim, key_class]) 

   top100 = sorted(top100, key=lambda x: x[0], reverse=True) 

 

   print("\nClasses of most relevant documents:\n") 

   for i, v in enumerate(top100): 

       print(str(i) + ". " + "sim: " + str(v[0]) + " class: " + str(v[1])) 

       if (i == 100): 

           break 

   precisions.append(precision(top100[:100], query_class)) 
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   avg_precisions = np.array(precisions) 

 

 
d. Evaluate.py 

import numpy as np 

import sys 

from itertools import chain 

from sklearn.metrics import average_precision_score 

 

input_path = sys.argv[1] 

hash_dict = {} 

sim_dict = {} 

precisions = [] 

 

def hamming_dist(s1, s2): 

   assert len(s1) == len(s2) 

   return sum(c1 != c2 for c1, c2 in zip(s1, s2)) 

 

def precision(top100, query_class, classes): 

   count = 0 

   for _, c in top100: 

       if c == query_class: 

           print (c) 

           print (query_class) 

           count+=1 

   a_precision = float(count)/100 

   print ("Average precision, ", a_precision) 

   return a_precision 

 

 

with open(input_path, "r") as f: 

   classes = {} 

   for line in f.readlines(): 

       hash, c = line.split("]") 

       c = c.split(".")[0].strip(",") 

       if c in classes: 

           classes[c]+=1 

       else: 
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           classes[c] = 1 

       hash_string = '' 

       for val in hash: 

           if val == '1' or val == '0': 

               hash_string+=val 

 

       hash_dict[hash_string] = c 

 

for query, query_class in hash_dict.items(): 

   top100 = [] 

   for key, key_class in hash_dict.items(): 

       sim = hamming_dist(query, key) 

       top100.append([sim, key_class]) 

   top100 = sorted(top100, key=lambda x: x[0], reverse=True) 

   if len(top100) > 100: 

       top100 = top100[:100] 

   precisions.append(precision(top100, query_class, classes)) 

 

avg_precisions = np.array(precisions) 

 

print("Mean average precision: ", np.average(avg_precisions)) 

 

with open("Mean_average_precision_result.txt", "w") as f: 

   f.write("Mean average precision of RNN hasher: ") 

   f.write(str(np.average(avg_precisions))) 

 

 
e. Seq2seq.py 

from keras.models import Model 

from keras.layers import Input, LSTM, Dense 

import numpy as np 

from keras import backend as K 

import sys 

import utils 

import word2vec 

import gensim 

import word2vec 
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def get_session(gpu_num="2", gpu_fraction=0.2): 

   import tensorflow as tf 

   import os 

 

   os.environ["CUDA_VISIBLE_DEVICES"]=gpu_num 

 

   num_threads = os.environ.get('OMP_NUM_THREADS') 

   gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_fraction) 

 

   if num_threads: 

       return tf.Session(config=tf.ConfigProto( 

           gpu_options=gpu_options, intra_op_parallelism_threads=num_threads)) 

   else: 

       return tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) 

 

class seq2seq(object): 

   def __init__(self, latent_dim, num_encoder_tokens, num_decoder_tokens): 

       self._training_model = None 

       self._hashing_model = None 

       self.hashing_inputs = None 

       self.hashing_states = None 

       self.latent_dim = latent_dim 

       self.num_encoder_tokens = num_encoder_tokens 

       self.num_decoder_tokens = num_decoder_tokens 

 

   @property 

   def training_model(self): 

       return self._training_model 

 

   @training_model.setter 

   def training_model(self, val): 

       if self._training_model == None: 

           self._training_model = val 

       else: 

           print("Attempted to train model twice, exiting...") 

           sys.exit(0) 

 

   @property 

   def hashing_model(self): 
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       return self._hashing_model 

 

   @hashing_model.setter 

   def hashing_model(self, val): 

       if self._hashing_model == None: 

           self._hashing_model = val 

       else: 

           print("Hashing model created twice, exiting...") 

           sys.exit(0) 

 

   def _build_training(self): 

       #Encoder portion 

       encoder_inputs = Input(shape=(None, self.num_encoder_tokens)) 

       encoder = LSTM(self.latent_dim, return_state=True) 

       encoder_outputs, state_h, state_c = encoder(encoder_inputs) 

       encoder_states = [state_h, state_c] 

       #decoder portion 

       decoder_inputs = Input(shape=(None, self.num_decoder_tokens)) 

       decoder_lstm = LSTM(self.latent_dim, return_sequences=True, return_state=True) 

       decoder_outputs, _, _ = decoder_lstm(decoder_inputs, 

initial_state=encoder_states) 

       decoder_dense = Dense(self.num_decoder_tokens, activation='softmax') 

       decoder_outputs = decoder_dense(decoder_outputs) 

 

       self.hashing_inputs = encoder_inputs 

       self.hashing_states = encoder_states 

       self.training_model = Model([encoder_inputs, decoder_inputs], decoder_outputs) 

 

   def _build_hashing_function(self): 

       self.hashing_model = Model(self.hashing_inputs, self.hashing_states) 

 

   def load_existing(self, weight_path="s2s_training_weights.h5"): 

       self._build_training() 

       self.training_model.load_weights(weight_path) 

 

   def train(self, encoder_input_data, decoder_input_data, decoder_target_data, 

               optimizer="rmsprop", loss='categorical_crossentropy', batch_size=100, 

epochs=10, validation_split=0.2): 

       self._build_training() 
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       self.training_model.compile(optimizer=optimizer, loss=loss) 

       self.training_model.fit([encoder_input_data, decoder_input_data], 

           decoder_target_data, batch_size=batch_size, epochs=epochs, 

validation_split=0.2) 

       self.training_model.save("s2s_training_weights.h5") 

 

   def hash(self, input_data): 

       if self.hashing_model == None: 

           self._build_hashing_function() 

       states = self.hashing_model.predict(input_data) 

       return states 

 

 

 

if __name__ == "__main__": 

 

   K.set_session(get_session()) 

   data_path = '20news-bydate-train' 

   utils.DataUtils.get_20news_dataset(data_path) 

 

   batch_size = 64  # Batch size for training. 

   epochs = 100  # Number of epochs to train for. 

   latent_dim = 256  # Latent dimensionality of the encoding space. 

   num_samples = 10000  # Number of samples to train on. 

   # Path to the data txt file on disk. 

 

   # Vectorize the data. 

 

   encoder_input_data, decoder_input_data, decoder_target_data, num_encoder_tokens, 

num_decoder_tokens = utils.DataUtils.prep_train_data(0, 1000) 

   seq_model = seq2seq(latent_dim, num_encoder_tokens, num_decoder_tokens) 

   seq_model.train(encoder_input_data, decoder_input_data, decoder_target_data) 

 

   #enc_test, _, _, _, _= utils.DataUtils.prep_train_data(1000, 1100) 

   with open("hash_values_random.txt", "w") as f: 

       for seq_index in range(1000): 

           input_seq = encoder_input_data[seq_index: seq_index + 1] 

           states_value = np.array(seq_model.hash(input_seq)) 

           hash_code = utils.hash(states_value) 
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           print("Hash value: \n", hash_code) 

           f.write(''.join(str(hash_code))) 

           f.write(',') 

           f.write(str(utils.DataUtils.Y_train[seq_index])) 

           f.write('\n') 

 

 
f. Utils.py 

import os 

import scipy 

import tqdm 

import numpy as np 

 

def hash(states): 

   state_string = states.flatten() 

   return [1 if i >0 else 0 for i in state_string] 

 

def map(file_path): 

   with open(file_path, "r") as f: 

       for line in f.readlines(): 

           pass 

 

 

class DataUtils(object): 

   #X train contains vector of words representations 

   #Y train contains labels 

   #Files is the name of the file info originated from 

   #Ordered by index 

   #Converted to numpy arrays after calling 

   X_train = [] 

   Y_train = [] 

   files = [] 

   word_vec_train = [] 

 

   @staticmethod 

   def get_20news_dataset(file_path): 

       for dname in os.listdir(file_path): 

           if(dname != ".DS_Store"): 
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               dname = os.path.join(file_path, dname) 

               for fname in os.listdir(dname): 

                   fname = os.path.join(dname, fname) 

                   try: 

                       with open(fname, "rb") as f: 

                           file_array = [] 

                           DataUtils.files.append(fname) 

                           for line in f.readlines(): 

                               for word in line.split(): 

                                   file_array.append(word) 

                           DataUtils.X_train.append(file_array) 

                           DataUtils.Y_train.append(dname.split("/")[1]) 

                   except FileNotFoundError: 

                       print ("Did not find file: ", fname) 

       DataUtils.X_train = np.array(DataUtils.X_train) 

       DataUtils.Y_train = np.array(DataUtils.Y_train) 

 

       from sklearn.utils import shuffle 

       DataUtils.X_train, DataUtils.Y_train = shuffle(DataUtils.X_train, 

DataUtils.Y_train, random_state=42) 

 

       DataUtils.files = np.array(DataUtils.files) 

 

   @staticmethod 

   def get_vector_embeddings(): 

       # Load Google's pre-trained Word2Vec model. 

       model = 

gensim.models.KeyedVectors.load_word2vec_format('./GoogleNews-vectors-negative300.bin'

, binary=True) 

       #Create word2vec matrix 

       for doc in utils.DataUtils.X_train: 

           doc_vec = [] 

           for word in doc: 

               try: 

                   try: 

                       doc_vec.append(model.get_vector(word.decode('utf-8'))) 

                   except UnicodeDecodeError: 

                       #ignore broken embeddings 

                       pass 
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               except KeyError: 

                   print("Word not in vocab, skipping") 

 

       DataUtils.word_vec_train.append(doc_vec) 

 

   @staticmethod 

   def prep_train_data(start_ind=0, end_ind=100): 

       input_texts = [] 

       target_texts = [] 

       input_characters = set() 

       target_characters = set() 

       for doc in DataUtils.X_train[start_ind:end_ind]: 

           for words in doc: 

               try: 

                   w = words.decode('utf-8') 

                   input_text = w 

                   target_text = w 

                   # We use "tab" as the "start sequence" character 

                   # for the targets, and "\n" as "end sequence" character. 

                   target_text = '\t' + target_text + '\n' 

                   input_texts.append(input_text) 

                   target_texts.append(target_text) 

                   for char in input_text: 

                       if char not in input_characters: 

                           input_characters.add(char) 

                   for char in target_text: 

                       if char not in target_characters: 

                           target_characters.add(char) 

               except UnicodeDecodeError: 

                   pass 

 

       input_characters = sorted(list(input_characters)) 

       target_characters = sorted(list(target_characters)) 

       num_encoder_tokens = len(input_characters) 

       num_decoder_tokens = len(target_characters) 

       max_encoder_seq_length = max([len(txt) for txt in input_texts]) 

       max_decoder_seq_length = max([len(txt) for txt in target_texts]) 

 

       input_token_index = dict( 
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                            [(char, i) for i, char in enumerate(input_characters)]) 

       target_token_index = dict( 

                             [(char, i) for i, char in enumerate(target_characters)]) 

 

       encoder_input_data = np.zeros( 

                                 (len(input_texts), max_encoder_seq_length, 

num_encoder_tokens), 

                                 dtype='float32') 

       decoder_input_data = np.zeros( 

                                 (len(input_texts), max_decoder_seq_length, 

num_decoder_tokens), 

                                 dtype='float32') 

       decoder_target_data = np.zeros( 

                                  (len(input_texts), max_decoder_seq_length, 

num_decoder_tokens), 

                                  dtype='float32') 

 

       for i, (input_text, target_text) in enumerate(zip(input_texts, target_texts)): 

           for t, char in enumerate(input_text): 

               encoder_input_data[i, t, input_token_index[char]] = 1. 

           for t, char in enumerate(target_text): 

               # decoder_target_data is ahead of decoder_input_data by one timestep 

               decoder_input_data[i, t, target_token_index[char]] = 1. 

               if t > 0: 

                   # decoder_target_data will be ahead by one timestep 

                   # and will not include the start character. 

                   decoder_target_data[i, t - 1, target_token_index[char]] = 1. 

 

       return encoder_input_data, decoder_input_data, decoder_target_data, 

num_encoder_tokens, num_decoder_tokens 

 

 
g. wordvec.py 

import os 

import gensim 

import word2vec 
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#Initializes an iterator class that will iterate through all of the docs in the corpus 

and 

#create a vector for each doc containing vectors of each line containing a vector of 

each word 

class MySentences(object): 

   def __init__(self, dirname): 

       self.dirname = dirname 

   def __iter__(self): 

       for dname in os.listdir(self.dirname): 

           #print(dname) 

           if(dname != ".DS_Store"):  

               dname = os.path.join(self.dirname, dname) 

               for fname in os.listdir(dname): 

                   for line in open(os.path.join(dname, fname)): 

                       yield line.split() 

 

#creating the vectors from the address provided below, will read a directory of 

directories containing the docs 

#other directory arrangements will not work in this version 

sentences = MySentences('./20news-bydate-train/') # a memory-friendly iterator 

list(sentences) 

#print(list(sentences)) 

 

#passing the vectors into word2vec, dimesion of 256 currently 

model = gensim.models.word2vec.Word2Vec(sentences, size=256, sorted_vocab=1) 

#model.save('wv.txt') 

print(model) 

#print(model.wv.vocab) 

 

#each input prints out the vector for the word, just hit "return" to end, or type a 

word not in the corpus 

word = 'empty_string' 

while (word != '\n'): 

   word = raw_input("Enter a word: ") 

   print(model.wv[word]) 

 

#model.build_vocab(sentences) 

#print(model) 

#print(model.wv.vocab) 
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B.  Input/Output 

These sets are too large to put into a document such as this. The inputs 
can be found at the link provided by citation 11. The relevant outputs are 
shown in Table 3.  
 


