
Ranking social media content to aid predictive

modeling

COEN281: Term Paper

Giovanni Briggs (gbriggs@scu.edu)

Jeff Wick (jwick@scu.edu)

Vincent Tai (vtai@scu.edu)

Maxen Chung (mhchung@scu.edu)

June 13, 2017



Abstract

Polling users is an extremely important process. It is used in a number of

applications, from business who want to evaluate consumer confidence, to

presidential campaign managers who want to predict the outcome of a pres-

idential election. Traditional polling techniques though are suffering from

increasingly low response rates making it more difficult to gather data in a

controlled setting. Meanwhile, social media usage is on the rise, and much

research has been done to construct The issue though is that very few people

have examined how to enrich their datasets with the underlying social graph.

Due to the extreme ease of which people are able to publish content on social

media, there is a lot of noise that can impact one’s ability to accurately utilize

social media data. This paper proposes using Google’s PageRank algorithm

for ranking users in the social graph and then using those ranks in the senti-

ment analysis process to create more accurate and stronger conclusions when

using social media data.



Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1 Introduction 3

1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Methodology 10

2.1 Creating the Dataset . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Ranking Twitter Users . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Sentiment Analysis on Tweets . . . . . . . . . . . . . . . . . . 14

2.4 Ranking and Sentiment Analysis combined . . . . . . . . . . . 15

3 Implementation 16

4 Data Analysis 19

5 Conclusion 22

1



List of Figures

2.1 Overview of Twitter’s Streaming API . . . . . . . . . . . . . . 13

3.1 Flow of data objects through our scripts. . . . . . . . . . . . . 17

3.2 Entity relationship diagram for the tables created by our Python

scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 Results from running our weighted sentiment analysis algorithm. 19

4.2 Histogram of the initial polarity results. . . . . . . . . . . . . 20

2



Chapter 1

Introduction

Our objective is to analyze new ways to generate accurate polls and pre-

dictions from non-traditional polling techniques. More specifically, we are

attempting to find a way to accurately poll social media content. Tradi-

tional polling techniques such as random-digit dialing have been the primary

form of polling. Random-digit dialing is particularly effective because of its

randomness which creates very representative sample sets. Maintaining a

representative sample set is extremely important in being able to accurately

predict outcomes. The issue with random digit dialing in particular is that

it is suffering from extremely low response rates. Over the past 15 years,

response rates have dropped from 36% in 1997 to 9% in 2012 [1]. This ne-

cessitates a new way to be able to gain a representative sample set in order

to poll public opinion. These sample sets can be used on a variety of topics

such as predicting United States presidential elections, evaluating consumer

confidence in a product, or evaluating where people stand on certain social

issues.

Several other publications have proposed using sentiment analysis on so-

cial media posts in order to collect representative sample sets on a variety

of topics as a way to replace traditional polling methods [9] [8] [10]. All of

these papers focus on using sentiment analysis on the individual social media

posts, but none of them try and use the underlying social graph to enrich

their datasets and predictions. In this paper specifically, we are going to

use Twitter as our primary social media network. Twitter has 328 million

3



monthly active users as of January 2017 [13]. This is relatively low compared

to Facebook’s 1.9 billion monthly active users [3], but Twitter comes with a

few advantages. First, Twitter has a 140-character limit whereas Facebook

posts do not have a limit. This means that that data collected from Twit-

ter is easier to manage. While some users do try and create longer posts

by posting multiple tweets that are meant to be read in a specific sequence,

most users abide by the 140-character limit. Second, every Twitter follower

can ”follow” any other Twitter user. For each Twitter profile, the user has a

”followers” and ”following” value. The followers value shows how many peo-

ple follow that user. Following shows how many other users this particular

user chooses to follow. In Facebook, there is only the concept of ”friends.”

Being a friend with someone is a mutual connection in which both users are

connected. In Twitter, User A can follow User B, but User B does not have

to follow User A. This creates a directional graph that can be used to further

enrich the textual data that Twitter offers. Using this graph, we can iden-

tify users that are more important than other users, similar to how Google’s

PageRank algorithm ranks certain web-pages as more important than others.

This is related to the topics we covered in COEN 281: Pattern Recogni-

tion and Data Mining. In this course we have covered PageRank extensively,

as well as the importance of maintaining a representative dataset. This prob-

lem that we are trying to tackle is also a data mining problem, not a machine

learning problem. With machine learning, you already know what problem

you are trying to solve. For any given problem, there are a set of known

algorithms that you can apply to find the answer you want. In data mining,

you don’t necessarily know the answer to the problem. You are looking for

patterns in the dataset that you have available. The primary focus of this

paper is mining the data on Twitter to create a representative dataset that

can then be used in machine learning algorithms. We will use some machine

learning techniques to evaluate the effectiveness of our dataset, but the main

focus of this paper is explaining a method for building a sample dataset from

Twitter that can then be used in a number of applications.

Using sentiment analysis on social media posts is not a new idea. What

is new is our approach to enrich that sentiment analysis with data from the

Twitter social graph. In the next section, we will discuss previous work re-

4



lated to sentiment analysis on social media, as well as other attempts to

replace traditional polling methods. We will then detail our hypothesis and

goals more completely. In Chapter 2, we will discuss our methodology for

collecting and analyzing our data. Chapter 3 will explore the technical de-

tails of how we gathered our data. We will follow this up in Chapter 4 with

a deep analysis of the data we gathered and how it lines up with our ex-

pectations. Finally, in Chapter 5 we will summarize our findings and make

recommendations for teams who wish to further explore this topic.

1.1 Related Work

As mentioned earlier, using sentiment analysis on social media posts is not

a new concept. More generally, searching for ways to replace traditional

polling methods is something that many people have been trying to do. Wei

Wang, David Rothschild, Sharad Goel, and Andrew Gelman in their paper

”Forecasting elections with non-representative polls” describe a method for

predicting presidential elections while using a non-representative sample set

[14]. The authors established a poll on the Xbox platform in 2012 during

the 45 days immediately preceding the election day between Mitt Romney

and Barack Obama. Everyday, they asked users if the election were to be

held today, who would they vote for, and also collected attributes about the

user such as age, gender, political party affiliation and location. Wang, et.

al very quickly realized that their sample set was not representative of the

larger US population. Their sample set was 93 percent male, compared to

the 47 percent national average, and their initial results suffered because of

it. Rather than re-sample their dataset to make it more representative, they

used a technique called post-stratification.

Post-stratification is a technique that allowed the authors to mimic a

representative sample set using their very skewed actual sample set. The

idea of post-stratification is that you break your sample set into cells. Each

cell is a unique combination of all of the available attributes. For example,

if a sample set contained gender and age, then one cell would be 18 year old

males and another would be 60 year old females. The next step to post-

stratification is to find a representative sample set that has all of the same

5



attributes as you have in your sample set. The authors chose to use the

exit polls from the 2008 election. Next you break the representative dataset

into the same cells as your sample set, and compare the probability of a cell

occurring in the representative set, Pr, versus the probability of that same

cell occurring in the sample set, Ps. Each cell is then assigned a weight based

on the relationship Pr/Ps. This relationship should make intuitive sense. If

the probability of a given cell occurring in the sample set is too high, then

we need to reduce its effect on the final output and vice-versa. The final step

of post-stratification is to apply each weight to the output generated by a

given cell.

Wang, et al. used a hierarchical Bayesian model to predict the probability

that each cell would vote for Obama, and then post-stratified the result for

each cell. First, they predicted how much of the popular vote Obama would

win, and accurately predicted him winning the popular vote. Not only that,

but they predicted the outcome with 0.6 percentage points. Wang, et al.

also designed a model for calculating the number of electoral college votes

Obama would win but applying their hierarchical Bayesian model and post-

stratification on a state by state level. Since most states in the United States

operate on a ”winner-take-all” standard, if a state was predicted to have

greater than 50 percent support for Obama, all of that’s states electoral

college votes went to Obama. The end result was not as accurate as their

popular support estimate, but still predicted Obama winning with 312 elec-

toral college votes versus his actual 332 electoral college votes. Wang, et

al. prove a very effective method for using non-representative data to make

accurate predictions and show a way to replace traditional polling techniques

for predicting presidential, and local, elections.

Post-stratification comes with some issues though. Mainly, it requires

that you have access to a representative dataset that describes the population

you are examining and it needs to have the same attributes as your sample

set. Luckily, within the United States, there are plenty of representative

sample sets such as the US Census data and exit poll surveys. For our

purposes, the use of post-stratification could be useful. There is no guarantee

that the tweets that we take from Twitter will be representative of a given

population. Post-stratification can allow us to adjust our sample set if we

6



discover that it is skewed in one direction or another. Unfortunately, the

attributes we can gather from Twitter about its users are very limited, and

so we may not be able to break our dataset into enough meaningfully distinct

cells. This could have an impact on our ability to effectively post-stratify the

data if necessary.

The effectiveness of post-stratification alleviates the pressure of needing

to build a system that generates a representative dataset every time. So now,

we can turn our attention to ranking Twitter users. One system that could

work is TrustRank, which was proposed by Zoltan Gyongyi, Hector Garcia-

Molina, and Jan Pedersen [5]. TrustRank is meant to be an improvement

upon PageRank. With PageRank, a page is considered ”good” if it has a

high number of incoming links. The idea is that if a page is referenced by

a lot of other pages (has a high volume of in-links), it must be worthwhile.

TrustRank takes a different approach and operates under the assumption

that ”trust” is conferred from one page to another with the end goal of

eliminating spam. If a highly trusted page links to another page, then that

secondary page must also be a trusted source. If an untrusted page links to

another page, then that secondary page must also be untrustworthy. While

PageRank uses the in-links to establish a page’s rank, TrustRank uses the

out-links.

Unfortunately, the definition of ”trustworthy” and ”untrustworthy” are

largely subjective and require manual intervention. It is not feasible then to

label every page on the web. To get around this, TrustRank operates with a

preset group of pages called the ”seed.” Each member of the seed is manually

identified as ”good” or ”bad.” If the page is considered to be a ”good” page,

it’s TrustRank is 1, and its trust is then conferred upon all the pages it links

to. However, the amount of trust is inversely proportional to the number of

out-links that page has. If Page A has a TrustRank of 1, and it links to 4

pages, each of those pages will get a TrustRank of 1/4. The idea is that the

more out-links a page has, the less care was placed in choosing trust worthy

pages.

The usage of TrustRank in Twitter has been explored by Shen Hua and

Liu Xinyue [11]. Rather than conferring trust from a seed of trustworthy

sources, these authors proposed doing the opposite - conferring distrust from

7



a seed of untrustworthy sources and named their algorithm Anti-TrustRank.

Hua and Xinyue found that untrustworthy sources tend to operate as a pack

and form a small, socially connected world. These untrustworthy accounts

(which are referred to as ”spammers”) could potentially be connected to

normal users, so care must be taken in the propagation of distrust. The act

of following someone on Twitter is easily done, and so just because a spammer

follows a normal user does not mean the normal user is also a spammer. To

combat this, the Anti-TrustRank relies on the inverse-link relationship. The

idea is to penalize users who actively follow spammers. In Hua and Xinyue’s

tests, the algorithm performed very well and placed more than 90 percent of

spam followers to the bottom 10 percent of the ranking system.

1.2 Hypothesis

We believe that we can implement PageRank, with Twitter followers as being

analogous to ”links” in the original PageRank. By combining our ranking

with regular Twitter sentiment analysis, we believe we will notice an increase

in polling accuracy when compared to using traditional sentiment analysis

alone. Our first hypothesis is that the gain in accuracy will be due to higher

ranking users having more sway on the polling process. The intuition behind

this is that users who have a high ranking will be users who are followed by

other high ranking users. In the real world, these users have a high social

cachet, and are therefore more likely to hold sway over people’s opinions.

Additionally, users who have a large follower base will be more retweeted

and favorited. This has the effect of spreading their opinion to users who are

not even followers, allowing their sentiment to be spread beyond just their

immediate follower base. In this way, our ranking algorithm is seeking users

whose Tweets have a maximal effect on the public opinion. By giving more

weight to high ranking users, we believe that we will be able to obtain a

more accurate depiction of the sentiment regarding the election, or whatever

is being polled.

Our second hypothesis is that the improvement in polling accuracy will

be caused by the diminished effect of low ranking users. Low ranking users

should not be ignored, as we are trying to take a representative sample, but

8



their effect on the polling numbers should not be as great as those with a

high rank. Low ranking users are likely one of two things: a regular person or

a Twitter-Bot. If it is a regular person, then we want to count that person’s

sentiment, but they are unlikely to have sway over a non-negligible portion

of the population. If it is a Twitter-Bot, then we do not want to count its

sentiment at all, but because this is not the focus of our paper, we will settle

for the low ranking it is likely to receive due to its low followers.

9



Chapter 2

Methodology

We will implement a PageRank-style algorithm, using Twitter followers as

”links”. We will need to handle the typical PageRank problems, such as

”dead ends” (Twitter users who do not follow anyone). This problem is split

into two parts - first is collecting a strong dataset, and the second is actually

running our ranking algorithm.

2.1 Creating the Dataset

Twitter offers an Application Programming Interface (API) that allows de-

velopers to pull information from Twitter. The relevant API endpoints are:

1. https://dev.twitter.com/rest/reference/get/friends/ids: Given a user’s

ID, obtain a list of all of their friends.

2. https://dev.twitter.com/rest/reference/get/followers/ids: Given a user’s

ID obtain a list of all of their followers.

The issue with these endpoints is that the Twitter has rate limits on

how many times you are allowed to query the endpoints. Both of these

endpoints have a 15 requests for every 15 minutes [12]. In other words,

we can only examine the followers and followees of a a single user every

minute. This process is too slow to build a useful social network graph.

Luckily, there are several datasets that contain a subset of the overall Twitter

10



social network graph. M. De Domenico et al. in their paper created a

dataset of 456,631 nodes and 14,855,875 directed edges, but this process

took them 25 days to complete [2]. Arizona State University offers another

Twitter dataset representing 11,316,811 nodes and 85,331,846 directed edges

[15]. Both datasets are rather old, with M. De Domenico et al.’s being

from 2013, and ASU’s being from 2009; however, they still provide us with a

representative social graph that we can work with. We chose the ASU dataset

simply because it has a greater volume of nodes and edges. M. De Domenico

et al’s dataset also only looked at user’s who wrote a status to Twitter about

the Higg’s Boson particle, and so their social graph was a much smaller, and

closely knit group of individuals; whereas the ASU set was much broader.

The ASU dataset represents the social graph in a series of rows containing

Twitter user IDs. In each row there are two numbers, and represents an edge

of the graph where the first ID is following the second ID. In other words,

the first ID is a follower of the second ID. While this is a compact form to

represent the social graph it doesn’t lend itself well for our ranking algorithm.

It is also too much data for us to manage in memory.

We chose to break the dataset down into a smaller subset and represent

the data in a JSON format. The keys to the JSON file are user IDs, and

each key points to another object. These sub-objects contain three keys

themselves:

1. followers : a list of the Twitter IDs that are following the user

2. following : a list of the Twitter IDs that this user is following

3. weight : 1 divided by the length of the following list. This is the weight

of all the outgoing edges that would be used with PageRank

Our resulting file does not contain all of the edges. Instead, we chose to

only read one out of every 25 edges giving us a resulting graph of 3,413,274

directed edges. Every time we read an edge, we made two entires. Since the

first value follows the second value, the first value was placed in the second

values ”follower” key. The second value was then placed in the first value’s

”following” key. At the end of this process we had 1,628,757 nodes. It is a

smaller and more compact representation of the social graph from the ASU

11



dataset. This does however reduce the average number of edges per node

from 8 to 3. However, even in the ASU dataset, there are some nodes that

have hundreds of thousands of followers, and some that have none. In our

condensed representation, the maximum number of followers that a single

node has is 22,646. The max number of users that a single node is following

is 8,576. Our condensed form maintains this property that some users have

many, many followers while some have none, but we may have increased the

number of dead ends.

Now that we have our social graph we needed to obtain a set of tweets.

Unfortunately, Twitter’s Terms of Service and Privacy Policy prohibit the

storage of user tweets. The Stanford Network Analysis Platform had a

dataset that contained user IDs and tweets, but it has since been taken

down by request from Twitter.

We still have a major problem - we don’t know how many of the user

IDs in our social graph are still active. In order to determine that, we would

have to do a GET /user/lookup call on the Twitter API. We can request

information for a 100 users at once, and at a rate of 300 requests per 15

minutes. At this rate, it would have taken us about 13 days to determine

who out of the 1.6 million users are still active. At this point, we still don’t

have any tweets to actual run sentiment analysis on. So we would need to

take this smaller subset of users and then make more API requests to gather

tweets from them. The 13 day process of simply determining which users

are still active is already too prohibitive given the time constraints of this

project.

Instead, we chose to use Twitter’s Streaming API to gather tweets about a

particular topic. Figure 2.1 shows how the process works. First, you provide

a set of phrases that you want to receive tweets about, and Twitter will send

a small subset of its Tweets to you as they occur in real time. We asked the

streaming API to send us tweets that contain the phrases ”trump”, ”donald

trump”, or ”realDonaldTrump.”

12



Figure 2.1: Overview of Twitter’s Streaming API

The issue with this approach is that it is highly unlikely that an incoming

Tweet is from someone in our social graph. To overcome this, we decided

to randomly assign incoming Tweets to users in our social graph. First, we

hash the 1.6 million user IDs to consecutive integers from zero to 1.6 million.

Then, as we receive Tweets from our stream, we hash the user ID of the

author of the Tweet to one of these consecutive integers. After streaming

data for about 10 hours on June 1st, 2017, we had curated 3,345,566 million

tweets and dispersed them across approximately 860,000 of our users. This

leaves 200,000 users in our dataset that were not given a tweet. We decided

that this disparity is fine since some users use Twitter more often than others,

and not every user in a social network graph is going to share a tweet about

a given topic. They can still be used in our ranking process, but their rank

just won’t be directly applied to the tweets we gathered.

It is also important to note that June 1st, 2017 was the day that President

Trump withdraw the United States from the Paris Accord [6]. The tweets

we collected may have more to do with Trump’s decision to leave the Paris

Accord than just about how people feel about Trump in general. In fact,

13



doing a manual random sample from the tweets shows that many of them

are related to this specific event.

2.2 Ranking Twitter Users

Now that we have a dataset of Twitter users and their respective tweets, we

can begin to look at how to rank Twitter users in order to aid in predictive

polling. We chose to implement PageRank on the social network graph that

we created in order to rank each user. Each user is given a weight between 0

and 1 that represents their relative importance in the graph. The idea again

is that we will be able to use this ranks in combination with the sentiment

analysis to create a more accurate poll.

2.3 Sentiment Analysis on Tweets

We used an open source Python library called TextBlob [7] to perform the

sentiment analysis. Running sentiment analysis on the tweets gives us two

values:

1. polarity : floating values ranging from -1 to 1, where -1 means negative

sentiment, 0 is neutral and 1 is positive.

2. subjectivity : floating values from 0 to 1 where 0 means the statement

is objective and 1 means the statement is extremely subjective.

We used TextBlob to generate these results for every Tweet in our database,

and created a new table called sentiment that contained a given tweet’s ID

value and the corresponding polarity and subjectivity values. Our primary

concern in this paper is the use of the polarity value; however, the subjec-

tivity value still has uses. For example, if one wanted to eliminate heavily

subjective text from their polling analysis, they could do that by setting a

threshold on the subjectivity field or vice versa. Tweets that are purely ob-

jective are likely to be more neutral in tone, and so they do not tell us as

much about how people feel towards a given topic.

14



One could also combine the two values for a very different result. The

goal of using sentiment analysis as a replacement for polling is to identify how

people feel. If we use the subjectivity value as a weight on the polarity value,

we will increase the importance of strongly subjective tweets and decrease

the importance of objective tweets. This process could be especially helpful

if many tweets are only slightly positive or slightly negative, but are very

subjective. The high subjectivity would help move the tweets from neutral

territory into strong positive or negative sentiment.

2.4 Ranking and Sentiment Analysis combined

To achieve our desired results, we will have to tune how our ranking algorithm

interacts with the polling data. Ideally, we want to give high weighting to

those with a high rank, but not so much that it makes those with low rank

negligible. In fact, we want the low ranking users still have an influence on

how the algorithm decides. This is because the low ranking users are the

general population, and their sentiment towards topics is important. While

high ranking users may be better indicators of the general sentiment, the

sentiment of the majority is also very important.

15



Chapter 3

Implementation

Chapter 5 contains a high level understanding of how our project works.

In this chapter we will discuss the actual implementation of our project in

greater detail.

We used Python 3.5 to write a set of scripts to perform each step men-

tioned in Chapter 5. Our first script is format dataṗy which takes in the

ASU dataset, selects a sample of the data, and outputs a JSON formatted

file which is then used in small pagerankṗy Our PageRank implementation

than creates a CSV file where each row contains a user’s ID, and their corre-

sponding rank. It will also write this data to a table in our SQLite database

named ranks. The CSV was created because we originally wanted that data

to be more portable than the other pieces, but we eventually needed to in-

clude it in our database anyway.

To collect data from Twitter’s Streaming API we created a script called

get tweets.py which takes in the JSON formatted social graph, and a query

to send to Twitter’s Streaming API. Since we are collecting a large volume of

tweets over time, we didn’t want to hold all of the tweets in memory and then

dump to a CSV or JSON file when we were ready. Instead, get tweets.py cre-

ates a SQLite database and writes the tweets to a table named tweets. This

script will also create a table to hold the user information, named users,

from the JSON formatted social graph. Our sentiment analysis script, sen-

timent.py, adds another table to the database named sentiment.

16



Figure 3.1: Flow of data objects through our scripts.

Figure 3.1 shows how the different data objects are created and manip-

ulated through our scripts. We first start with the ASU CSV dataset which

format data.py will reformat into a JSON file. That JSON file (which here

is named formatted data.json) is then passed as an input argument to sim-

ple pagerank.py. This script will then output a CSV file with the correspond-

ing ranks for each user. Our JSON formatted social graph is also used in

get tweets.py which creates our SQLite database. This database is then used

in the sentiment.py script which writes its results to a new table in the same

database. Finally, the database and CSV file with the user rankings are used

as the input for our final script which combines the PageRank results along

with the sentiment analysis to give us the results detailing how people feel

towards our chosen topic.

We recognize that these are a lot of different files and could be condensed.

The ranking output should also be a table in our SQLite database. Luckily,

the results are small enough that they fit into main memory and can easily

be joined with the sentiment analysis results.

Figure 3.2 shows the entity relationship diagram for the three tables in

our database. Every tweet must belong to one user, but not every user has

17



a tweet. Also, any given user may have multiple tweets. Every tweet in our

database does have a set of values in the sentiment table.

Figure 3.2: Entity relationship diagram for the tables created by our Python

scripts

Below is a code snippet that shows how to join all three tables together.

SELECT * FROM users, tweets, sentiment ON users.user_id =

tweets.user_id AND tweets.id = sentiment.id

If the ranking output was also a table named ranks, we could join all four

of these results with the following query:

SELECT * FROM users, tweets, sentiment, ranks ON users.user_id =

tweets.user_id AND tweets.id = sentiment.id AND users.id =

ranks.id

18



Chapter 4

Data Analysis

Once we gathered all of the necessary data-points into one table, we were able

to compute scores for the positive and negative sentiment achieved both with

our ranking algorithm, and without our ranking algorithm. Additionally, we

looked at what values to use as our threshold for a positive and negative

tweet. Figure 4.1 shows our results.

Figure 4.1: Results from running our weighted sentiment analysis algorithm.

The polls for this time have Trump’s approval rating hovering around 39

percent [4], so this is mark that we are aiming for. Starting with the un-

ranked, unadjusted sentiment analysis, we can see that our results are not

even on the correct side, with Trump actually having more positive senti-

ment than negative. To adjust TextBlob’s tendency toward positivity, we

19



used 0.13 as the threshold for a positive tweet, meaning that any tweet with

polarity greater than or equal to 0.13 is positive, and less than 0.13 is neg-

ative. The reason for the 0.13 is from human observation on a sample of

the tweets. For example, the tweet ”@realDonaldTrump: Join me live at the

@WhiteHouse” is a completely neutral tweet, meaning is it not expressing

support or opposition toward Trump.

Figure 4.2: Histogram of the initial polarity results.

However, this tweet received a polarity ranking of 0.13. 0.13 also happens

to be about half a standard deviation of our results. Figure 4.2 shows the

histogram of the unweighted polarity results. Over 2 million of the tweets

are within the [0,2.4) bucket, showing that a vast majority of the tweets are

neutral, skewing towards positive. We also experimented with different val-

ues of subjectivity, and found that not including anything with a value of

0.2 or less improved our results. Using these two rules, we used the following

formula to come up with the results in Figure 4.1:

if polarity > 0.13 and subjectivity > 0.2

20



add 1 to positive sum

else if polarity < 0.13 and subjectivity > 0.2

add 1 to negative sum

Positive = positive sum /(positive sum + negative sum)

Negative = negative sum/(positive sum + negative sum)

Once we have accounted for the adjustment, we can see that our polls

now accurately reflect that Trump is viewed more negatively than positively.

However, the value is not quite the value that we are looking for, which is

where our ranking comes in. The reasoning behind our algorithm is that

users with very low rankings should probably not used at all, while users

with high rankings should have a large amount of influence. To this end, the

first approach we tried was to add the rank to the sum instead of adding

1. However, this yielded roughly the same results (< 1 percent) as the

unranked results, so we clearly were not taking into account the influence of

the rankings enough. Once we used ranking squared instead, we found that

the results yielded the roughly 39 percent approval rate we were looking for.

This makes sense, as we want the low ranking users to have very little effect

and the highly rated users to have a large effect. Looking at the rankings

of the users, the top ranking users have rank values in the 10−3 range, while

low ranking users have ranks in the 10−7 range. So, by squaring the values,

we are obscuring the low ranking users.

From these results we can conclude several things. The first is that the

initial unranked without adjustment value shows that the sentiment analysis

is flawed, or we gave the algorithm tweets not related enough to the subject.

A cursory reading over the tweets reveals that some of the tweets are not very

on topic, or mention Trump in passing, instead of as the main topic. However,

the fact that the tweet quoted above received a polarity of 0.13 shows that

the sentiment analysis itself is slightly flawed. By using the adjustment, we

are able to get rid of the bias of Textblob, while using our ranking algorithm

allowed us to correct for users whose input should receive less consideration.

21



Chapter 5

Conclusion

In this paper, we have attempted to show one way in which one can use social

media to replace traditional polling techniques. By using a combination of

sentiment analysis on user’s social media posts and ranking those users with

an algorithm such as PageRank, one can create a metric that shows how

people feel towards a particular topic.

One of the biggest challenges we had was collecting data to actually run

the ranking and sentiment analysis on. We gathered tweets over a ten hour

period using a rather small social graph. If we had more time, we could have

gathered more data and made a more representative social graph. Other

papers took around 25 days to collect all of their data, and we would have

benefited from having that amount of time. Especially since Twitter’s social

graph is growing at a much slower rate, it would not be infeasible for someone

to create a full graph and run a ranking algorithm on it. It would be best if

Twitter could provide it themselves and update the ranking whenever a new

node is added, but until then, researchers can create their own social media

graph.

Another problem we have is validating our results. The only real metric

we have to show that our results are valid is that they closely align with

current polls; however, one of the objectives of this paper was to try and show

that sentiment analysis might be better at polling than traditional polls are.

While we feel confident that our results are accurate and show the benefit

of using a combination of ranking and sentiment analysis algorithms, it is

22



hard to prove that our method is any more accurate than existing polling

methods. Also, since we were unable to gather more information about each

user in the Twitter social graph, such as age, gender, and location, we were

not able to run poststratification as discussed in our Related Works section.

Poststratification may have also helped improve the accuracy of our results.

In the future, we hope that others will continue examining how to use

PageRank, and other ranking algorithms like it, as a way to improve senti-

ment analysis of social media content. The applications of this method are

not limited to just presidential approval rating. It can be used to examine

consumer confidence in a product, attitudes and sentiments towards social

issues, and even in prediction of political elections. As the response rates to

traditional polling techniques continue to decrease, it will become increas-

ingly important that we find ways to accurately gauge people’s attitudes and

sentiments through other mediums.

23



Bibliography

[1] Andrew Kohut, Scott Keeter, Carroll Doherty, Michael Dimock, Leah

Christian. Assessing the representativeness of public opinion surveys.

2012.

[2] M. De Domenico, A. Lima, P. Mougel, and M. Musolesi. The anatomy

of a scientific rumor. Scientific Reports, 3:2980 EP –, 10 2013.

[3] Facebook. Facebook q1 2017 results, 2017.

[4] Inc. Gallup. Gallup daily: Trump job approval.

[5] Zoltán Gyöngyi, Hector Garcia-Molina, and Jan Pedersen. Combating

web spam with trustrank. In Proceedings of the Thirtieth International

Conference on Very Large Data Bases - Volume 30, VLDB ’04, pages

576–587. VLDB Endowment, 2004.

[6] Kevin Liptak and Jim Acosta. Trump on paris accord: ’we’re getting

out’, Jun 2017.

[7] Steven Loria. Textblob.

[8] F. Neri, C. Aliprandi, F. Capeci, M. Cuadros, and T. By. Sentiment

analysis on social media. In 2012 IEEE/ACM International Conference

on Advances in Social Networks Analysis and Mining, pages 919–926,

Aug 2012.

[9] O’Connor, Brendan, Balasubramanyan, Ramnath, Routledge, Bryan R.,

and Smith, Noah A. From tweets to polls: Linking text sentiment to

public opinion time series.

24



[10] Saad M. Darwish, Magda M. Madbouly, Mohamed A. Hassan. From

public polls to tweets: Developing an algorithm for classifying sentiment

from twitter based on computing with words.

[11] Shen Hua, Liu Xinyue. Propagating anti-trustrank with relationship

strength for fighting link farming on twitter.

[12] Twitter. Rate limits: Chart.

[13] Twitter. Selected company metrics and financials, 2017.

[14] Wei Wang, David Rothschild, Sharad Goel, and Andrew Gelman. Fore-

casting elections with non-representative polls. International Journal of

Forecasting, 31(3):980 – 991, 2015.

[15] R. Zafarani and H. Liu. Social computing data repository at ASU, 2009.

25


