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Abstract

The forex market is the backbone of international trade and global investing, predicting the forex
rate gives the investor an extra edge in making their investment in a better way. Forecasting the
forex rate in an accurate way is really important so that we do not provide a false information to
the investors.

To provide an accurate prediction we are using two models: EMD-RNN and ARIMA, and
compare their output with the same data set to prove which is better. We have planned to
implement the methodologies in R language.

The above mentioned methods are applied on historical dataset gathered from foreign exchange
sites in the form of Excel Sheets.



Introduction

1.1.  Objective

The core objective of this project is to develop an accurate model which would help in
forecasting the currency exchange rate. In order to achieve the objective, we use an
hybrid model using EMD-RNN against ARIMA for comparison.

1.2. Technical Objective

The technical objectives will be implemented in R. The system must be able to forecast
the selected currency exchange price based on the historical data input into the system
using our developed models.

1.3.  Experimental Objective

The project will implement two prediction approaches: EMD-RNN (Hybrid) and
ARIMA, and compare the correctness of both the approaches by feeding same dataset to
both the models. Based on the results obtained, we either approve or disapprove the
comparison made.

1.4. The Problem

Forecasting the future values of currency is an important problem. Modeling the data as a

Time Series is the fundamental approach to solve the problem. “The desire of many
investors is to lay hold of any forecasting method that could guarantee easy profiting and
minimize investment risk from the forex market. This remains a motivating factor for
researchers to evolve and develop new predictive models™.[1]

In the past few years, several models have been proposed for Time Series Forecasting.
The most popular ones are RNNs, Fuzzy Logic , ARMA , ARIMA , SVM , CNN . In
this project, we will analyze the following models by exploiting the advantages of each
of the modelling techniques:

e EMD (Empirical Mode Decomposition)
e RNN (Recurrent Neural Network)
e ARIMA (Autoregressive Integrated Moving Average)

The problem is that it is not known which model is accurate for the currency rate data set.
In this paper we use the data collected from the Internet as the input data set to perform
the modeling, and compare the performance of the models in terms of the output
accuracy.



1.5. How our Project Relates to the Class

Our project involves use of various machine learning models such as ARIMA and Neural
Networks. Implementation of these data mining and forecasting approaches mentioned
above, to predict the currency trade markets is correlated to our class.

1.6. Why other approaches aren’t good
Other approaches use fuzzy logic, which will not provide high accurate results at all
times. Also, the fuzzy logic model can work effectively on simple problems only.

1.7.  Why Our Approach is Better
Since we use hybrid models like EMD-RNN and ARIMA, we can bring out a better

prediction algorithm with lower error when compared to the other approaches like fuzzy
logic.

The other reasons why our approach is better are as follows:

e RNN
o Relatively easy to use
o Can approximate any function, regardless of its linearity
o Great for complex/abstract problems
© Mimics the brain

e ARIMA
o This model better fits a time series pattern
o ARIMA models are known to be robust and efficient in financial time
series forecasting especially short-term prediction [2][3][4].

1.8. Statement of the Problem

A time series data is a dynamic continuous stream of data, where, observations were
made regularly and continuously over a specific period of time. Thus, a time series data is
a sequence of data observations over a single/multiple variable(s) through a period of
time [5]. One of the main objectives of performing time series analysis on the statistical

data on foreign exchange currency and predict the future values with a certain degree of
accuracy.




1.9.  Area or Scope of Investigation

Our data is in the form of historical forex rate data which need to be trained , on which
we need to fit data mining models like RNN, EMD and ARIMA.

2. Theoretical Bases & Literature Review

2.1.  Problem Definition

Stock market prediction is one of best examples of a time series problem, and people
have implemented various data mining approaches to solve and has proven that methods
like RNN, ARIMA are effective. The forex market problem 1is also a similar time series
problem having numerous conventional method in forecasting. These conventional
methods of forecasting exchange rates, likely because none of them have been shown to
be superior to any other. This speaks to the difficulty of generating a quality forecast.

2.2.  Theoretical Background

The foreign exchange market is volatile and depends on many factors. In order to build

an effective prediction model all these factors need to be addressed, along with looking at
the historical data rates. Having a good model will be useful to investors.

2.3. Related Research

There is a lot of research carried out in developing the prediction models using data

mining and machine learning in various fields like stock market prediction, weather
forecast etc. However, the amount these models used in the area of Forex rate prediction
was very limited, which fascinated us to choose this topic and see if the same could be
applied.

2.4. Advantages and Disadvantages of those Research
The research papers we went through were able to produce an accurate prediction for

short-term and also had other advantages like reduced running time,suitable for large
datasets.

The disadvantage of the those researches is that, the prediction of forex rate was not done
using any of the hybrid models.They have not used any comprehensive pre processing
step. And the models have not been used for the currency rate data set.

2.5.  Our Solution
Our approach is to use an hybrid model against an available model and show which one

helps in forecasting in a better way than the available models in the market.



2.6. How Our Solution is Different
Until now, not enough research was done specifically in the arena of forex rate

prediction, which makes our idea different from others.

2.7.  Why Our Solution is Better
The research papers we looked into, used two of the available models for forecasting the

currency exchange rate without venturing into hybrid models. We plan to see how
accurate the hybrid model EMD-RNN is as compared to raw ARIMA model.

Hypothesis

3.1. Multiple Hypothesis
Our initial hypothesis is that the RNN model with the EMD should be more accurate in

forecasting than the ARIMA model. In other words, we expect that the RNN model
should have a lower error rate as compared to the ARIMA model.

3.2.  Positive/Negative Hypothesis
It is a positive hypothesis that we expect to be established from the outcome of the study.

Methodology

4.1. Collecting Input Data
Our data will be collected from a website called Quandl, which provides the historical

rates for different currencies.

4.2. How to solve the problem

No model has been known to work for all data sets. We compare two models and arrive

at the final selection of which model is best suited for the currency exchange rate data set.

4.2.1. Algorithm Design
Input the data set to the to EMD filter to pre process data. Then fit the output of the EMD

function to the RNN model. We also fit ARIMA() function to the data. Plot the results in
both cases against the actual value. We measure the error rate for each of the model.
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4.2.2. Language Used

For our project, we will be using R.

4.2.3 Tools Used
e EMD Package in R
e RNN package in R
e ARIMA modeling function in R

4.3. Generating Output
We will generate graphs from each model’s forecast data using R’s functions for

graphing, as well as to display the error rates.

4.4. Testing Against the Hypothesis

We will compare the error rates between the predicted and actual values for each model
to determine which is more accurate.

5. Implementation

5.1.  Code
install.packages ("EMD")
install.packages ("readxl")
install.packages ("rnn")
install.packages ("forecast")

(

(

(

(

install.packages ("gdata")

install.packages ("tseries")

install.packages ("XLConnect")

install.packages ("xlsx")
(

install.packages ("ModelMetrics")

HHA#HHHH A H A A A H 4 ## 4 Using the Installed Libraries

FHEHEHE AR AR

#### Start Running the code from below after successful installation of the libraries
#4#

library (EMD)
library(rnn)
library(forecast)

library(gdata)

library(tseries)

(
(r
(£
(
library(readxl)
(
library (rnn)

(

library (XLConnect)
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# dataset of 1500 values
# min training data size from excel to the model should be 1500

NumOfDays=100 # No of days to be predicted
trainingDataSize=1500
startNumForOutPut=1+NumOfDays
endNumForOutPut= trainingDataSize+ NumOfDays

#test data set size is set as 2000

predictionTestDataSize=1500
endForPrediction=predictionTestDataSize+NumOfDays

FHEFHFHFHF AR HFHHHFHFHHHFHHHHHHHHE Inputting the File
iddddddsasadddsaaaaddiaaaadsaaadddidsi

sampleFileTrain = read x1lsx("C:/Users/nithi/Desktop/Course Study/Spring 2017
Classes/Pattern Recognition and Data Mining/USDINR.xlsx")
sampleFileInput <- sampleFileTrain$ USD/INR®

FREFEFES SRS SES SRS HE#E ApPplying EMD on RNN
FEE R

try <- emd(sampleFileInput, sampleFileTrain$Number)

FHEFH AR AR AR AR AR AR AR AR AR AR FHHHHHHHH Residue prediction
FHEF R AR A

normalizeResidue= (tryS$Sresidue-min (tryS$Sresidue))/ (max (try$residue)-min (trySresidue))
trainInputValues <- l:trainingDataSize
trainOutputValues <- startNumForOutPut:endNumForOutPut
input=normalizeResidue[trainInputValues]
input<-matrix (input, ncol=trainingDataSize)
output=normalizeResidue[trainOutputValues]
output<-matrix (output, ncol=trainingDataSize)
rnnValueforUSDINR <-trainr (Y=output,

X=input,

learningrate = 0.01,

hidden dim = 10,numepochs = 350)
inputForRnnPredictr=normalizeResidue[l:predictionTestDataSize]
inputForRnnPredictrMatrix=matrix (inputForRnnPredictr, ncol=predictionTestDataSize)
predictedUSDINR <-predictr (rnnValueforUSDINR, inputForRnnPredictrMatrix)
outputResidueFromRnn <- predictedUSDINRI[1, ]
denormalizedResidue =
(outputResidueFromRnn) * (max (try$Sresidue) -min (trySresidue) ) +tmin (trySresidue)
predictionOutput <- denormalizedResidue

FHEAHAHAHAH AR A AHAH AR A H A A A A A A A A A HHS IMF prediction
FHEFH AR AR
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for(i in l:try$nimf) {
normalizeIMF= (tryS$imf[,i]-min(try$Simf[,1i]))/ (max (try$imf[,1i])-min(tryS$imf[,1]))
trainInputValues <- l:trainingDataSize
trainOutputValues <- startNumForOutPut:endNumForOutPut
input=normalizeIMF [trainInputValues]
input<-matrix (input, ncol=trainingDataSize)
output=normalizeIMF[trainOutputValues]
output<-matrix (output, ncol=trainingDataSize)
rnnValueforUSDINR <-trainr (Y=output,
X=input,
learningrate = 0.01,
hidden dim = 10, numepochs = 350)
inputForRnnPredictr=normalizeIMF[l:predictionTestDataSize]
inputForRnnPredictrMatrix=matrix (inputForRnnPredictr, ncol=predictionTestDataSize)
predictedUSDINR <-predictr (rnnValueforUSDINR, inputForRnnPredictrMatrix)
outputFromRnn <- predictedUSDINR[1, ]
denormalizedIMF =
(outputFromRnn) * (max (try$imf[,1])-min(try$imf[,1]))+min(try$Simf[,i])
predictionOutput <- cbind(predictionOutput,denormalizedIMF)

}

finalPrediction<- rowSums (predictionOutput)

par (mar = c(5,2,2,2))

sampleFileInputForGraph<-sampleFileInput [startNumForOutPut:endForPrediction]
length (sampleFileInputForGraph)

length (finalPrediction)

FREFEFERESERES SRS SRS S RS Calculating RMSE
FHEF SRS

RMSE<-sqgrt (mean ( (sampleFileInputForGraph-finalPrediction)"2))

FHEFHFEFHFEFEHEHEF A 444 Plotting RNN with EMD Graph
ifgfssssssssatasadadadddadaddii

plot (sampleFileInputForGraph, type="1",col="blue",ylab = "USD INR" ,xlab = "Days ->")
lines (finalPrediction, type="1",col="red", ylab = "USD INR" ,xlab = "Days ->")
title ("Currency Prediction Values (USD/INR) Using EMD+RNN")
legend ("bottomright", legend=c ("Predicted", "Actuals"),
col=c("red", "blue"), lty=1:1, cex=0.8)

HEFHHFHHHFFHHHFFHHHS44HS Final Prediction and RMSE for RNN + EMD
FhAHHF AR AR AR AR EAH

print (finalPrediction)
print (RMSE)

FHEFHAH AR AR AR AR AR H A HE Raw RNN
ifssasssasassdasadasadddadadddadadddadaii



normalizedForSimpleRNN = (sampleFileInput - min (sampleFileInput)) /
(max (sampleFileInput) - min (sampleFileInput))
normalizedForSimpleRNN
trainInputValuesSimpleRNN <- l:trainingDataSize
trainOutputValuesSimpleRNN <- startNumForOutPut:endNumForOutPut
inputforSimpleRNN=normalizedForSimpleRNN[trainInputValuesSimpleRNN]
inputforSimpleRNN<-matrix (inputforSimpleRNN, ncol=trainingDataSize)
outputforSimpleRNN=normalizedForSimpleRNN[trainOutputValuesSimpleRNN]
outputforSimpleRNN<-matrix (outputforSimpleRNN, ncol=trainingDataSize)
rnnValueforUSDINRSimple <-trainr (Y=outputforSimpleRNN,

X=inputforSimpleRNN,

learningrate = 0.01,

hidden dim = 10,numepochs = 100)
inputForRnnPredictrSimple=normalizedForSimpleRNN[1l:predictionTestDataSize]
inputForRnnPredictrMatrixSimple=matrix (inputForRnnPredictrSimple,
ncol=predictionTestDataSize)
predictedUSDINRNNSimple<-predictr (rnnValueforUSDINRSimple, inputForRnnPredictrMatrixSim
ple)
outputFromRnnSimple <- predictedUSDINRNNSimple[1l, ]
denormalizedFromRnnSimple =
(outputFromRnnSimple) * (max (sampleFileInput)-min (sampleFileInput))+min (sampleFilelInput)
denormalizedFromRnnSimple
sampleFileInputForGraphSimpleRnn<-sampleFilelInput [startNumForOutPut:endForPrediction]
length (sampleFileInputForGraphSimpleRnn)
length (sampleFileInputForGraphSimpleRnn)

plot (sampleFileInputForGraphSimpleRnn, type="1",col="blue",ylab = "USD INR" ,xlab =
"DayS _>n)

lines (denormalizedFromRnnSimple, type="1",col="red", ylab = "USD INR" ,xlab = "Days
_>n)

RMSEforSimple<-sqgrt (mean ( (sampleFileInputForGraphSimpleRnn-denormalizedFromRnnSimple) "
2))
title("Currency Prediction Values (USD/INR) Using RNN")
legend ("bottomright", legend=c ("Predicted", "Actuals"),
col=c("red", "blue"), lty=1:1, cex=0.8)

HhHAEHHH SRS #4444 Predicted and RMSE Value for RNN
FHESEH SRS

print (denormalizedFromRnnSimple)
print (RMSEforSimple)

FHEFH AR A A A A A A A A A A A A A A A A A A HAH S ARIMA
FHEF R

sampleFileInputforarima <- sampleFileTrain$ USD/INR®
trainData <- sampleFileInput[2:17]

testData <- sampleFileInput[18:33]

arima.final<- arima(trainData,c(2,2,2))

predicted <-predict (arima.final,n.ahead =15)

par (mar = c¢(5,5,3,2))
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plot (c(predictedS$Spred), type="1",col="red", xlab = "Days", ylab = "Rate",ylim=c(40,60),
x1lim = ¢ (0,25))
lines(c(testData), col="black",type="1",ylim=c(40,60), xlim = c(0,25))

# add a title and subtitle
title ("Currency Prediction Values (USD/INR)Using ARIMA")

#add legend
legend ("topright", legend=c ("Predicted", "Actuals"),col=c("red", "black"), lty = 1:1 ,
cex = 0.5)

5.2.  Design Document & Flowcharts
There are two R scripts, one to run the ARIMA model, and another to run the EMD-RNN
model. In each, incoming data is preprocessed and formatted correctly for each model,

from an Excel file. Each model is then trained on its respective data. Once trained, the
models can be used to predict the values for the next x amount of days. Outputs are
graphs of comparisons between the predicted and actual values, as well as the values of
the RMSE.

Dataset

{USD/INR)

ARIMA

Prediction

ARIMA Flowchart

15



Dataset

{USD/INR)

¥

Mormalization

RNMN

DE
MNormalization

l

Prediction

RNN Flowchart

16



IMF1

Dataset

{USD/INR)

EMD

l

|

IMF2

|

Mormalization
+

RNM

Mormalization
+

RMMN

DE
MWarmalization

|

DE
Maormalization

l

IMF3___.IMFN

|

Residue

|

Mormalization
+

RNMN

Mormalization
+

RMM

DE
Marmalization

|

DE
Marmalization

|

I

Prediction

EMD + RNN Flowchart

17



6.

65

60
|

56
|

50

45

Data Analysis & Discussion
6.1 Output generation
Graphs for 15 day Prediction:
Currency Prediction Values(USD/INR) Using EMD+RNN
= — Predicted
— Actuals
T T T T
0 500 1000 1500
Days >
Currency Prediction Values(USD/INR)Using ARIMA
g 84
# -
g -
T T T T T
0 5 10 15 25
Days

18



Currency Prediction Values(USD/INR) Using RNN
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For Further Graphs please refer the appendix chapter

6.2 Output Analysis

From the analysis we carried out as a part of the experimental work we arrived at below results
for different combinations of dataset and prediction on the number of days in advance.
We also extended the initial scope from short term prediction to long term prediction
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(1 day window to 100 day window ). Our observations were in line with our hypothesis
that RNN +EMD is better than RNN and ARIMA

Model Name Dataset Size _ Root mean Square Error (RMSE) for Prediction window of
1day ‘ 10days 15days 50days 75days 100days
EMD+RNN | 1500 days Historical Currency Rates 0.7 | 0.9 1.1188 1.708996 1.73 1.825113
RNN 1500 days Historical Currency Rates |  0.6586 0.9947 1.261028 1.99738 2.3752 2.727316
ARIMA 100 days Historical Currency Rates 1.47 1.47 1.47 1.47 147 1.47

Performance : RNN + EMD > RNN > ARIMA

6.3 Comparison With Hypothesis

Our observations were in line with our hypothesis that RNN +EMD is better than RNN and
ARIMA

6.4 Abnormal Case Explanation

Based on our observation we were able to study that the ARIMA model cannot handle larger
dataset giving RMSE error of 1.47 regardless of however we train the data.

Whereas when the data set size(~ 50 Historical Currency Rates) was small ARIMA model
performed better for short term.

6.5 Statistic Regression

Data’s are the only independent variables used and dependant variables used are
EMD,IMF,Training & Prediction Model.

6.6 Discussion
We chose the Exchange Rate Dataset from Quandl.com and analysed daily data from April-2010

to March -2017 to prepare to prediction model.

Many Indicators functions and their permutations were tested while training and testing the
system.Of all the indicator functions tested,the ones which gave the best prediction result were
selected. The System performs very well for the prediction of the selected exchange forex rate
dataset.
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7. Conclusions & Recommendations

7.1 Summary and Conclusion

Our experiment was in line with the hypothesis we proposed and was able to prove that EMD +
RNN model was the best among the other chosen models which are Raw RNN and ARIMA for
long term prediction.

7.2 Future Work

The possible future extension that can be made is to train the RNN model for a short term
prediction and short data set. Avoiding normalization. Applying Ensemble EMD with RNN and
check for RMSE in short and long term. Also the work on ARIMA model can be extended on a
large dataset.
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9. Appendices

9.1 Graph for 1 dav window:

Currency Prediction Values(USDJ/INR) Using EMD+RNN
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9.2 Graph for 100 day window:

Currency Prediction Values(USD/INR) Using EMD+RNN
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9.3 IMF and Residue Graph
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