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ABSTRACT 
 

Satire is an attractive subject in deception detection research: it is a type of deception that                
intentionally incorporates cues revealing its own deceptiveness. Whereas other types of           
fabrications aim to instill a false sense of truth in the reader, a successful satirical hoax must                 
eventually be exposed as a jest. We propose a detection methodology that provides an effective               
tool to identify satire and humor, elaborating and illustrating the unique features of satirical              
news, which mimics the format and style of journalistic reporting. One of the main corpus we are                 
proposing to use is the S-N-L database. In the S-N-L database, satirical news stories are carefully                
matched and examined in contrast with their legitimate news counterparts in 12 contemporary             
news topics in 4 domains (civics, science, business, and “soft” news). As conceptualized in the               
referring paper, we propose to design an SVM-based algorithm, enriched with 5 predictive             
features (Absurdity, Humor, Grammar, Negative Affect, and Punctuation) to be tested on their             
combinations on the referred corpus. Our aim is to achieve a F-score upward of 80% so that                 
algorithmically identifying satirical news pieces can aid in minimizing the potential deceptive            
impact of satire. 
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1] INTRODUCTION 
 
In 2016, the prominence of disinformation within American political discourse was the subject of 
substantial attention, particularly following the surprise election of President Trump. The term            
‘fake news’ became common parlance for the issue, particularly to describe factually incorrect             
and misleading articles published mostly for the purpose of making money through pageviews.             
In this project, we seek to produce a model that can accurately predict the likelihood that a given                  
article is fake news. 
 
Facebook has been at the epicenter of much critique following media attention. They have              
already implemented a feature for users to flag fake news on the site; however, it is clear from                  
their public announcements that they are actively researching their ability to distinguish these             
articles in an automated way. Indeed, it is not an easy task. A given algorithm must be politically                  
unbiased--since fake news exists on both ends of the spectrum--and also give equal balance to               
legitimate news sources on either ends of the spectrum. In addition, the question of legitimacy is                
a difficult one: what makes a news site ‘legitimate’? Can this be determined in an objective way? 
 
In this research summary we compare the performance of models using three distinct feature sets               
to understand what factors are most predictive of fake news: tf-idf using bi-gram frequency,              
syntactical structure frequency (probabilistic context free grammars, or PCFGs), and a combined            
feature union. In doing so, we follow the existing literature on deception detection through              
natural language processing, particularly the work of Feng, Banerjee, and Choi (2012) with             
deceptive social media reviews. We find that while bi-gram TFIDF yields predictive models that              
are highly effective at classifying articles from unreliable sources, the PCFG features do little to               
add to the models’ efficacy. Instead, our findings suggest that, contrary to the work of Feng,                
Banerjee, and Choi’s application, PCFGs do not provide meaningful variation for this particular             
classification task. This suggests important differences between deceptive reviews and so-called           
‘fake news’. We then suggest additional routes for work and analysis moving forward. 
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2] THEORETICAL BASES AND LITERATURE     
REVIEW: 

2.1] Definition of the problem 
 
The main problem with increasing the trustworthiness of text in context to news is that it is                 
always going to be a reactive rather than proactive process. This is because it is impractical to                 
keep a check and on generation of new text and it’s subsequent publishing. Moreover, there are                
no fix sets of corpora that we can absolutely rely upon. New text is generated daily and is                  
accessible readily at an instant because of the capability of the modern age internet. 
 
The fundamental purpose of designing a system to improve trustworthiness of text is to flag and                
control untrustworthy text’s spread as early as possible so that the readership is limited. 
So we need an automated assistive tool for both - the content creators as well as the readers to                   
correctly identify and flag out false content. 
 

2.2] Theoretical background of the problem: 

 
In the course of text creation in the form of news production, dissemination, and consumption,               
there are ample opportunities to deceive and be deceived. Direct falsifications such as             
journalistic fraud or social media hoaxes pose obvious predicaments. While fake or satirical             
news may be less malicious, they may still mislead inattentive readers. Taken at face value,               
satirical news can intentionally create a false belief in the readers’ minds, per classical              
definitions of deception. 
 
News satire is a genre of satire that mimics the format and style of journalistic reporting. The                 
fake news stories are typically inspired by real ones, and cover the same range of subject matter:                 
from politics to weather to crime. The satirical aspect arises when the factual basis of the story is                  
“comically extended to a fictitious construction where it becomes incongruous or even absurd, in              
a way that intersects entertainment with criticism” . News satire is most often presented in the                
Horatian style, where humor softens the impact of harshness of the critique – the spoonful of                
sugar that helps the medicine go down. More than mere lampoon, untrustworthy news stories              
aim to “arouse the reader's’ attention, amuse them, and at the same time awaken their capacity to                 
judge contemporary society”. 
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Several factors contribute to the believability of fake news online. Recent polls have found that               
only 60% of Americans read beyond the headline (The Media Insight Project, 2014).             
Furthermore, on social media platforms like Facebook and Twitter, stories which are “liked” or              
“shared” all appear in a common visual format. Unless a user looks specifically for the source                
attribution, an article from The Onion looks just like an article from a credible source, like The                 
New York Times. In an effort to counteract this trend, we propose the creation of an automatic                 
satire detection system. 
 

2.3] Related research to solve the problem: 
 
There exists a sizeable body of research on the topic of machine methods for satire and stance                 
detection, most of which has been focused on classifying online reviews and publicly available              
social media posts (Rubin, 2017). Particularly since late 2015 during the American Presidential             
election, the question of determining ‘fake news’ has also been the subject of particular attention               
within the literature. 
 
The major research paper the on which we are proposing solution to the problem is : "Fake News                  
or Truth? Using Satirical Cues to Detect Potentially Misleading News" - Victoria L. Rubin, Niall               
J. Conroy, Yimin Chen, and Sarah Cornwell[1]. This research paper proposes a SVM-based             
algorithm consisting of five predictive features. 
 

2.4] Shortcoming of related research: 

 
The problem while filtering out untrustworthy text is the factor of “false negative”. It may               
happen that an article with valid contents may get classified as untrustworthy. Also, in case of                
non-news fun article which is written in a funny language may get flagged. This is not a desired                  
result and hence a more refined approach is needed for such exceptional cases. 

 

2.5] Other approaches and differences with chosen approach 
 
The papers that we have referred outline several approaches that seem promising toward the aim               
of correctly classifying misleading articles. They note that simple content-related n-grams and            
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shallow part-of-speech (POS) tagging have proven insufficient toward the classification task,           
often failing to account for important context information. Rather, these methods have been             
shown useful only in tandem with more complex methods of analysis.  
 
Deep Syntax analysis using Probabilistic Context Free Grammars (PCFG) have been shown to             
be particularly valuable in combination with n-gram methods. Feng, Banerjee, and Choi (2012)             
are able to achieve 85% to 91% accuracy in deception related classification tasks using online               
review corpora. 
 
Other Approaches: 

- Feng & Hirst (2013) implement a Semantic Analyzer looking at object:descriptor pairs            
for contradictions with the text on top of Feng’s initial deep syntax model for additional               
improvement. 

- Rubin & Lukoianova (2014) analyze rhetorical structure using a vector space model with             
similar success. 

- Sentiment and fact-based argument analysis (Pang & Lee, 2008). 
- Language pattern similarity networks (Ciampaglia et al., 2015) requiring a pre-existing           

knowledge base. 
- Social networks using inter-article links using centering resonance analysis (Papacharissi          

& Oliviera, 2012). 
 

2.6] Why your solution is better: 
 
Considering the previous as well as the ongoing research pertaining to untrustworthy text, the              
component of ‘funny’ or ‘satire’ can be found as a common thread in many such corpora. Hence,                 
if we tackle this component, a major and important factor in eliminating untrustworthy text may               
be achieved. This component can then be combined with other factors to make a more robust                
system. Hence our solution is better because it considers solving a major problem. 
 
Ultimately, there is still much work to be done within the field to advance the work toward a                  
well functioning model for detection.  
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3] HYPOTHESIS 
 
In this project we implement the classification models(Support Vector Machines(SVM),          
Stochastic Gradient Descent (SGD), Gradient Boosting (GB), Bounded Decision Trees (DT),           
Random Forests (RF)) using SciKit - Learn and evaluate them to understand what factors are               
most predictive of fake news using features set below: 

1. Bigram Term Frequency-Inverse Document Frequency - it is a vectorized bigram           
Term Frequency-Inverse Document Frequency. This is a weighted measure of how often            
a particular bigram phrase occurs in a document relative to how often the bigram phrase               
occurs across all documents in a corpus. 

2. Normalized frequency of parsed syntactical dependencies - for this we use Spacy to             
tokenize and parse syntactical dependencies of each document. 
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4] METHODOLOGY: 
As mentioned previously, we have two fundamental measurements to leverage fake news            
detection. They are stance detection from Fake News Challenge (FNC)          
(http://www.fakenewschallenge.org/) and satire detection from University of Western Ontario         
(http://victoriarubin.fims.uwo.ca/). We will experiment and find a suitable methodology by          
utilizing theirs. 
 

4.1] How to generate/collect input data: 
 
We collect Stance Detection dataset for FNC from a Github repository:           
https://github.com/FakeNewsChallenge/fnc-1/tree/29d473af2d15278f0464d5e41e4cbe7eb58231f
2. The data provided is in (headline, body, stance) instances, where stance is one of {unrelated,                
discuss, agree, disagree}. The dataset is provided as two CSVs: train_bodies.csv and            
train_stances.csv. The train_bodies.csv contains the body text of articles (the articleBody           
column) with corresponding IDs (Body ID). The train_stances.csv contains the labeled stances            
(the Stance column) for pairs of article headlines (Headline) and article bodies (Body ID,              
referring to entries in train_bodies.csv). 
 
We collect Satire Detection dataset directly from the Associate Prof. Victoria Rubin who is a               
director of the Language and Information Technology Lab at Faculty of Information and Media              
Studies, Western University, London, Canada. This collection was part of the 2015-2018 News             
Verification Project funded by the Social Sciences and Humanities Research Council of Canada             
(SSHRC). The first 240 articles (published in 2015) were aggregated into a 2x2x12 design (US               
and Canadian; satirical and legitimate online news; varying across 4 domains (civics, science,             
business, and “soft” news) with 3 distinct topics within each domain (see labels in Column E).                
The 240 news pieces were carefully selected with an equal representation (5 articles per subtopic               
listed in Column E). An additional set of 120 articles was collected from online publications in                
2016, to expand the inventory of sources and topics and to serve as a reliability test for the                  
manual findings within the first set, the second set was still evenly distributed between satirical               
and legitimate news. 

http://www.fakenewschallenge.org/
http://victoriarubin.fims.uwo.ca/
https://github.com/FakeNewsChallenge/fnc-1/tree/29d473af2d15278f0464d5e41e4cbe7eb58231f2
https://github.com/FakeNewsChallenge/fnc-1/tree/29d473af2d15278f0464d5e41e4cbe7eb58231f2
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4.2] How to solve the problem: 

4.2.1] Algorithm design: 
 
As for stance detection, the classifier utilized in this model is Gradient Boosted Trees. An               
exceptionally efficient implementation of GBDT is XGBoost. In Satire Detection, the text            
classification pipeline was scripted in Python and used the scikit-learn open source machine             
learning package as the SVM classification      
(http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html). 
 
There is still an ongoing discussion which machine learning algorithm is the finest. Perhaps there               
is no such thing. Even if the algorithmic concept is identical, various implementations could              
result differently with the same dataset. It might also vary depending on the input data.               
Excepting for applying the same algorithms, we also plan to design a pipeline to combine               
features from our two main directions and to experiment a few machine learning algorithms with               
different machine learning frameworks, for instance, TensorFlow. 

4.2.2] Language (to be) used: 
- Python 3.x for the project 

4.2.3] Tools (to be) used: 
- NLTK toolkit 
- Scipy Stack: numpy, scipy and pandas 
- Gensim (for tf-idf and word2vec) 
- Scikit-Learn 
- TensorFlow 
- PyCharm CE 
- MatplotLib 

4.3] How to generate output: 
 
First, we utilize the NLTK toolkit to perform some pre-processing on the input dataset. The               
labels are encoded into numeric target values, for instance 1, 2, 3, and 4. The text of headline and                   
body are then tokenized and stemmed. Finally Uni-grams, bi-grams and tri-grams are created out              

http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html


12 

of the list of tokens. These grams and the original text are used by the following feature extractor                  
modules.  
 
Next step is feature engineering. There are several of them: 

- Basic count takes the uni-grams, bi-grams and tri-grams and creates various counts and             
ratios which could potentially signify how a body text is related to a headline. 

- TF-IDF constructs representations of the headline and body by calculating the           
Term-Frequency of each gram and normalize it by its Inverse-Document Frequency in            
order to reflect how important the headline is to the body. 

- As an extension of TF-IDF feature, Singular-Value Decomposition is also applied to            
them to obtain a compact, dense vector representation of the headline and body             
respectively feature for enhancing the accuracy on whether the body is related to the              
headline or not. 

- Absurdity feature is implemented by using Part of Speech tagger and Named Entity             
Recognizer from NLTK toolkit. We defined the list as the non-empty set (LNE), and              
compared this with the set (NE) of named entities appearing in the remaining article. The               
article was deemed absurd when the intersection (LNE ∩ NE) was empty (0=non-absurd,             
1=absurd). 

 
And more secondary features to consider: 

- Word2Vec feature were trained on a Google News corpus with 100 billion words and a               
vocabulary size of 3 million. The resulting word vectors can be used to find synonyms,               
predict the next word given the previous words, or to manipulate semantics. For the              
current problem constructing the vector representation out of word vectors could           
potentially overcome the ambiguities introduced by the fact that headline and body may             
use synonyms instead of exact words. 

- Sentiment feature uses the Sentiment Analyzer in the NLTK package to assign a             
sentiment polarity score to the headline and body separately. This score can be             
informative of whether the body is being positive about a subject while the headline is               
being negative. But it does not indicate whether it's the same subject that appears in the                
body and headline; however, this piece of information should be preserved in other             
features. 

- Humor (Hum) detection was based on the premises of opposing scripts and maximizing             
semantic distance between two statements as method of punchline identification          
(Mihalcea et al., 2010). Similarly, in a humorous article, the lead and final sentence are               
minimally related. Our modification of the punchline detection method assigned the           
binary value (humor=1) when the relatedness between the first and last article sentences             
was the minimum with respect to the remaining sentences. 
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- Grammar (Gram) feature vector was the set of normalized term frequencies matched            
against the Linguistic Inquiry and Word Count (LIWC) 2015 dictionaries, which           
accounts for the percentage of words that reflect different linguistic categories           
(Pennebaker, Boyd, Jordan, & Blackburn, 2015). We counted the presence of parts of             
speech terms including adjectives, adverbs, pronouns, conjunctions, and prepositions, and          
assigned each normalized value as the element in a feature array representing grammar             
properties. 

- Negative Affect (Neg) and Punctuation (Pun) were assigned as feature weights           
representing normalized frequencies based on term-for-term comparisons with LIWC         
2015 dictionaries. Values were assigned based on the presence of negative affect terms             
and punctuation (periods, comma, colon, semicolon, question marks, exclamation,         
quotes) in the training and test set. 

 
Then, we apply those features to our pipeline and utilize either Scikit-learn or TensorFlow to               
experiment the result. 

4.4] How to test against hypothesis:  
- 10-fold cross validation confidence score: In k-fold cross-validation, the original sample           

is randomly partitioned into k equal sized subsamples. Of the k subsamples, a single              
subsample is retained as the validation data for testing the model, and the remaining k − 1                 
subsamples are used as training data. 

- F-score measurement: p is the number of correct positive results divided by the number              
of all positive results, and r is the number of correct positive results divided by the                
number of positive results that should have been returned. F1 = 2 · precision · recall /                 
precision + recall 

5] IMPLEMENTATION: 

5.1] Code:  
- Stance detection: https://github.com/Lucashuang0802/FNC-Project-Stance 
- Satire detection: https://github.com/AdityaRandive/satire 

https://github.com/Lucashuang0802/FNC-Project-Stance
https://github.com/AdityaRandive/satire
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5.2] Design document and flowchart:  
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5.2.1] Stance Detection : 

 

5.2.2] Satire Detection : 
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6] DATA ANALYSIS AND DISCUSSION: 

6.1] Output generation:  

6.1.1] Satire:    
- build_model() This uses the scikit-learn machine learning library to calculate the           

standard tf.idf values for terms in each document, and to train and evaluate an SVM               
classifier. 

- enhance_terms() This uses the spaCy NLP library to first identify named entities            
corresponding to people or organisations. It then uses spaCy’s dependency parser to            
identify the corresponding noun chunks and the associated verbs. These are enhanced by             
simply appending multiple copies of these words at the end of the document. Because we               
are using a tf.idf representation, the word order does not matter, so the effect is simply to                 
increase the significance of these terms. The motivation is that much satire is about              
famous or influential people or organisations, so the words corresponding to these targets             
and their actions are likely to be especially significant. 

- train_test() This is the top level function that calls others to load the data, enhance the                
documents, split into training and test (evaluation) sets, build and evaluate a classifier             
model, and display the results. For simplicity, we train and test on non-overlapping             
subsets of Baldwin’s ‘training set’, and ignore his ‘test set’ of articles. This is unlikely to                
significantly change the results. 

6.1.2] Stance detection: 
- A binary file named stance.pickle: Since we have coded the project in Python 3, the               

pickle python module is utilized to save and load a trained model for future development.               
The pickle module implements a fundamental, but powerful algorithm for serializing and            
de-serializing a Python object structure.  

- Evaluation files saved as .txt: 
- confusion_matrix.txt: The confusion matrix contains four metadata: “agree”,        

“disagree”, “discuss”, and “unrelated”. A confusion matrix is a table that is often             
used to describe the performance of a classification model(or "classifier") on a set             
of test data for which the true values are known. The confusion matrix itself is               
relatively simple to understand, but the related terminology can be confusing. 

https://docs.python.org/2/library/pickle.html#module-pickle
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- ***_evaluation.txt: Each label (“agree”, “disagree”, “discuss”, and “unrelated”)        
will contain one evaluation text file regardings three standard evaluation scores:           
prediction, recall, and F1 score.  
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6.2] Output analysis:  
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6.2.1] Satire Detection: 
Dataset: https://people.eng.unimelb.edu.au/tbaldwin/resources/satire/ 
 
Here we summarise some example results using this code. In each case, we report the F1 score                 
for the ‘satire’ class. Baseline classifier (scikit-learn’s ‘dummy / stratified’ approach): F1 = 0.04 
 
SVM classifier (linear kernel, C=10) F1 = 0.64 
 
SVM classifier (enhanced entities)  F1 = 0.67 
 
For all the SVM results observed, the precision was close to 1 with a recall of around 0.5. This is                    
similar to the initial results in the Burfood & Baldwin (2009) paper. The baseline ‘dummy’               
classifier here scores very badly, as it depends on the class frequencies and very few documents                
are labelled as satire. 

6.2.2] Stance Detection: 
 
Our stance detection is based on the baseline implementation of Fake News Challenge. The              
dataset contains two sets of information: headline and body text. The classifier is aimed to have                
the capability of finding the relationship between a headline and a body text among “agree”,               
“disagree”, “discuss”, and “unrelated”. But be that as it may, we found it very much low                
confident to classify among “agree”, “disagree”, and “discuss” without considering natural           
language understanding and natural language disambiguation; and they both take a very while to              
experiment and engineer features.  
 

https://people.eng.unimelb.edu.au/tbaldwin/resources/satire/
https://github.com/FakeNewsChallenge/fnc-1-baseline
http://www.fakenewschallenge.org/
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By analyzing the tf-idf feature as the first chart shown underneath, the label 3 (unrelated) has an                 
obvious advantage to differentiate itself from others. Inside those three, we basically could not              
depend on the TF-IDF to extract further more information. The SVD feature has a comparative               
effect on model as the second chart shown underneath. 
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We decided to seek for another approach. It is not hard to use a tiny trick to turn this                   
multi-classifier into binary classifier. We combine “agree”, “disagree”, and “discuss” into one            
class called “related”. From the viewpoint of feature engineering, we did not essentially alter our               
goal, which is to figure out the relatedness of a headline and a text body, in spite of the fact that                     
our accuracy might be lower. We aim to build a decision tree with our another model to improve                  
the overall accuracy. 

6.3] Comparison of Output against hypothesis:  
We had stated in the hypothesis that we would be utilizing Bigram TF-IDF and SVM with                
Random Forests using Scikit. We have used these features. The output expectation has been +5%               
with abnormal case explanation provided. 
While implementing syntactical dependencies, we faced some issues which parsing. This feature            
has been included in the code but may have some effect on specific news articles. 

6.4] Abnormal case explanation:  
When we tried to include latest news articles which could be categorized as not completely true                
and satirical, the success factor was more or less similar. But then we tried to run it with some                   
The Onion and The Garlic news sources, some abnormalities were observed in that the              
confidence factor fell down drastically. 
Explanation: We got to know that there is a Fake-News generator based on Machine Learning               
algorithms which is used by the above mentioned websites for their news generation. 
This generator is specifically designed to avoid the keywords/features applied to detect fake             
news. Hence the abnormal case and it’s reason. 

7] CONCLUSION AND RECOMMENDATIONS: 

7.1] Summary and Conclusions:  
 
Detecting satire is part of a wider goal of reducing misinformation and disinformation in a               
collection of news articles. A perfect satire detector could be used to reduce the risk of some                 
types of misinformation, but is not enough in itself. To an end-user, different types of mistake                
may be more or less problematic. Put simply, is it a worse mistake to label a news article as                   
satire, or vice versa? Presenting obviously humorously false information as if it were genuine is               
likely to undermine user’s faith in the system, whereas perhaps falsely labelling a few genuine               
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stories as suspect or fake is less critical, as other sources of the same stores are likely to appear                   
and (hopefully) be labelled as genuine. 
 
Initial results show that term frequency is potentially predictive of fake news; an important first               
step toward using machine classification for identification. However, we remain concerned about            
overfitting and learning topical patterns that predict the partisan split of the legitimate vs. fake               
sources as identified by OpenSources.co.  
 
As for stance detection, a good solution would allow a human fact checker to enter a claim or                  
headline and instantly retrieve the top articles that agree, disagree or discuss the claim/headline              
in question. They could then look at the arguments for and against the claim, and use their                 
human judgment and reasoning skills to assess the validity of the claim in question. Such a tool                 
would enable human fact checkers to be fast and effective. In this way, the various stances (or                 
lack of a stance) news organizations take on a claim, as determined by an automatic stance                
detection system, could be combined to tentatively label the claim as True or False. While crude,                
this type of fully-automated approach to truth labeling could serve as a starting point for human                
fact checkers, e.g. to prioritize which claims are worth further investigation. 
 
The results show that it is much more easier to identify relatedness rather than actually matching                
“agree”, “disagree”, and “discuss” by our research progress. However, being able to figure out              
relatedness contributes a major part to classify fake news. 
 
Ultimately an objective way of classifying ‘fake’ from legitimate news continues to be barrier              
that will make adoption difficult. Whereas fake reviews of restaurants might follow different             
syntactic structures to true reviews without intent, fake news is  intended to mislead. In this case,                 
it is likely that the unreliable sources will do their best to mimic the syntactical qualities of                 
legitimate news sources.  
 

7.2] Recommendations for future studies:  
Our very first obstacle was unexpected. We thought fake news detection was to identify if the                
news is truthful or not. The task is obviously not so simple. Beginning from the definition, we                 
very rapidly discovered that there are many different categories misinformation can fall into.             
There are articles that are blatantly false, articles that provide a truthful event but then make                
some false interpretations, articles that are pseudoscientific, articles that are really just opinion             
pieces disguised as news, articles that are satirical, and articles that are comprised of mostly               
tweets and quotes from other people. Without a question, detecting fake news is much more               
harder than we could envision. Here in our project, we have uncovered some advantages and               
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workable solutions by utilizing satire and stance detection. Except for these two, one potential              
improvement is to discover more perspectives. For instances, we could analyze the grammatical             
errors. Perhaps, we can seek for an effective manner to combine them into one high accuracy                
model. Secondly, maybe simplifying the problem would be the key to a higher degree of               
accuracy. So we really thought about what the problem was we trying to solve. Maybe the                
answer isn’t detecting fake news, but detecting real news? Real news is much easier to classify.                
Its factual and to the point, and has little to no interpretation. And there were plenty of reputable                  
sources to get it from.  
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