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ABSTRACT

Artificial intelligence is becoming more advanced than ever, and along with the increase of processing power, can be
applied to a variety of elements of our daily lives. We propose a model using recent developments in deep learning to
explore the potential of computer-generated music.
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Chapter 1

Introduction

1.1 Objective

The core objective of this project is to develop a system that is able to create music that is aesthetically reasonable

using deep learning methods.

1.2 Problem Description

The field of deep learning is a flourishing one. Advancements in methods appear frequently, and many researchers

are exploring its potential applications. Music is one such example, and there have already been numerous endeavors

towards creating a system to generate musical sequences that humans can enjoy listening to. However, many of the

systems proposed so far have not been able to close the distance between computer-generated music and music written

by human composers. If this challenge is accomplished – that is, if a human listener genuinely enjoys an artificially

composed song – the implications of this success are vast and significant.

1.3 How the Problem Relates to Class

Music is represented in sequential form, as a series of musical notes. Many deep learning techniques have been used

in the field of natural language processing, which require text – typically a sentence or a document – as input. These

inputs are also sequences, albeit composed with different symbols. We are interested in seeing whether the techniques

used in the field of NLP can be applied to music as well. In addition, both music and language use sets of structuring

rules to govern composition. Just like how we have developed systems that can parse, understand, and produce text, it

should be possible to do the same for music.
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1.4 What Other Solutions Lack

Previous attempts at generating music involve methods like recurrent neural networks (RNN), genetic algorithms

(GA), and others. While these machine learning techniques are capable of learning music structure, they haven’t been

able to carry this knowledge over to composing music that seems plausibly written by a human composer. This implies

that previous solutions lack the creativity needed to successfully introduce variations on a ”main” melody that they

may detect, and convince listeners that their compositions are not artificially generated.

1.5 Why Our Solution is Better

We believe that the design of generative adversarial networks (GAN) provide an interesting and possibly better way

to incentivize the system to learn how to better compose music. By joining a RNN model with a GAN, the combined

system should be able to produce a novel output sequence.

1.6 Scope of Investigation

The project will focus on the implementation and the performance of the designed system.
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Chapter 2

Background

2.1 Definition of the Problem

A big challenge in music composition is to create a model that is easily trainable and capable of reproducing the

long-range temporal dependencies of music. On top of this, we seek to enable the model to introduce creativity into

the composition process.

2.2 Theoretical Background

Recurrent neural networks (RNN) and long short term memory (LSTM) cells are popular deep learning methods that

have come about recently, due to the fact that they are designed to process sequential data and capture the temporal

structure in their input.

The idea of RNN is to use sequential information. In a traditional neural network the assumption is made that all

inputs are independent of each other. However, that is not the case every time. For example, we have to know the

previous words to predict the next word in a sentence. This is a typical application of an RNN because it is able to

remember information about the preceding sequence of inputs. That is, the RNN network contains a loop structure,

allowing information to persist.

Figure 2.1: A single-layer recurrent neural network
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Figure 2.1 depicts a visual representation of a simple RNN. The memory cell A looks at some input x and outputs

a value h. Within A lies some set of values to determine the state of the cell. At each time step, the state of the cell is

looped back into the cell through a set of weights. This mechanism allows the network to ”remember” over time.

It can be difficult to train standard RNNs to solve problems that require learning long-term temporal dependencies.

This is because the gradient of the loss function decays exponentially with time, which is commonly known as the

”vanishing gradient” problem. LSTM networks are a type of RNN that uses special hidden units in addition to standard

units. A LSTM unit is a ”memory cell” that can maintain information in memory for long periods of time. A set

of gates is used to control when information enters the memory, when it’s output, and when it’s forgotten. This

architecture lets them learn longer-term dependencies.

2.3 Related Research

There have been multiple efforts working on the topic of music composition. Two main different approaches are

adopted: utilizing novel features extracted from music data to train the models, and applying different algorithms to

generate new music. Colombo et al. proposed a novel music representation which contains information of pitch and

note duration, and designed a new neural network structure which can accept these features to make their music gen-

erator [1]. Nomura and Fukumoto proposed using a distributed interactive genetic algorithm (DIGA) as a composition

model [2]. Huang and Wu, as well as Sturm et al., apply deep learning methods, specifically LSTM networks, to music

transcription modeling and composition [3, 4].

2.4 Advantages/Disadvantages of Research

New features can be useful, but some information may be lost during feature extraction. Moreover, extra work is

needed to extract the new features and design a new neural structure to fit this input feature. DIGA has a mutation

process, which can encourage and boost creative composition, but requires human interaction for evaluation, a costly

process. While LSTM can retain knowledge well, its training process is more costly than a similarly structured RNN

using a standard activation function such as ReLU.

2.5 Our Solution

We propose an RNN and generative adversarial network (GAN) model to build our music generator. Based on the

survey by Liu and Ting [5], there has been no recent effort to combine these two models to achieve a music generator.

That is, we are the first team to combine these two model to build our music generator.

We believe our solution is better because our model theoretically is more powerful. RNN is suited for handling

discrete sequential inputs like music, and GAN is one of the most powerful neural network based models to date.
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Furthermore, our proposal eliminates the downsides of the DIGA model: it does not require human involvement for

selection.
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Chapter 3

Hypothesis

3.1 GAN is suitable for music composition

Generative adversarial networks have been proposed as a way of efficiently training deep generative neural networks.

Their ability to generate samples is key to creative music generation. With sufficient training, we believe that a model

using GAN will be able to convince a human listener that its music is comparable to that of a novice composer.
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Chapter 4

Methodology

4.1 How to Generate Input Data

4.1.1 ABC Music Notation and Encoding Scheme

The ABC notation is a type of musical representation we will use for our model. ABC notation consists of two parts:

the header which provides the metadata of the music such as key signature and title, and the body which details the

notes in the song.

Figure 4.1 shows an example ABC formatted song. Header tags, such as T for title and X for song number, do

not affect music synthesis. The spaces and the newlines in the body are also extraneous characters, and are unneeded

for music generation. Therefore, the scraped songs are then processed to only contain 5 important pieces of header

information: song type, time signature, unit note length, number of flats, and song mode. Additionally, 2 more

metadata headers are generated: number of measures and song complexity, which is the average number of notes

played every beat.

We have two approaches to the input method. Our first option is to feed the ABC file into the model character by

character, and our second option is to tokenize the file then using the tokens as a sequence.

After formatting the ABC files, we map the characters to integer encodings by assigning a unique number to each

character in the music body, and also to each keyword in each category of the metadata.

4.2 How to Solve the Problem

4.2.1 Designing GAN for sequence model

A conventional GAN has two parts: a generator that applies a deterministic transform to a random sample from input

space to target space, and a discriminator that bipartites the target space. The discriminators gradient on target space

is used to guide the parameter update in the generator model such that the slightly changed model would produce a

slightly more realistic result. The key idea is the target space has to be continuously differentiable for this type of

improvement to take place. However, considering the sequence model for most RNNs, the target space usually is
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Figure 4.1: Top: Sheet Music, Left: Original ABC File, Right: Formatted ABC File

discrete and the slightly updated generator model would still create a similar output because there is no such output in

the target space to reflect the gradual change. Another difficulty for the discriminator guidance for generator is that a

score or loss is produced at the end of the sequence generation. The challenge lies in evaluating the partial result of

current and future generated tokens.

4.2.2 Theory

To deal with the problem of ineffective gradients over discrete space, we adopt a reinforcement learning framework.

Well treat the process of generating token yt based on the input sequence Y1:t−1 as taking an action yt from state Y1:t−1.

Consider generating sequence Y1:T as a traversal starting from the initial state s0, taking a sequence of actions y1, y2,

..., yT . The generator is the stochastic policy model Gθ(yt | Y1:t−1) with deterministic transition. The reward function

is the output of the discriminator Dφ(Y1:T ). Since the generator can generate tokens at each time step from 1 to T − 1,

but the discriminator can only evaluate a full sequence, we introduce a Monte Carlo Rollout process to estimate the

reward for intermediate states. We represent an N-time Monte Carlo search as Y1, Y2, , YN = MCGβ (Y1:t; N). Thus, we

reach the following reward function:

QGθ

Dφ
(s = Y1:t−1, a = yt) =


1
N
∑N

n−1 Dφ(Yn
1:T ),Yn

1:T ∈ MCGβ (Y1:t; N) t ≤ T

Dφ(Y1:T ) t = T
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Based on the policy gradient ascent algorithm, the following equation is derived:

Since the expectation can be approximated by sampling method. We can update generator parameters with the

following equation:

θ ← θ + αh∇θJ(θ)

For our discriminator, the target is:

min
φ
− EY∼pdata [log Dφ(Y)] − EY∼Gθ

[1 − log Dφ(Y)]

4.2.3 Model Building and Training

Figure 4.2 shows the overall structure of our project. An RNN serves as the generator, and a 1-D convolutional neural

network is the discriminator.

Figure 4.2: A generative adversarial network example

We will also need a copy of generator model as the rollout model used in Monte Carlo search. The generator and

rollout models will be pre-trained with training data. Once this process is complete, we prepare negative samples from
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the trained generator and positive samples from our dataset in order to pre-train the discriminator. After all of our

models have been pre-trained, we will follow the typical GAN training process of alternating between the G-step and

the D-step. However, during the G-steps the Monte Carlo Policy Gradient based on discriminator reward will be used.

In the D-steps, samples from both the generator and the dataset will be used to train the discriminator. Finally, the

rollout model would adopt the updated generator parameters before entering the next iteration, and the entire system

will be trained until convergence.

4.2.4 Music Generation and Evaluation

Music sequences will be generated by feeding in a seed sequence and allowing the RNN model to run until it reaches

the end state. To evaluate our project, we will present some samples created by our model and samples by human

composers, then ask class members to distinguish which ones are not artificially generated, and collect the mean

opinion scores.

4.2.5 Language and Tools Used

This project will be written in Python, the lingua franca of the machine learning community. We will use TensorFlow

as our machine learning library to develop our model.
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Chapter 5

Implementation

5.1 Design

5.1.1 Data Design

Before we can start training, we have to preprocess our data in order to feed them into our training model. Initially,

we transformed a song from ABC notation to a sequence of characters; each character in the former format becomes

a different representation in the new input format. Next, we append a special token indicating the end of the file.

We separated our training data into 20 notes per line. For each line, we started with 12 notes from the previous line.

We enhanced our original input by adding more data, such as the genre of the song, in order to train our models on

each genre separately. While doing so, we grouped similar genres together. In addition, for another experiment, we

normalized all our songs to the same scale, so all songs are transposed to C major.

5.1.2 Procedural Design

We have previously described our model structure in figure 4.2. To explore different models and their potential effec-

tiveness, we have branched our project into three different experiments.

As figure 5.1 depicts, in Experiment 1, we build two GANs that differ in the discriminator. They both use a

character-based RNN to learn the musical sequential structure then generate music. In this experiment, we use two

types of discriminators: an RNN and a CNN. This was to see which neural network model performs better on the task

of differentiating between true data and the generated data.

In Experiment 2, we built three models: the first and second model are the models from Experiment 1 but with an

upgraded generator, and the third model is simply the upgraded generator itself. We added an additional layer in our

RNN, resulting in a two-layer network and increasing the number of nodes per layer from 32 to 64. In this experiment

we attempt to answer three questions: 1. Does the GAN model perform better when we upgrade the generator only?

2. Do the two GAN models in this experiment outperform their respective counterparts in Experiment 1? 3. Does the

GAN outperform the simpler RNN model?
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Figure 5.1: Two GAN models in Experiment 1

Figure 5.2: Two GAN models and one RNN model in Experiment 2

Figure 5.3: Two GAN models in Experiment 3
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Figure 5.4: Process flow

In Experiment 3, we reused the two models from Experiment 1, but trained those models on altered training data.

Our first type of training data consists solely of music from the reel genre. By reducing the number of genres appearing

in the training data to one, we hypothesize that the output would be more consistent. We also used the key-normalized

data described above, to avoid the cacophony that could arise from using songs with different key signatures in training.

5.2 Code

Figure 5.4 shows the overall process flow of our project. Our data first goes through DataGen.py, where we handle

musical issues like normalization and ABC conversion. processMidi.py further processes the data to produce fixed-

length training and test sequences. Next, sequenceGAN.py creates the generator, discriminator and rollout model, and

is responsible for the two training stages. After training, generate abc.py is called to generate song samples by feeding

a start token to the generator and letting it run until the EOF token is generated. In the ”Human&abc2midi.exe” block,

ABC header data is manually added, then abc2midi.exe is used to convert the file to a music file for listening.

13



Chapter 6

Data Analysis

6.1 Output Generation

After our models complete the pre-training and training processes, we use the generator part of the model to create

ABC music sequences. We then transform them back to MIDI format for listening. The generation of ABC notation

by the generator model is stochastic; we pass in a start token that is excluded from other vocabulary in data to initialize

the model. After that, we let the model ”free run”, using the current timestep’s output as input during the next timestep,

until it reaches an end token and stops, as shown in figure 6.1.

Figure 6.1: Music generation process

The start and end tokens are then removed from the whole sequence, and a token to ABC mapping is used to

complete the translation. The ’body’ of music is thus generated.
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To complete the generation of ABC notation, we also prepend a header to specify musical metadata such as tune

and rhythm. The header we use are as follows:

X: 1

R: reel

M: 4/4

L: 1/8

K: Cmaj

According to the class of music we train, we changed the R value to other corresponding values. An example final

result before converting to ABC is as follows:

X: 1

T: Difyrrwch Y Brenin

R: reel

M: 4/4

L: 1/8

K: Cmaj

BdBAGF E2E>FA>c (3efe {e}(fe/d/ de f2 d ee 1 "Seen "d2 (de)

6.2 Output Analysis

We set aside 20% of our data for evaluation, computing the cross-entropy loss between that and the generator pre-

diction as test loss. During adversarial training, test loss will usually increase after 10 epochs, so early stopping is

employed. We observed that the loss does not decrease by much during adversarial training, compared to the amount

in pretraining. This may be due to a strong discriminator memorizing each example in the training set, causing the

generator to overfit. We believe better results can be generated with more training data and the use of regularization.

6.3 Comparison Against Hypothesis

We were successful in creating sequences of musical notes using GANs, but to determine whether the output affirms

our hypothesis, we must enlist the help of volunteers to assess and compare our songs against songs from other works.

We discuss our results below.

6.4 Discussion

To evaluate our models further, we took samples generated from each model, as well as songs from our true data

and samples from Agarwala et al., for a group of 20 volunteers to listen to and evaluate. Each volunteer was given a

random sample of the song collection, but will always listen to at least one song from each source. They will assign

scores to six songs they listen to on a scale from 1 to 9, based on Huang et al.’s evaluation metric. On this scale, a score

of 1 means ”completely random noise”, a score of 5 means ”musically plausible”, and a score of 9 means ”composed

by a novice composer.”
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Our survey results are shown in two tables. Table 6.1 contains the average scores given to songs generated in our

experiments, and table 6.2 shows the average scores given to songs from Agarwala et al. and samples from our true

data, which are composed by human composers.

Ex1.1 Ex1.2 Ex2.1 Ex2.2 Ex2.3 Ex3.1 Ex3.2

5.9 4.3 4.0 4.2 4.8 3.7 4.7

Table 6.1: Average scores for all three experiments

Stanford1 Stanford2 Human1 Human2 Human3

6.5 5.4 8.1 7.1 7.5

Table 6.2: Average scores for external samples

Some interesting observations can be found from these results. As we increase the complexities and theoretical

power of our models, the average rating actually decreases. Our original model appears to perform the best, and the

next best model is the simple RNN model. The Char-RNN and CNN configuration performs comparably to the results

of Agarwala et al. Also, training a model on a single genre of music does not seem to improve the aural pleasantness

of that model’s output, but normalizing the key helps.

Visualizing some of our generated songs reveals that some temporal structure was learned in the training data.

Figures 6.2 and 6.3 show that the models are able to learn, use and reuse musical patterns.

Figure 6.2: A generated song from Experiment 1.1

Figure 6.3: A generated song using key-normalized training data

Our evaluations could indicate that GANs may not be the best approach to computer-generated music, perhaps due

to differences between the discriminator and a human listener. It is also possible that training on music that is closer to

what we listen to could provide better results, but this could lead to vanishing gradients due to saturated activations. In

other words, the differences between the training data and the generator’s outputs could be so large that the generator

is not incentivized to beat the discriminator.
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Chapter 7

Conclusion

7.1 Summary and Conclusion

In this project, we attempted to design a system for learning temporal structure in a musical sequence, and using that

knowledge to compose original melodies. We did this using the concept of the generative adversarial network as a

base, with our objective being to train a model to compose music at the level of a novice human composer. We have

shown that the GAN can compose music that is a step above completely random noise. In the process, we designed

models with slight variations in an attempt to discover the most effective hyperparameters and structure. Upon doing

so, we found an interesting observation: just because a model can handle more complexity does not mean it can create

more musically plausible sequences.

7.2 Future Work

Our current work is just the beginning of the development of computer creativity. Needless to say, there is much room

for improvement, and as new deep learning techniques and methods become feasible, we are certain that they will

bring about performances that start to resemble plausible human compositions.
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Chapter 8

Appendix

8.1 Appendix A: Source Code

For our source code, please refer to https://github.com/lo16/coen296-group-project-final.
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