
Natural Language text to SQL query

A Master’s Project Report submitted to Santa Clara University in
Fulfillment of the Requirements for the

COEN- 296: Natural Language Processing

Instructor: Ming-Hwa Wang
Department of Computer Science and Engineering

Amey Baviskar
Akshay Borse

Eric White
Umang Shah

Winter Quarter 2017

Preface

This project idea comes from my experience as a single data person at a startup.
Without the properly sized team, it is easy to get bogged down with ad-hoc query requests
leaving less time for for more critical projects. More likely, some ad-hoc query requests get
rejected or push on the backburner for lack of resources. In my experience applying for jobs, I
have found a lot of jobs for “data analyst” that mainly consist of retrieving data via sql queries.
Our topic will focus on automating this process. Our paper will work towards the goal of such
automation. Interesting future work could be done in combining these results with automatic
data visualizations.

Abstract

We investigate avenues of using natural english utterances - sentence or sentence
fragments - to extract data from an SQL, a narrower inspection of the broader natural language
to machine language problem. We intend to contribute to the goal of a robust natural language
to data retrieval system.

Table of Contents

1. Acknowledgements

2. Introduction

2.1 Objective

2.2 Problem Statement

2.3 Existing Approaches

2.4 Proposed Approach

2.5 Scope of Investigation

3. Theoretical Bases and Literature Review

3.1 Theoretical Background of the Problem

3.2 Related Research of the Problem

3.3 Our Solution to the Problem

4. Hypothesis

5. Methodology

5.1 Data Collection

5.2 Solution Structure

5.2.1 Algorithm design

5.2.2 Language

5.2.3 Tools used

5.3 Output

5.4 Output Testing

6. Implementation

9. Bibliography

1. Acknowledgements

We would like to express our sincere gratitude for all the developers who are creating
these powerful and useful libraries and keeping them open source. Most specifically, we
will heavily utilize python’s nltk package as well as Stanford’s CoreNLP. Quepy has also
provided a benchmark.

We are very grateful to all of the researchers and journals who have laid the theoretical
foundations for this project. Our bibliography shows all the resources we used in the
creation of this project.

We would also like to thank Santa Clara University for providing us access to research
papers such as those published by ACM. The level of detail these papers provided has
been invaluable to our understanding of the topic. Santa Clara has also provided us with
a usable meeting place to discuss our project in person.

Last, but not least, we are deeply grateful to our project instructor and advisor, Prof.
Ming-Hwa Wang, for his continued support and encouragement.

2. Introduction

2.1 Objective

The objective of our project is to generate accurate and valid SQL queries after parsing natural
language using open source tools and libraries. Users will be able to obtain SQL statement for
the major 5 command words by passing in an english sentence or sentence fragment. We wish
to do so in a way that progresses the current open source projects towards robustness and
usability.

2.2 Problem Statement

This project makes use of natural language processing techniques to work with text data to form
SQL queries with the help of a corpus which we have developed. En2sql is given a plain english
language as input returns a well structured SQL statement as output.

2.3 Existing Approaches

The existing approach is to generate the query from the knowledge of SQL manually. But
certain improvement done in recent years helps to generate more accurate queries using
Probabilistic Context Free Grammar (PCFG). The current implemented standard is QuePy [10]
and similar, disjoint projects like them. These projects use old techniques; QuePy has not been
updated in over a year. The QuePy website [10] has a interactive web app to show how it
works, which shows room for improvement. QuePy answers factoid questions as long as the
question structure is simple. Recent research such as SQLizer [7] presents algorithms and
methodologies that can drastically improve the current open source projects. However, the
SQLizer website does not implement the natural english to query aspect found in their 2017
paper. We wish to prove these newer methods.

2.4 Proposed Approach

The proposed approach aims to use knowledge of SQL to create a corpus which will help to
identify SQL command words ie SELECT, INSERT, DELETE, UPDATE and map the tokens
with appropriate POS. Word similarities will be calculated with the input tokens to the database
schema (table names, column names, data) to insert table names, column names, and data
comparisons into the query.

2.5 Scope of Investigation

We will be implementing SELECT, INSERT, DELETE, UPDATE query and WHERE
clauses. We hope to implement more clauses such as join, aggregate, order by, limit, ect but
cannot commit to these more challenging due to their added complexity and time constraints.

The research will start by focusing on statements (“get / find number of employees”) and
then extend to questions (“Who is Bob?”). The statements are easier as it gives more keywords
to interpolate the SQL query structure.

There are many relations databases. While their SQL syntax is similar, it can differ for
more complicated queries. We will focus on MySQL as it is an open source database with a
large user base.

3. Theoretical Bases and Literature Review

3.1 Theoretical Background of the Problem

The problem we address is a subcategory of a broader problem; natural language to
machine language. SQL is opportunistic for its distinctive, high level language and close
connection to the underlying data. We utilize these characteristics in our project.

SQL is tool for manipulating data. To create an system which can generate a SQL query
from natural language we need to make the system which can understand natural language.
Most of the research done until now solve this problem by teaching a system to identify the
parts of speech of a particular word in the natural language which is called tagging. After this the
system is made to understand the meaning of the natural query when all the words are put
together which is called parsing. When parsing is successfully done then the system generates
a SQL query using proper syntax of MySQL.

3.2 Related Research of the Problem

Following corpus development which was helping computer identify tables and columns name.
Using experience and after learning a pattern it can learn even following type of tables. E.g.
emp_table, emp, emp_name. The parsing tree can also be build using a PCFG. PCFG uses
probability to build a most relevant tree from the many options created.

3.4 Our Solution to the Problem

The system will deploy a natural language understanding component that identifies speaker
intents and the variables needed for a specific intent example. Our solution uses the technique
presented in the paper but also enhance it because of the corpus which we are developing
which will be schema specific.

4. Hypothesis

If we create a corpus with perfect mapping of schema we will be able to identify the major
elements properly. We are trying to create our own syntactic parser which will help us to give
the query matching more accurately.

Also parser will be able to identify the types of joins in the query from the natural english text like
inner join, outer join and even the self joins.

The focus will be on making queries with the various sql functions like count, aggregate, sum
etc and even complex queries with like, in, not in, order by, group by etc.

5. Methodology

5.1 Data Collection

With the domain level knowledge of SQL we will create a corpus which will contain words which
are synonymous the SQL syntax to SELECT, LIMIT, FROM, etc. This is common among the
open source projects we have seen. Many of the open source projects we have inspected use
such keywords, thus coming up with a generous keyword corpus will be easy. If our english to
keyword mapping results are not desirable, we may use an online thesaurus api. A MySQL
database will be constructed with data from the public Yelp SQL Database [13]. We chose the
yelp dataset because it is fairly large, has a good amount of tables, and we have some domain
level knowledge about Yelp already. This data will be used as a corpus and for testing. The
corpus will be constructed from the table names, column names, table relationships, and
column types. The database corpus will be used in an unsupervised manner to keep the
program database agnostic. A set of substructure queries will be used as a starting point for the
queries. The natural language tokens will be matched to these.

5.2 Solution Structure

5.2.1 Algorithm design

Following will be our algorithm

1. Scanning the database: Here we will go through the database to get the table names,
column names, primary and foreign keys.

2. Input : We will take a sentence as a input from the user (using input.txt)
3. Tokenize and Tag : We will tokenize the sentence and using POS tagging to tag the

words
4. Syntactic parsing : Here we will try to map the table name and column name with the

given natural query. Also, we will try to identify different attributes of the query.
5. Filtering Redundancy : Here we will try to eliminate redundancy like if while mapping we

have create a join requirement and if they are not necessary then we remove the extra
table.

6. Query Formation : Here we will form a complete SQL query based on MySQL syntax.
7. Query Execution : Here we will execute the query on database to get results

Program design:

5.2.2 Language

Our project uses Python 3.6. Python has many readily available and proven open source
libraries. All our required libraries support Python 3.6.

5.2.3 Tools used

NLTK3 library for python will be used for input stemming. This library serves as a toolkit for
computational linguistics. Following is a list of the modules we will be using.
Token module provides basic classes for processing individual elements of text, such as words,
or sentences. Nltk tokenizer is used to tokenize incoming sentences. The wordnet lemmatizer
and porter stemmer is used parse the input’s base words for comparison.
Stanford’s part of speech tagger [14] is used to tag the input natural language query.
To connect to the mysql database, we used PyMysql (pymysql). While it is not optimized out of
the box, it can be optimized with additional tools. We chose it because it is written in python and
supports python 3.6. Being written in python, it can be installed with python’s pip packaging
system. We use MySql for this project for its ease of use, expressive querying language, open
sourceness, and many python packages to work with it.

5.3 Output

The program with output a structure SQL query that runs on the database and attempts to
answer the input question or statement. The output is displayed to stdout as well as into
output.txt.

5.4 Output Testing

To test our code we will first create a schema specific corpus which will contain data related to
table, column name, column data. Another corpus will contain data related to query command
SELECT. And then we will be giving it a general natural language statement to test it. It will take
input of the natural language and then will make use of the two corpuses and thus will output a
SQL query. We will take the output query and run it against the MySQL Yelp Database, testing
the runnability of the query. After it runs, we will take the resulting data and compare it to our
expected results. For the last test, we will inspect the query for correctness making sure a wrong
query does not return the correct data. We will need to construct a set of natural english with
expected output pairings. If the query can pass the first two automated tests, then it will need to
be hand inspected for correctness. If all three tests pass, the query is correct. With this testing
methodology we will construct an accuracy for the program.

6. Implementation
System Design

We propose a system which looks to overcome the shortcomings of existing system that
gets a natural language sentence as an input, which is then passed through various phases of
NLP to form the final SQL query.

1. Tokenize and Tag
The input natural language query gets split into different tokens with the help of the

tokenizer ,word_tokenizer, from ’NLTK’ package. The tokenized array of words is tagged
according to the part-of-speech tagger using the Stanford POS tagger [14]. All processes
following this step use these tagged tokens for processing. We also implement

2. Analyze tagged tokens
Based on the tagged tokens of earlier step, the noun map and verb list is prepared

through one iteration over the tokens. The tokens corresponding to aggregate functions are also
mapped with their respective nouns using a pre-created corpus of words. The decision whether
the natural language statement represents a data retrieval query (SELECT) or a DML query
(INSERT, UPDATE, DELETE) is taken at this stage with the help of certain ’data arrays’ for
denoting type of query. For example, when words like ’insert’ and its certain synonyms appear
in the input, the type of query is ’INSERT’ and so on. In any type of query, the tentative tags
’S’ (SELECT), ’W’ (WHERE), ’O’ (ORDER BY) are mapped to the nouns indicating the clauses
to which they belong. For this, we have designed ’data dictionaries’ for different clauses. These
data dictionaries consist of the token-clause term pair, for e.g. aggregate clause data dictionary
is ”number”: ”COUNT”, ”count”: ”COUNT”, ”total”: ”SUM”, ”sum”:
”SUM”, ”average”: ”AVG”, ”mean”: ”AVG”. Thus, if any of these tokens is encountered, it is likely
to have aggregate clause and accordingly the nouns are tagged with the clause tag.

3. Map to table names and attributes
Using the noun map and verb list, the table set is prepared, which will hold the tables

that are needed in the query to be formed. This is based on the fact that the table names are
either nouns or verbs. The noun map is used to find the attributes which are needed in the final
query. The attributes, the table associated with the attribute and the clause tag are stored in an
attribute-table map which is used in the final stage of query formation. This is done using the
string matching algorithm that we have implemented in our system. The words in the input
sentence need not exactly be as they are in the database. The stemmer and lemmatiser are
applied on the words before they are matched using our string matching algorithm. The data
obtained during this step i.e. table set and attribute-table map, is most likely to be in the final
query, however, it might be refined later.

4. Filter redundancy and finalize clauses of the query

Using the various data dictionaries defined, the system has already decided which
clauses are likely to exist in the final query and has mapped the data to the clauses. But, some
of the data has to be finalized at this stage. The data related to GROUP BY and HAVING
clause is collected using the previous data and the basic rules of SQL. For example, if
aggregate function is compared to a constant, i.e. ’MAX(salary) > 40000’, then ’HAVING’ clause
has to be used instead of ’WHERE’ clause.

As mentioned in the earlier step, the refinement of data must be done. Here, the
redundant tables and attributes are removed using some filter algorithms. For example, one of
the algorithm filters the table and their corresponding attributes which are a subset of some
other table in table set. i.e. if table set has [table1, table2] and table1 has attributes [a1, a2] and
table2 has [a1, a2, a3] after the previous steps, then table2 is enough to represent all the
attributes required and hence table1 is removed. There are various other algorithms applied in
order to filter the results and finalize the table set and table-attribute map.

5. Form the final query and execute
Currently, as our system handles only MySQL queries, the templates used for the query

formation will be according to the MySQL syntax. According to the type of query selected in the
second stage of the process (Analyze tagged tokens), the appropriate template is chosen.
The template is selected from the following:

1. For data retrieval queries (SELECT):
1.1. SELECT <select clause>

FROM <tables>
WHERE <where clause> ORDER BY <order by clause > GROUP BY <group by
clause> HAVING <having clause> LIMIT <limit clause>.

2. For data manipulation queries (INSERT, UPDATE, DELETE):

2.1. INSERT INTO <insert clause> VALUES <values clause>

2.2. UPDATE <update clause> SET <set clause> WHERE <where clause>

2.3. DELETE FROM <delete clause> WHERE <where clause>

Based on the data about various clauses collected from earlier steps and the information

about attributes and tables stored in the attribute-table map, the final query is formed by filling in
the information into the appropriate template. Depending on the clause data collected from

earlier steps, corresponding <> are filled.
Depending on the relation between multiple tables, the decision of INNER JOIN or NATURAL

JOIN is taken. For example, if there are two tables. If these two tables have one common
attribute and is named the same in both, then there is NATURAL JOIN between the tables. But

if the common attribute is named differently in the two tables, then there is INNER JOIN

between the tables. The final query is as shown in Fig 2.

Figure 2: Algorithm with example

7. Data Analysis and Discussion

7.1 Dataset
We will create our own corpus by scanning the schema for the table name, column name,
column types, key relations, and the data. This will be schema specific dataset.
Another corpus will contain all the necessary elements to build the query. It will contain probable
words for Select, Insert, Delete, Where which will help to form a query based on the input.
We also use Stanford’s POS corpus [14] ans the WordNet corpus via nltk.

7.2 Setup

For implementing En2SQL you will need following packages. Python3, NLTK, pymysql,
Stanford’s POS Tagger [14], Oracle MySql, and the Yelp SQL Dataset [13]. First you will need
to set up a user for the MySQL database, then upload the Yelp SQL data to the database. We
include the POS tagger with the code. Run the requirements.txt (via pip3) file to install the
python package requirements (nltk and pymysql). Update the database connection details in the
db.config.py file. Input natural language queries into input.txt, one per line. Run the main.py file.

7.3 Results and Analysis

The corpus that can be used to test our system is not readily available and is dependent on a
database. Hence, we have tested our system on a synthesized corpus of natural language
statements related to a bank and a university database. The university and bank database
consists of 11 and 6 tables respectively. However, system can work on any complex database.
The natural language statement has to be a single sentence. The system has been evaluated
on a corpus of around 75 natural language statements of university database and around 50
related to bank database. The accuracy of the system is found out to be around 86%. The
system gives the same SQL query as the output when the same natural language statement is
represented in different ways. If the system fails to generate SQL query corresponding to any
natural language statement, an error message is displayed. These are a few results given by
the system on the university corpus:

1. Find the student name where instructor name is ’Crick’.

SELECT DISTINCT student.stud name

FROM instructor
INNER JOIN advisor
ON instructor.ID = advisor.inst ID
INNER JOIN student
ON student.ID = advisor.stud ID
WHERE instructor.name = ’Crick’

In this database, the tables ’student’ and ’instructor’ are linked through the table
’advisor’. So, we can see that this query deals with multiple tables which are joined by
INNER JOIN.

2. Find all student name whose credits are between 90 and 100 and department name is

’Finance’ or ’Biology’.

SELECT DISTINCT student.stud name
FROM student
WHERE (student.tot cred
BETWEEN ’90’ AND ’100’) AND (
student.dep name = ’Finance’ OR
student.dep name = ’Biology’)

The above query showcases multiple conditions within the WHERE clause. This query
also involves use of BETWEEN clause and logical clauses like AND, OR.

3. List all student names whose credits are 50 in decreasing order of credits.

SELECT DISTINCT student.stud name
FROM student
WHERE student.tot cred = ’50’
ORDER BY student.tot cred DESC

Another type of query is the one involving sorting its result based on some attribute. For
this purpose, the query uses the ORDER BY clause to sort the results in decreasing
order.

4. Give the department name where maximum salary of instructor is greater than 50000.

SELECT DISTINCT instructor.dep name
FROM instructor
GROUP BY instructor.dep name
HAVING
MAX(instructor.salary) >’50000’

In SQL, when an aggregate function is compared to constant, like in this case maximum
of salary is compared to 50000, then the query involves use of HAVING clause instead
of a WHERE clause. Also, whenever HAVING is used, the results are supposed to be
grouped by the attributes in the SELECT clause.

5. Give the department name where salary of instructor is greater than average of salary.

SELECT DISTINCT instructor.dep name
FROM instructor
WHERE instructor.salary >
(SELECT AVG(instructor.salary)
FROM instructor)

This query showcases a special case of nested queries.
Whenever an attribute is compared to the result of an aggregate function, i.e. in this case
salary greater than average of salary, we have to use nested query.

6. Find the course taught by Crick.

SELECT DISTINCT teaches.course id
FROM teaches
NATURAL JOIN instructor
WHERE instructor.name = ’Crick’

Till now, we have seen cases in which an attribute associated to the value is mentioned
in the natural language statement.
In this case, we handle cases where attribute is not mentioned. We find out the most
appropriate attribute for the given value.

7.
a. Publish in alphabetic order the names of all instructors.
b. Give names of all the instructors in alphabetical order.
c. Give instructors names in ascending order.

SELECT DISTINCT instructor.name
FROM instructor
ORDER BY instructor.name ASC

As seen in this example, there can be multiple ways of representing the same natural
language statement.The system gives the same SQL query as the output when the
same natural language statement is represented in different ways.

8. Insert a student whose id is 5, name is Josh, department name is Physics and credits
are 150.

INSERT INTO student
(student.ID, student.stud name, student.dep name,
 student.tot cred)
VALUES
(’5’ , ’Josh’ , ’Physics’ , ’150’)

In addition to the data retrieval queries, our system also provides a natural language
interface to insert data into the database. Other DML queries such as UPDATE and
DELETE are also provided by the system.

7.4 Limitations

The following are some of the types of inputs that are not presently handled by our system.

1. Find the capacity of the classroom number 3128 in building Taylor

SELECT *
FROM classroom
WHERE classroom.capacity = ’3128’
AND classroom.building = ’Taylor’

In this particular example, the system fails to decide whether to take ‘capacity of class-
room’ or ‘classroom number’ as an n-gram. Hence, the mapping fails

2. Who teaches Physics?
SELECT *
FROM department
WHERE
department.dep name = ’Physics’

In this example, the implicit query module of our system is able to map Physics to
’department name’ attribute from table ’department’. But it fails to identify that ’who’
refers to a person (an instructor).

Our system struggles with column value references in the natural language. It can hang trying to
find the match to the column value to a word in the schema. This is addressed in section 8.

7.5 Abnormal Case Explanation:

1) Some input table name, column name consist of underscore, short forms due to which it
becomes unusual and hard for it to distinguish amongst stop word, normal word. So we
have to add it to corpus or explicitly mention it before using it.

The accuracy while generating queries shows a minute fluctuations.

2) Some English statements are very less informative. For example: Who is Bob?
This question if asked for a huge database creates an ambiguity to find the correct answer. It
sometimes gives and correct output and sometimes it gives a vague output.

8. Conclusions and Recommendations

Summary and Conclusions:

This project has given us a great opportunity to come up with an solution for writing tedious
queries. This project though helps resolving basic queries but with time it can made powerful to
handle complex queries, normalization and also can be extended for nosql. We were able to
learn and implement NLTK, cosine, tf-idf of python3. We have got accuracy around 30-50% in
basic queries.

Recommendations for future studies:

We wanted to analyze the custom bag of words using LSTM based RNN network and verify
how the performance of system changes. Instead of using trivial NLP techniques like NLTK,
custom corpus we wanted to use Stanford NER library which contains all the known words with
tags.

There are many steps to improve the work we have done. A using thesaurus to match input
tokens not only to the table and column names but their synonyms as well would greatly
increase our accuracy and chances a natural language token would be matched to a correct
corpus name.

The next changes to be implemented are better column value matching. Currently the system
has a hard time matching an input token to a column value (as opposed to a column or table
name). After parsing all table and column names, we can use the LIKE MySQL syntax with %%
to find column values that contain the input token. We would only evaluate nouns in this case.
We could count the number of rows that contain the token and use the column with the highest
count.

We have not addressed abbreviations in this project. Simply, a corpus of English abbreviations
would be used to map from common words to abbreviations and vise versa.

This project does not allow for user input after a failed query. The future scope of this project will
look at prompting the user for correct input token to corpus token mappings to build up a
thesaurus on the database and improve its performance. It also does not address non-natural
column or table names, studentName or student_name for example. In this case we could split
on cammel case and underscores respectively add keep then nouns in the new word set. The
input tokens can be matched against the set of words.

Before the code is useful, tests need to be written and the coding style needs to be updated.

9. Bibliography

1. A Natural Language Database Interface Based on a Probabilistic Context Free

Grammar, IEEE International Workshop on Semantic Computing and Systems
978-0-7695-3316-2/08 $25.00 © 2008 IEEE DOI 10.1109/WSCS.2008.14

2. Domain Specific Query Generation from Natural Language Text, The Sixth
International Conference on Innovative Computing Technology (INTECH 2016)
978-1-5090-2000-3/16/$31.00 ©2016 IEEE

3. Generic Interactive Natural Language Interface to Databases (GINLIDB),
Proceedings of the WSEAS International Conference on Evolutionary Computing
ISSN : 1790-5109 ISBN : 978-960-474-067-3

4. Natural Language Interface to Database Using Modified Co-occurrence Matrix
Technique, 2015 International Conference on Pervasive Computing (ICPC)
978-1-14799-6272-3/15/$31.00(c)2015 IEEE

5. Natural language to SQL Generation for Semantic Knowledge Extraction in
Social Web Sources, Indian Journal of Science and Technology, Vol 8(1), 01-1,
January 2015 ISSN (Online) : 0974-5645 ISSN (Print) : 0974-6846 DOI :
10.17485/ijst/2015/v811/54123

6. Natural Language Query Processing Using Semantic Grammar, Gauri Rao et al.
/ (IJCSE) International Journal on Computer Science and Engineering Vol.02,
No.02, 2010, 219-223 ISSN 0975-3397

7. SQLizer : Query Synthesis from Natural Language, Proc. ACM Program. Lang.,
Vol. 1, No. OOPSLA, Article 63. Publication date : October 2017

8. Synthesizing Highly Expressive SQL Queries from Input-Output Examples,
PLDI’17, June 12-23, 2017, Barcelona, Spain ACM.
978-2-4503-4988-8/17/06…$15.00 http://dx.doi.org/10.1145/3062341.3062365

9. "Sqlizer API." Easily Convert Files into SQL Databases | SQLizer. N.p., n.d. Web.
27 Feb. 2018.

10.Machinalis. "Quepy." A Python Framework to Transform Natural Language
Questions to Queries. N.p., n.d. Web. 27 Feb. 2018.

11."Natural Language Toolkit¶." Natural Language Toolkit - NLTK 3.2.5
Documentation. N.p., n.d. Web. 27 Feb. 2018.

12.Alarfaj, Salah. "SalN3t/NlpSQL." GitHub. N.p., 11 Dec. 2017. Web. 27 Feb. 2018.
13.Yelp. "Yelp SQL Dataset." Yelp Dataset. N.p., n.d. Web. 27 Feb. 2018.

http://dx.doi.org/10.1145/3062341.3062365

14.Kristina Toutanova and Christopher D. Manning. 2000. Enriching the Knowledge
Sources Used in a Maximum Entropy Part-of-Speech Tagger. In Proceedings of
the Joint SIGDAT Conference on Empirical Methods in Natural Language
Processing and Very Large Corpora (EMNLP/VLC-2000), pp. 63-70.
https://nlp.stanford.edu/software/tagger.shtml

15. fr2sql : Interrogation de bases de données en françae”, Benoît Couderc et al.
2015

http://nlp.stanford.edu/~manning/papers/emnlp2000.pdf
http://nlp.stanford.edu/~manning/papers/emnlp2000.pdf

10. Appendix

List of MySQL Syntax corpus:

break_words = ["in", "for", "at", "whose", "having", "where", "have", "who", "that", "with", "by", "under",
"from", "all"]
Dictionary mapping relational operators with their algebraic signs
rel_op_dict = {"greater": ">", "more": ">", "less": "<", "greater equal": ">=", "less equal": "<=", "equal": "=",
 "": "=", "except": "!=", "not": "!="}
order_by_dict = {"ordered": "ASC", "sorted": "ASC", "alphabetical": "ASC", "alphabetically": "ASC",
 "increasing": "ASC", "decreasing": "DESC", "ascending": "ASC", "descending": "DESC",
 "reverse": "DESC", "alphabetic": "ASC"}
aggregate_of_dict = {"number": "COUNT", "count": "COUNT", "total": "SUM", "sum": "SUM", "average":
"AVG",
 "mean": "AVG"}
aggregate_dict = {"maximum": "MAX", "highest": "MAX", "minimum": "MIN", "most": "MAX", "least": "MIN",
 "lowest": "MIN", "largest": "MAX", "smallest": "MIN"}
limit_dict = {"maximum": "DESC", "highest": "DESC", "minimum": "ASC", "most": "DESC", "least": "ASC",
 "lowest": "ASC", "largest": "DESC", "smallest": "ASC"}
limit_word_dict = {"first": 1, "second": 2, "third": 3, "fourth": 4, "fifth": 5, "sixth": 6, "seventh": 7,
 "eighth": 8, "ninth": 9, "tenth": 10}
escape_array = ["find", "select", "publish", "print", "who", "where", "which", "what", "give", "list", "i", "we",
 "show"]
insert_array = ["insert", "put"]
update_array = ["update", "edit", "set", "change"]
delete_array = ["delete", "remove"]

Function to get the MySQL schema:
def get_referenced_tables(db, table_name):
 result = db.execute_query("SELECT distinct(TABLE_NAME) FROM
INFORMATION_SCHEMA.KEY_COLUMN_USAGE WHERE "
 "REFERENCED_TABLE_SCHEMA = '" + db.database_name + "' AND
REFERENCED_TABLE_NAME = '" + table_name + "'")
 return result

