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Abstract 
In this project we apply concepts of Deep Learning(DL) for question answering task. This              
approach avoids the tedious task of numerous feature extraction that are done in             
traditional linguistic tools. Here we use bidirectional Long Short-Term Memory models to             
generate embeddings of questions and answer and measure cosine similarity to compute            
the distance between questions and answers pairs which would be used for appropriate             
answer selection. The model is to involve attention mechanism which would increase the             
efficiency of the system. The models are experimented on different dataset such as             
InsuranceQA, bAbI project and the results are captured and analysis are done. 
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Introduction 

Objective:  

Build a Question Answering System using neural networks.  

What is the problem 

There are millions and billion pieces of data available, but making the right             
information accessible when needed is very important. Getting the right documents to read             
and further getting a direct answer to one’s question from the set of documents is a                
challenging task. A question answering system is concerned with building systems that            
automatically answer questions posed by humans in a natural language. A QA system is              
generally programmed to pull answers from a structured database or an unstructured            
collection of natural language document/s. There are two types of question answering. One             
is Closed-domain question answering system which basically deals with questions under a            
specific domain and the other is Open-domain question answering which is concerned with             
questions about nearly anything.  

 Why is this a project related the this class 

Question Answering is one of the fundamental Natural Language Processing(NLP)          
Problem which has application in various fields of science. Traditionally, Automated           
Question answering systems involve various aspects of NLP such as Morphological           
analysis, Lexical analysis, Syntactic analysis and semantic analysis. 

Why other approaches are no good and why the chosen approach is            
better 

Neural network are increasingly gaining focus in NLP related tasks. Over the past             
few years, neural networks have re-emerged as powerful machine-learning models,          
yielding state-of-the-art results in fields such as image recognition and speech processing.            
More recently, neural network models started to be applied also to textual natural language              
signals, again with very promising results. (Ref: A Primer on Neural Network Models for              
Natural Language Processing- Yoav Goldberg, October 5, 2015). Feature engineering is           
needed in conventional machine learning tasks. Whereas it is not needed for neural             
networks. What happens inside the hidden layers of the neural networks is unknown to              
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anybody. It learns all possible features. May be ones that humans might not have even               
thought of. Neural networks are powerful learners, providing opportunities ranging from           
non-linear classification to non-Markovian modeling of sequences and trees. (Ref: A Primer            
on Neural Network Models for Natural Language Processing- Yoav Goldberg, October 5,            
2015). 

Statement of the problem 

Build a program that can answer questions posed by humans in natural language. The task               
comprises of reading sentences which are part of a document. And the system must be               
capable of answering questions based on the text given to it. The output is expected to be a                  
single word or one complete sentence. 

Area or Scope of Investigation 

We plan to build a QA system using neural networks to help interprets a question               
and provide a suitable answer from the document or a story given. Enabling a machine to                
process a question and a document and provide best answers to the input question from               
the given document. We plan to explore the following datasets.  

1. Babi Dataset: This is a dataset released by facebook. It has 20 tasks for testing text                
understanding and reasoning. 

2. MCTest(Machine Comprehension Test) dataset: This is a dataset from MSR, which           
contains 660 stories, each story has 4 human asked questions (Natural Language            
Question), and for each question, there are 4 candidate answers.  

3. Children’s Book Test (CBT): A dataset from FAIR, which contains stories from            
children’s books. Each story in this dataset is a 20 consecutive sentences from             
children’s books, and remove a word from the consecutive 21st sentence, as the             
question, or query.  

4. InsuranceQA dataset:This corpus contains questions and answers collected from the          
website Insurance Library. This dataset is provided by “Applying Deep Learning to            
Answer Selection: A Study and An Open Task”2. 

5. CNN/Daily Mail dataset: This is released by Google DeepMind, which the largest            
(AFAIK) QA dataset. CNN dataset contains over 90K of of CNN news, and averagely              
has 4 queries per story, which gives 380K of story-question pairs; Daily Mail has              
about 200K new stories, and also, each story has 4 queries, which totally gives 880K               
story-question pairs. 
All the above datasets in general contain a story, a query and a set of answer options                 

to the query. The dataset is divided into training, development and test datasets. The model               
is trained with the training dataset. And then tested the testing dataset. We plan to train the                 
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model to handle tasks involving like Single Supporting Fact, Two or Three Supporting             
Facts, Yes/No Questions, Counting and Lists/Sets, Basic Coreference, Conjunctions and          
Compound Coreference etc., and analyse and compare their performance.  

Theoretical Bases and Literature Review: 

Theoretical background of the problem 

A recurrent neural network (RNN) is an artificial neural network where connections            
between units form a directed cycle1. An RNN can deal with variable-length sequence input.              
X = X1,X2,..XT and it is useful to tasks such as handwriting recognition or speech               
recognition. An RNN is a single model used to summarizing information from the past and               
providing it to the next stage. Inputs at each stage Xi and the summary of all events till now                   
coming from the previous stage. Outputs are the predictions and connects to the next              
stage(i.e., provides a summarized information of the past to the next stage.). RNN suffers              
from a few drawbacks like not exploiting the future context and memory loss due to the                
Vanishing Gradient Problem.  

LSTM or Long Short-Term Memory (LSTM) are RNN that are used to deal with              
variable length continuous sequence inputs. These are specialized to carry history in long             
sequence of input. LSTMs do this by storing the recurrent hidden vector which is              
dependent previous hidden vector. LSTM is one of the popular RNN technique to mitigate              
the vanishing gradient problem of RNN.(Hochreiter, Sepp and Schmidhuber, Jurgen. Long           
short-term memory.Neural Computation, 1997. ). LSTM model is as follows,(Graves, Alex,           
Mohamed, Abdel-rahman, and Hinton, Geoffrey. Speech recognition with deep recurrent          
neural networks.In IEEE International Conference on Acoustics, Speech and Signal          
Processing (ICASSP), 2013.). They use 3 gates to control the flow of information through              
the LSTM cell and reset the information when needed.  

A Bidirectional LSTM model uses 2 LSTMs to help capture the context information             
from the past as well as the present. The data is processed from two directions with two                 
separate hidden layers. The output of current time step is then generated by combining              
both layers’ hidden vector.  

Deep learning models have seen great progress in natural language processing tasks            
like semantic analysis. Using word embeddings a neural network model can be trained to              
extract the semantic relation between two words.  

Pooling is a form of non-linear down-sampling. The function of the pooling layer is              
to progressively reduce the spatial size of the representation to reduce the amount of              
parameters and computation in the network, and hence to also control overfitting. Max             
pooling is a sample-based discretization process. The objective is to down-sample an input             
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representation (image/text, hidden-layer output matrix, etc.), reducing it's dimensionality         
and allowing for assumptions to be made about features contained in the sub-regions             
binned. Max-pooling is generally said to be better than other forms of pooling because it               
extracts more local values for each dimension, so that more local information can be              
reflected on the output embeddings. 

Related research to solve the problem 

The different models that address the Question answering problem are discussed below.  
1. Answer Sentence Selection with Stacked BLSTM 

 

Fig 1 
 
In this model words in input sentences are first converted to vector representations             
learned from word2vec. A special start symbol(<S>) is inserted between Question           
and Answer for differentiation. Then the Question and Answer word vectors are            
sequentially read by BLSTM from both directions. For each time step in the BLSTM              
layer, the hidden vector or the output vector is generated by combining the cell              
memory vectors from two LSTM of both sides. The final output of each time step is                
the label indicating whether the candidate answer sentence should be selected as            
the correct answer sentence for the input question. This objective encourages the            
BLSTMs to learn a weight matrix that outputs a positive label if there is overlapping               
context information between two LSTM cell memories. Mean pooling is applied to            
all time step outputs during the training. During the test phase, the mean, sum and               
max poolings as features are collected. And the final answer vector is extracted.  
 

2. QA-LSTM model 
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Fig 2 
BLSTM generates distributed representations for both the question and answer          
independently, and then utilize cosine similarity to measure their distance. Then           
representations based on the word-level BLSTM outputs are generated using          
Average pooling or Max pooling or Concatenation of the last vectors on both             
directions. Max Pooling is provides better performance. Architectures, in which both           
question and answer sides share the same network parameters, is significantly           
better than the one that the question and answer sides own their own parameters              
separately, and converges much faster. 
 

3.   QA-LSTM with CNN model. 

 

Fig 3 
The above mentioned models is said to produce very good results but a simple              
pooling layer may suffer from the incapability of keeping the local linguistic            
information. Thus the the question and answer representations are generated using           
a CNN structure built on the outputs of BLSTM, in order to give a more composite                
representation of questions and answers. Unlike the traditional forward neural          
network, where each output is interactive with each input, the convolutional           
structure only imposes local interactions between the inputs within a filter size m. 
Same as typical CNNs, a max-k pooling layer is built on the top of the convolutional                
layer. The top-k values from each convolutional filter are extracted by doing so.             
These top-k values indicate the highest degree that a filter matches the input             
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sequence. In the end, two output vectors with dimension of kN for the questions and               
answers respectively are generated from N parallel filters, with different parameter           
initialization. The convolutional layer gets N-dimensional output vectors from N          
filters and chooses top-k values from it. 
 
 
 
 

4.  Attention-based QA-LSTM Model 

 

Fig 4 
In order to better distinguish candidate answers according to the question, we            

introduce a simple but efficient attention model to this framework for the answer             
embedding generation according to the question context. Here prior to extracting           
representations using the average or mean pooling, each BLSTM output vector will be             
multiplied by a softmax weight, which is determined by the question embedding from             
BLSTM. 

Advantage/disadvantage of those research 

All the deep learning frameworks we studied for answer selection does not require             
any feature engineering, linguistic tools, or external resources. This basic framework based            
on bidirectional long short term memory (biLSTM). The convolutional neural network           
(CNN) structure on top of biLSTM helps overcome the incapability of keeping the local              
linguistic information. The QA-LSTM attention model helps to provide contextual          
information regarding the question while generating the answer representations. This the           
authors claim that produces better results. The model using stacked BLSTM is also very              
efficient since the output vectors are generated by using both question and answer             
representations together.  
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Our solution to solve this problem 

We plan to implement a QA-LSTM model with attention using BiLSTMs. The Answer             
and Question representations generated are filtered using Max pooling. And the cosine            
difference between the selected question and answer representations is taken to choose            
the best answer.  
 

Hypothesis/Goals 
In this project (we are proposing), our goal is to build a framework which uses               
bidirectional LSTM based RNN models that train on both question and answers data and              
then measure the distance between the pairs of question and answers to get the similarity               
metrics. 
 
In the following sections we shall explain the approach in stages, 

LSTM 

The LSTM model helps alleviate the Vanishing Gradient problem of the Recurrent Neural             
Networks hence help provide a better memory. This is achieved with the help of gates.               
Given an input sequence x = {x(1), x(2),......,x(n)}, where x(t) is an E-dimension 
word vector. The hidden vector h(t) ( the size is H ) at the time step t is updated as follows. 
 

 

 
All basic LSTM have three gates (input i, forget f and output o), and a cell memory vector                  
C,is the sigmoid function. The input gate determines how the state of the memory cell is                
altered based on the in vector x(t). The output gate determines the effect on the that the                 
particular memory cell has on the outputs. The forget gate determines whether to             
remember or forget the cell’s previous state. W 𝝐 RH x E, U 𝝐 RH x H and b 𝝐 RH x 1 are the                         
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network parameters. W - input weight matrix, U - recurrent weight matrix, b - bias, σ is the                  
logistic sigmoid function 
 

biLSTM 

Bidirectional Long Short-Term Memory (biLSTM)are variation of LSTM in which, it uses            
both the previous and the future state by processing the input in two directions, then               
generate two independent LSTM output vectors. These models do a better job than Single              
direction LSTMs. As Single direction LSTMs does not make use of the contextual             
information from the future input data. The input sequence is processed in the forward              
direction and also in the reverse direction. Output at any given step is the concatenation of                
the two output vectors. 
 

QA-LSTM 

The simple model of our project is shown in Fig 1. The BiLSTM models generates               
representations for question answer separately and then compute cosine similarity to           
check the distance between them. Following the same ranking loss in (Feng et al., 2015), we                
define the training objective eq(7) as a hinge loss. 
 

 

where, a+ : a ground truth answer, a- : incorrect answer randomly chosen from the entire                
answer space, and M is constant margin.  
 

 

Fig 1: QA - LSTM Model 
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ATTENTION-BASED QA-LSTM 

In this variation we use a simple attention model which is based on the question, for the                 
answer vector generation. An attention mechanism is used for dynamically aligning the            
informative part of the the answers to the question. This is the same strategy has been                
used in machine translation (Bahdanau et al., 2015; Sutskever et al., 2014) and factoid              
question answering (Hermann et al., 2015). 
 
Our world level attention model will be similar/replication to the work of (Tan, Ming et al.,                
2015). Fig 2 shows the structure. 
 

 

Fig 4: QA-LSTM with attention 
 
The output vector of biLSTM will be multiplied by a softmax weight, which is computed               
using the question embedding from biLSTM. The output vector of biLSTM on the answer              

side at time step t, ha(t), and the question embedding, oq, the new vector a(t) for each              h
︿

   

answer is given below. 

 

 
Where Wam,Wqm and wT

ms are attention parameters. We will see in our experiments how              
this attention will help in increasing the efficiency. 
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Methodology 

Data Sets 

(how to generate/collect input data) 

In this work we will try to experiment our model on multiple data set such as,                
InsuranceQA, bAbI project(The 20 QA bAbI tasks, The 6 dialog bAbI tasks, The Children's              
Book Test, The Movie Dialog dataset, The WikiMovies dataset ,The Dialog-based Language            
Learning dataset,The Simple Questions dataset) and see how our model responds to the             
different data sets.  
All these dataset either provide training sets, validation sets and test sets separately or              
just have a one heterogenous sets of questions, answers and story. In both the case we will                 
divide the data sets into three parts as training, validation and test set to train and evaluate                 
the model for accuracy. 

Setup 

(how to solve the problem ) 

We are planning to implement our model using tensorflow framework and run the model              
on single GPU(nvidia GeForce GT 730M). We will be build a biLSTM with attention which is                
explained in equation(9) (10) and (11). We will be using the accuracy that we get on the                 
validation set to compute the best epoch and best hyper-parameter which we will use for               
testing. The code will be in python3.5. Apart from tensorflow we will be using numpy, scikit                
learn, pandas, matplotlib and many more python based libraries. 

Results and Analysis 

(how to generate output  & how to test against hypothesis) 

We will conduct experiments on different variation of our model and compare the results              
with each other and and try to deduce some insights on why the specific model for specific                 
data set was good/bad at predictions. 
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Implementation 

Code  
""" 

This  code  is  a modified version of the code  from   this  link: 

https : //github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/rec

urrent_network.py 

""" 

import preprocess_sample_3 as pre_pro 
import skip_gram 
import tensorflow as tf 
import numpy as np 
 

# set random seed for comparing the two result calculations 

tf.set_random_seed(1) 
 

o = skip_gram.SkipGram() 
p = pre_pro.Preprocess() 
content, ans = p.read_input("train_dev_data", "train_dev_ans") 
ip_sgm, words = p.generate_ip_for_SGM(content) 
 

o.build_dataset(words) 
o.run_skip_gram() 
 

labels = p.create_labels_for_LSTM(ans) 
input_embed = p.get_ip_SQA_for_LSTM(o) 
 

 

def get_batch(batch_size, step): 
   s = step * batch_size 
   b_x = np.array(input_embed[s:s + (batch_size * n_steps)]) 
   b_x = b_x.reshape([batch_size,n_steps,n_inputs]) 
   b_y = np.array(labels[s:s + batch_size]) 
 

   return b_x, b_y 
 

 

# hyperparameters 

lr = 0.001 
training_iters = 100000 
batch_size = 30 
 

n_inputs = 300  # word vector size 
n_steps = 300  # time steps / Story + q + A 1-4 
n_hidden_units = 512  # neurons in hidden layer 
n_classes = 4  # one of the four options(0 - 3 ) 
total_steps = 1800 # total number of question 
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# tf Graph input 

x = tf.placeholder(tf.float32, [None, n_steps, n_inputs]) 
y = tf.placeholder(tf.float32, [None, n_classes]) 
 

# Define weights 

weights = { 
   # (300, 512) 
   'in': tf.Variable(tf.random_normal([n_inputs, n_hidden_units])), 
   # (512, 4) 
   'out': tf.Variable(tf.random_normal([n_hidden_units, n_classes])) 
} 

biases = { 
   # (512, ) 
   'in': tf.Variable(tf.constant(0.1, shape=[n_hidden_units, ])), 
   # (4, ) 
   'out': tf.Variable(tf.constant(0.1, shape=[n_classes, ])) 
} 

 

 

def RNN(X, weights, biases): 
 

   # X ==> ((30 batch * 300 steps), 300 inputs) 
   X = tf.reshape(X, [-1, n_inputs]) 
 

   # mul 
   # X_in = ((30 batch * 300 steps), 512 inputs) 
   X_in = tf.matmul(X, weights['in']) + biases['in'] 
 

   # reshape 
   # X_in ==> (128 batch, 300 steps, 512 hidden) 
   X_in = tf.reshape(X_in, [-1, n_steps, n_hidden_units]) 
 

   # cell 
 

   # basic LSTM Cell. 
   lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(n_hidden_units, forget_bias=1.0, 
state_is_tuple=True) 
   _init_state = lstm_cell.zero_state(batch_size, dtype=tf.float32) 
 

   # dynamic_rnn receive Tensor (batch, steps, inputs) or (steps, batch, inputs) as X_in. 
   outputs, final_state = tf.nn.dynamic_rnn(lstm_cell, X_in, initial_state=_init_state, 
time_major=False) 
 

   # unpack to list [(batch, outputs)..] * steps 
   outputs = tf.unpack(tf.transpose(outputs, [1, 0, 2])) 
 

   # states is the last outputs 
   results = tf.matmul(outputs[-1], weights['out']) + biases['out'] 
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   return results 
 

# prediction for the input batch 

pred = RNN(x, weights, biases) 
# calculate the entropy loss 

cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y)) 
# optimize the model using Adam Optimizer and optimize the weights 

train_op = tf.train.AdamOptimizer(lr).minimize(cost) 
 

# Calculate the accuracy 

correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1)) 
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) 
 

init = tf.initialize_all_variables() 
with tf.Session() as sess: 
   sess.run(init) 
   step = 0 
   while step * batch_size < total_steps: 
       batch_xs, batch_ys = get_batch(batch_size, step) 
       batch_xs = batch_xs.reshape([batch_size, n_steps, n_inputs]) 
       sess.run([train_op], feed_dict={ 
           x: batch_xs, 
           y: batch_ys, 
       }) 
 

       # Calculate accuracy once for every 10 bactch 
       # if step % 10 == 0: 
       print(sess.run([accuracy,cost], feed_dict={ 
           x: batch_xs, 
           y: batch_ys, 
       })) 
       step += 1 
 

 

# Plot the skip gram plot 

num_points = 200 
o.plot(num_points) 
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Design document and flowchart 

 
Fig 5: Flowchart 
 
The design for our project was divided into 4 parts. 

● Pre-processing input so that we can generate Word2Vec(Skip-gram) representations of          
words which could be used to make sentence embeddings for SGM. Also form the              
lexicon(dictionary) of the words that are present the dataset. Below block diagram            
explains this  

● Generating word vectors for all words that is present in the dataset. We have used the                
Word2Vec(Skip-gram model) for this purpose. 

 

Fig 6: Skip Gram Model 
 

● Using the word vectors and the dictionary indexed dataset we generate word vector input              
for the dataset and pass it to the RNN(LSTM network). Details about the model is               
explained in the next section. 
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Fig 7: LSTM model  
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Data Analysis and Discussion 
MCTest dataset is a free data set that has 450 stories each of which has multiple questions                 

and the each questions has 4 choices answer choice in which one of them is correct and others                  
are wrong. The data was gathered using Mechanical Turk. The one of example is as given below, 
 
James the Turtle was always getting in trouble. Sometimes he'd reach into the freezer and empty out all the food.                    
Other times he'd sled on the deck and get a splinter. His aunt Jane tried as hard as she could to keep him out of                         
trouble, but he was sneaky and got into lots of trouble behind her back. 
One day, James thought he would go into town and see what kind of trouble he could get into. He went to the                       
grocery store and pulled all the pudding off the shelves and ate two jars. Then he walked to the fast food restaurant                      
and ordered 15 bags of fries. He didn't pay, and instead headed home. 
His aunt was waiting for him in his room. She told James that she loved him, but he would have to start acting like a                         
well-behaved turtle.After about a month, and after getting into lots of trouble, James finally made up his mind to be                    
a better turtle. 
1) What is the name of the trouble making turtle? 
    A) Fries 
    B) Pudding 
    C) James 
    D) Jane 
2) What did James pull off of the shelves in the grocery store? 
    A) pudding 
    B) fries 
    C) food 
    D) splinters 
3) Where did James go after he went to the grocery store? 
    A) his deck 
    B) his freezer 
    C) a fast food restaurant 
    D) his room 
4) What did James do after he ordered the fries? 
    A) went to the grocery store 
    B) went home without paying 
    C) ate them 
    D) made up his mind to be a better turtle 

 
In Data Analysis we have done are cleaning the text data so that we can use for our project,                   
creating lexicon of all unique words that is present in the complete data set and finally convert                 
the lexicon into word vector using skip gram model.  

In cleaning the data we had to taken out all punctuations, unwanted spaces and              
characters which are not part of the english dictionary.  
 In creating lexicon we had to read the whole text data set and get the unique words and                  
make a data file that is has only words.  
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 Using this we had to create a word vector. First we tried the bag of words model. But                  
word vector generated by bag of words model did not have the semantic or syntactic information                
about the words so we have to look for better model. Hence we opted for Skip-gram model which                  
is word vector representation for textual words which is generated by the Deep neural network. 

Using this word vector we generate embeddings for the dataset which would take the              
story question and the answer choice which are data inputs for the recurrent neural network and                
predict the answer. The model is LSTM RNN which would learn from the embeddings.  

Output generation 

Input preprocessing involved cleaning involved removal of unwanted material from the           
dataset. The the data needed to be processed to remove unwanted punctuations and obtain              
words in the order of occurrence in the dataset. This was needed to build the lexicon. The lexicon                  
was reordered in the order of the max frequency of occurrence. Later a reverse dictionary was                
built to enable ease of indexing a word. Next the whole data content was rewritten based on this                  
index of the dictionary. This is the actual data we will be passing to the SGM. 

Computation Graph and session operation for Skip Gram Model is described below. The             
dictionary indexed content is the input to the SGM. We chose batch_size = 128, embedding_size =                
300, skip_window = 1, num_skips = 2 for the SGm we have used. We initialize all the variables                  
discussed above and we generate a batch with the given skip window and number of skips                
chosen. We obtain the labels and the respective training dataset. And feed it to our neural                
network and obtain predictions. The tf.nn.embedding_lookup function will look up for the            
embeddings given the training dataset and the embeddings dimensions. These embeddings are of             
dimension vocabulary_size x embedding_size defined above and range from values -1 to 1. This is               
fed to the neural network and the output is multiplied with the weights and the biases are added                  
and the output is obtained. This is compared with the labels to determine the loss. And the loss is                   
fed to the optimizer to minimize the loss. We have used Adagrad Optimizer with a learning rate of                  
1.0.  
Output 
The skip gram model gives a output which represents the word vectors as follows. Below are                
some of the words that are near to each other in the context of particular data set.  

Nearest to eight: seven, nine, six, four, five, three, zero, two, 
Nearest to he: she, it, they, there, who, we, this, never, 
Nearest to i: we, he, they, mary, james, she, theirs, melanie, 
Nearest to she: he, they, it, i, midnight, we, hugo, snowball, 
Nearest to back: off, ended, over, down, out, beginning, toward, float, 
Nearest to her: his, him, their, margaret, me, its, chili, twisted, 
Nearest to this: it, which, he, some, checkerboard, another, the, amritsar, 
Nearest to been: become, be, already, was, recently, whispering, successfully, 
Nearest to they: we, there, he, you, she, it, i, not, 
Nearest to new: different, turkic, boasted, various, neared, stabilizers, deviating, 
Nearest to called: named, used, distorted, considered, referred, known, vat,  
Nearest to where: what, twist, beneath, artist, toilet, needs, performances, liking, 
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Nearest to dog: cow, smashing, babysit, hazel, drawing, witch, owner, mouse, 
 
Below is a tensor board output generated by the skip gram model. It depicts the distribution of 
words in space(a Vector Space Model for the words in the dataset).  

 

Fig 8: Word Vector Space model 
The vector representation of one word is as given below. 
“The” =  
[-0.10771623 -0.08713842  0.03231252 -0.04112959  0.12192853 -0.07375532 

 -0.10610349 -0.07409572 -0.06865577  0.10982385 -0.01932012 -0.01754871 

 -0.16242403  0.03091805 -0.0236611   0.10541121 -0.07797282 -0.13612035 

  0.12207355  0.02171865  0.07394247 -0.11968254  0.06995879  0.03491663 

 -0.03399706 -0.05675896  0.08352144  0.01521992  0.04700584  0.07544895 

  0.0640968   0.11520148  0.07608264 -0.04500199 -0.00302214 -0.18527462 

 -0.02382737 -0.05388832 -0.114457    0.10991409  0.02414727 -0.04109648 

  0.08787432 -0.02101789  0.10125949  0.04609177  0.11370094  0.04372771 

 -0.0659379  -0.06589786 -0.00867271  0.05946467  0.07290234  0.04426249 

  0.13086618 -0.08741179 -0.07464718 -0.06333015  0.06026197  0.075174 

  0.0508201  -0.02082717  0.09218703 -0.10563675  0.04679077  0.11095957 

 -0.07731143  0.11152226 -0.07129365  0.08438376  0.12295292  0.09770688 

 -0.00122607  0.12426439 -0.07705146 -0.15394074 -0.16196689 -0.13202338 

 -0.06771396  0.0601143   0.06370313  0.01014148  0.13391793 -0.0489469 

 -0.04469048 -0.15215459 -0.0948875  -0.04088889  0.11519375 -0.06214551 

 -0.01907888  0.08190431 -0.13345332  0.12041677  0.13335384  0.13318285 

 -0.03807592  0.07797729 -0.03598532 -0.12675062  0.00989356  0.12395485 

  0.15320043  0.18589878  0.14680894 -0.077112   -0.10406934  0.17178342 

 -0.04968555 -0.09107879  0.04756921 -0.09697314 -0.120592   -0.04015396 

 -0.15957788  0.03014262  0.06686283  0.04753253  0.01522197  0.10813337 
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 -0.01357032 -0.05207205  0.04069532 -0.03321727 -0.0258834   0.05395871 

  0.03483186 -0.08999643] 

 

 

LSTM Question Answering model: 
Input preparation for LSTM model is described below. We used the word embeddings we              
obtained from the Skip Gram Model and the dataset which is indexed by the dictionary created in                 
the input processing step, to generate input embeddings for the LSTM model. Each input consists               
of a story, a question and four answer choices. We construct an input that holds 300 word vectors                  
on the whole and each of which consists of 300 dimensions. Among the 300 words 219 belong to                  
story, 15 belong to questions and 60 to answers where each of the answers correspond to 15                 
words.  
The input is of the format “<S>+Story+<S>+Question+<S>+A1+<S>+A2+<S>+A3+<S>+A4”where       
we use a 300 dimension vector with all ones as the separator symbol <S>. Also labels are created                  
from the answer file the label generated is an array of 4 dimensional vectors. Each vector is of the                   
form  
[0 1 0 0]. This label indicates that answer choice ‘B’ is the correct answer. 
 
The computation graph and the session description for the LSTM QA model is described below.               
We chose learning rate = 0.001, num of training_iters = 100000, batch_size = 30, number of                
inputs = 300 which is same as the word vector size, number of steps = 300, number of hidden                   
units = 512 number of classes = 4 and total steps = 1800 for our model. We generate a batch of                     
input and corresponding labels. Here in our model we select 30 sets of questions for each batch.                 
The model is given this input by first multiplying with the weights and adding the biases. It                 
outputs some prediction. We take argmax of this prediction and compare with the labels and               
calculate the cost and the accuracy. Later we provide the cost to an optimizer to reduce the cost.                  
We use Adam Optimizer here. The graph of accuracy obtained across batches is shown in the                
figure below. 
 

 

 
Fig 9: Accuracy plot 
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Output analysis 

We saw the acuuracy ranging between 20% to 60%.The sample output of the project is as given 
below, 
The output is batch wise  
[Accuracy,Loss] 
[0.43333337, 9.1849651] 
[0.40000004, 6.956367] 
[0.50000006, 5.3823442] 
[0.33333337, 7.3978882] 
[0.36666667, 4.4839745] 
[0.30000001, 5.5185552] 
[0.33333337, 2.9936876] 
[0.26666671, 6.6921492] 
[0.26666668, 6.105495] 
[0.20000002, 8.5729513] 
[0.33333337, 31.36186] 
[0.23333335, 21.811695] 
[0.33333337, 18.389278] 
[0.26666668, 16.924873] 
[0.33333337, 16.615463] 
[0.33333337, 6.8296127] 
[0.36666667, 12.750624] 
[0.20000002, 15.518364] 
[0.30000001, 7.9172506] 
[0.40000004, 15.276219] 
[0.23333335, 30.156597] 
[0.23333335, 17.513439] 
[0.40000004, 15.64605] 
[0.20000002, 14.187802] 
[0.40000004, 4.8628817] 
[0.30000001, 8.0700626] 
[0.30000001, 6.3062959] 
[0.23333335, 16.49066] 
[0.20000002, 15.956774] 
[0.30000001, 16.061716] 
[0.30000001, 9.7183285] 
[0.30000001, 6.5377407] 
[0.16666669, 7.4950838] 
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[0.20000002, 7.0059314] 
[0.23333335, 9.5372372] 
[0.43333337, 1.2171307] 
[0.23333335, 9.7734261] 
[0.33333337, 6.7862101] 
[0.16666669, 12.330596] 
[0.40000004, 8.3129349] 
[0.26666668, 9.4911385] 
[0.30000001, 4.7775865] 
[0.4666667, 2.4099643] 
[0.23333335, 4.2682471] 
[0.23333335, 4.5539985] 
[0.33333337, 5.5995607] 
[0.33333337, 4.0388737] 
[0.26666668, 6.6063185] 
[0.20000002, 5.0251484] 
[0.4333334, 4.7363453] 
[0.40000004, 3.7464991] 
[0.30000001, 2.3158572] 
[0.20000002, 4.1808128] 
 

Try to Analyse why it went wrong 

The amount of knowledge needed to design a neural network is huge. We probably              
underestimated of the learning curve the neural network technology has. We learnt a lot about               
neural networks in the short timeline we had for this project.  
 

We have decided to use Tensor flow for designing our neural network and the model that                
we were trying to build was two neural network side by side which we would learn question and                  
answer separately. We spent a lot of time digging into this problem and then learnt that this                 
particularly is not supported by tensor flow 
 

We weren’t able to use 2 RNN models in the same session. It gave errors pertaining to                 
shared parameters between the 2 models. We tried declaring variables separately for both but              
just using 2 models in the same session, but it further gave room for more errors. We were not                   
able to resolve we have raised a bug resolve request to google tensor flow group but given the                  
time frame we were not able to come up with are round about solution for the problem.  
 
So we resorted to use another model described in the paper “A Long Short-Term Memory Model                
for Answer Sentence Selection in Question Answering”. The paper describes a model with             
bidirectional LSTM. We were able to implement a simpler version of the model using LSTMs. We                
plan to in future implement biLSTM for our QA system and hopefully obtain a better accuracy.  
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We also faced challenges with selecting the data set that works best for our model. We                

explored numerous data set like TREC-QA[], Insurance-QA[], BABI[] and MCTest data sets.            
Initially we wanted to use TREC-QA data set but the faced lot of difficulty to in using it for our                    
particular model. We also tried using the Insurance-QA and we were finally able to use BABI and                 
MCTest data sets and finally resolved to MCTest data set as it was the one which suits the best.  

Abnormal case explanation (the most important task) 

The inputs that we were using had lot of inconsistency without labels. So we had to                
correct it before using it.  

The tensor flow bidirectional lstm has not been able to use as there was error that we                 
were not able to resolve we have raised a bug resolve request to google tensor flow group but                  
given the time frame we were not able to come up with are round about solution for the problem. 

The accuracy while training shows fluctuation in the range of 0.2 to & 0.7 instead of                
showing consistent increment.  

Conclusions and Recommendations 

Summary and Conclusions 

 
This project gave us a great start into the field of Neural networks. We obtained good                

learning wrt implementation of conventional and recursive neural networks using Tensor Flow.            
We were able to build an lstm neural network for answer prediction which, given a story and a                  
question, predicts the correct answers from the answer choices. We got an accuracy between              
20% to 70%.  

Recommendations for future studies 

We want to analyse the current model at length and modify it further to get better accuracies. We                  
plan to implement the stacked - bidirectional LSTM based RNN network to see how the               
performance of the system changes. Instead of using skip-gram model for Word2Vec generation             
we can probably use ‘GLOVE’ model which is proven to a better vector representation of word                
embedding. After building these models we would like to compare their performance with             
existing conventional non-neural network NLP model.  

  

27 



Bibliography 
1. D. Wang and E. Nyberg. A long short-term memory model for answer sentence 

selection in question answering. In ACL-IJCNLP, ACL 2015, July 26-31, 2015, Beijing, 
China, Volume 2: Short Papers, pages 707{712, 2015. 

2. Daniel Cohen and W. Bruce Croft. “End to End Long Short Term Memory Networks 
for Non-Factoid Question Answering” ICTIR '16 Proceedings of the 2016 ACM 
International Conference on the Theory of Information Retrieval. 

3. Tan, Ming; dos Santos, Cicero; Xiang, Bing; Zhou and Bowen. “LSTM-BASED DEEP 
LEARNING MODELS FOR NONFACTOID ANSWER SELECTION“. In eprint 
arXiv:1511.04108, 11/2015,  

4. H. Palangi, L. Deng, Y. Shen, J. Gao, X. He, J. Chen, X. Song, and R. K. Ward. Deep 
sentence embedding using the long short term memory network: Analysis and 
application to information retrieval. CoRR, abs/1502.06922, 2015. 

5. Wikipedia https://en.wikipedia.org/wiki/  
6. Applying Deep Learning to Answer Selection: A Study and An Open Task Minwei 

Feng, Bing Xiang, Michael R. Glass, Lidan Wang, Bowen Zhou ASRU 2015 
7. Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M. Rush, Bart van 

Merrienboer, Armand Joulin & Tomas Mikolov “TOWARDS AI-COMPLETE 
QUESTION ANSWERING : A SET OF PREREQUISITE TOY TASKS”12/2015. 
https://arxiv.org/pdf/1502.05698v10.pdf  

8. D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning 
to align and translate,” ICLR2015, 2015. [Online]. Available: 
http://arxiv.org/abs/1409.0473  

9. I. Sutskever, J. Martens, G. E. Dahl, and G. E. Hinton, “On the importance of 
initialization and momentum in deep learning,” in ICML (3)’13, 2013, pp. 
1139–1147. 

10. K. M. Hermann and P. Blunsom, “Multilingual models for compositional distributed 
semantics,” arXiv preprint arXiv:1404.4641, 2014. 

11. Feng, Minwei, Xiang, Bing, Glass, Michael, Wang, Lidan, and Zhou, Bowen. Applying 
deep learning to answer selection: A study and an open task. IEEE Automatic Speech 
Recognition and Understanding Workshop (ASRU), 2015. 

 

28 

https://en.wikipedia.org/wiki/Question_answering
https://arxiv.org/pdf/1502.05698v10.pdf
http://arxiv.org/abs/1409.0473


Appendices 

Program Flowchart 

p.16 

Program source code with documentation 

p.16 

Input/Output listing 

p.18 

29 


