

Speech Emotion Detection
and Analysis

Helen Chan
Travis Ebesu

Caleb Fujimori

COEN296: Natural Language Processing
Prof. Ming-Hwa Wang
School of Engineering

Department of Computer Engineering
Santa Clara University

Table of Contents
Abstract 3

Introduction 3

Theoretical Bases and Literature Review 3

Hypothesis 5

Methodology 5
Dataset 5
Algorithm Design 5

Implementation 6
Code 6
Design document and flow chart 6

Data Analysis and Discussion 7
Output Analysis 7
Compare Output against Hypothesis 7
Discussion 8

Conclusions and Recommendations 8
Summary and conclusions 8
Recommendations for future studies 8

Bibliography 8

Appendices 10
Program source code with documentation 10
Input/ Output listing

Abstract
With the increased popularity of Smart Home technologies, more is expected in Natural
Language Processing. We propose a emotion-sensing module with only speech signal as input
to detect and analyze the user’s emotion based on his or her pitch and volume in the speech
sample. This modal uses Convolutional Neural Networks (CNN) to classify emotion from
speech.

Introduction
The ultimate goal of our project is to create an emotion-sensing module to be used in
Smart Home systems for enriching the user experience and evaluating the user’s
mental health.This module will detect and analyze emotions in speech samples.
Emotion is portrayed in intonation, pitch, volume, and word choice in human. Even with
the same sentence, emotions can be ambiguous. Therefore, it is still an area with great
potential. In our project, we are focusing on detecting emotions according to pitch and
volume. This project is inspired by topics learnt from our class syllabus on text
processing, speech recognition, signal processing, and grammar ambiguity.

Many in the industry are detecting emotions from biometrics collected from wearable
technologies, which we believe to be not as accessible as microphones. Using pure
speech signals, this module can be incorporated into Smart Home or Phone system,
which can be shared with a large group of users with just one device around.

In terms of uniqueness of our algorithm and output generation, based on our research,
many studies use machine learning methods like Support Vector Machine (SVM) or
Recurrent Neural Network (RNN). We decided to use CNN instead because of its
improved speed and similar accuracy.

Theoretical Bases and Literature Review
Classically, speech processing has been done by extracting low level descriptors from a
voice signal and handcrafting a model. Gu et al. used tuned filters to classify 5 emotions
with 94% accuracy[4]. However, these filters were used for a specific dataset of
speakers from a specific region. To use this model for another set of speakers, the
filters must be re-tuned by experts.

With the rise of machine learning, the features are extracted from a training set, and a
model is generated from that data. Wang and Hu extracted 10 features from voice
signals and used a SVM to classify voice samples into 7 categories, achieving 85%
accuracy [8].

Another common machine learning technique for audio processing is the neural
network, which has proven to be more accurate than linear classifiers such as SVM as
more data becomes available. Since speech is a time domain signal, it naturally fits the
structure of a RNN. Mirsamadi et al showed that an RNN could achieve 64% accuracy
in classifying speech into four emotions[6]. Han et al. used an RNN to achieve 66%
accuracy in detecting stress from a voice signal[5]. While an RNN intuitively matches
speech processing, training is much more costly than training other types of neural
networks. In particular, CNN capture local relationships while being faster to train than
RNNs.

Abdelwahab and Busso proposed using a Domain Adversarial Neural Network which
can more easily be executed on datasets different than the training data[1]. However
these adversarial networks are also slow to train.

We cannot directly compare the accuracy between all these results because they all
used different datasets, but the higher accuracy of the SVM than the RNNs indicates
that explicitly modeling the time relationship of the speech may not be necessary.
Recent work has shown that state-of-the-art results on sequential tasks can be obtained
with convolutional or non-recurrent architectures (Vaswani et al., 2017) (Gehring, Auli,
Grangier, Yarats, & Dauphin, 2017). Furthermore, the use of CNNs will allow for highly
parallelizable computation rather than a slow conditional RNN. Therefore, we propose
the use of a CNN to classify emotion from speech. Results from others in this area have
shown that learning from extracted features can be more accurate, but in other fields,
such as Computer Vision, research has shown that training on raw data can be just as,
if not more effective as the feature extraction is “learned” by the network. We will train
on the raw time series data, frequency domain data, and extracted features.

Using a CNN will greatly reduce training time compared to other RNN approaches, and
scale to large datasets better than the SVM or tuned filter based approaches.

Hypothesis

We hypothesize that recognition of emotions in speech are not heavily dependent on a
fully conditional probability of the entire speech waveform. Rather a sliding window on
the audio will be able to detect strong enough features. Hence, we propose to use a
convolutional neural network which will make training much faster, easing development
and reducing resources spent on training.

Methodology

Dataset
We will use the IEMOCAP dataset which consists of interactions of male and female 1

actors with improvised and scripted sessions of speech consisting of at least three
different annotators labeling one of the following emotions: angry, happy, sad, neutral,
frustrated, excited, fearful, surprised, disgusted, other.

Algorithm Design
We will solve the problem of classifying emotions for a given utterance of speech using
a Convolutional Neural Network. Specifically, the max-time delay neural network variant
(Collobert & Weston, 2008). A given waveform of speech will be encoded with a
convolution to capture nonlinear local temporal features.

Language: Python
Tools/Libraries: Keras with TensorFlow backend.
How to generate output:
We will evaluate the performance of our model with respect to baseline models such as
logistic regression and support vector machines. If time permits we will also explore the
various trade offs between RNNs and CNNs.

How to test against hypotheses: We will use classification accuracy.

1 "IEMOCAP- Home - USC/Sail - University of Southern California." https://sail.usc.edu/iemocap/.
Accessed 4 Nov. 2018.

https://sail.usc.edu/iemocap/

Implementation

Code
We used the Keras framework with Tensorflow as the backend to code the Neural Nets
and scikit-learn for the Logistic Regression and SVM.

Design document and flow chart
CNN Architecture

GRU Architecture

Comparison of methods

● RNN - A recurrent neural network with a fully connected layer applied at each
timestep and a GRU

● CNN - Max time delay neural network with 16 filters of kernel size 3. A max
pooling window of 9 is applied to feature maps obtained followed by a fully
connected layer.

● Logistic Regression - A standard logistic regression model was fit to the data
where the temporal speech features were pooled by taking the max over its
dimension.

● Support Vector Machine - A standard support vector machine with a linear kernel
was applied in a One Vs All fashion to handle the multi-class nature of the
problem.

Data Analysis and Discussion

Output Analysis

Model Accuracy

CNN 42.86%

RNN N/A

Logistic Regression 28.57%

SVM 28.57%

Compare Output against Hypothesis
Our implementation of a GRU network did not work, so the accuracy cannot be
compared, but each epoch of the CNN took less than a second to train, while the GRU
took about 7 seconds, so our hypothesis that using a CNN would reduce training time
was correct.

Discussion
The SVM and Logistic Regression baseline methods perform similarly. This could be
due to the fact that the input features are max-pooled in time and hence they obtain the
same feature vectors. Furthermore, as both are linear models the ability to correctly
classify the speech is limited. The CNN model outperforms SVM and logistic regression
particularly due to its ability to capture temporal dependencies over a given timespan.

We are not sure why the GRU failed. We tried many configurations with different
activation functions, optimizers, regularizers and surrounding layers, but none of them
produced good results. The failure may be due to insufficient support from a small
dataset.

Conclusions and Recommendations

Summary and conclusions
In summary, a CNN can perform better than some classifiers such as SVM or logistic
regression, and is much faster to train than a GRU.

Recommendations for future studies
In the future, improving the RNN architecture and working with larger datasets would
allow for better results. We also used relatively simple architectures for both categories
of NN, so further comparison of more advanced architectures is needed to compare
both accuracy and training resources.

Bibliography
[1] Mohammed Abdelwahab and Carlos Busso. 2018. Domain Adversarial for Acoustic

Emotion Recognition. IEEE/ACM Trans. Audio, Speech and Lang. Proc. 26, 12

(December 2018), 2423-2435.

[2] Collobert, R., & Weston, J. (2008). A unified architecture for natural language

processing: Deep neural networks with multitask learning. Paper presented at the

Proceedings of the 25th International Conference on Machine Learning, 160-167.

[3] Gehring, J., Auli, M., Grangier, D., Yarats, D., & Dauphin, Y. N. (2017). Convolutional

sequence to sequence learning. arXiv Preprint arXiv:1705.03122,

[4] Yu Gu, Eric Postma, and Hai-Xiang Lin. 2015. Vocal Emotion Recognition with

Log-Gabor Filters. In Proceedings of the 5th International Workshop on Audio/Visual

Emotion Challenge (AVEC '15). ACM, New York, NY, USA, 25-31.

[5] Hyewon Han, Kyunggeun Byun, and Hong-Goo Kang. 2018. A Deep Learning-based

Stress Detection Algorithm with Speech Signal. In Proceedings of the 2018 Workshop

on Audio-Visual Scene Understanding for Immersive Multimedia (AVSU'18). ACM,

New York, NY, USA, 11-15.

[6] Mirsamadi, Seyedmahdad & Barsoum, Emad & Zhang, Cha. (2017). Automatic

Speech Emotion Recognition Using Recurrent Neural Networks with Local Attention.

10.1109/ICASSP.2017.7952552.

[7] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . .

Polosukhin, I. (2017). Attention is all you need. Paper presented at the Advances in

Neural Information Processing Systems, 5998-6008.

[8] Yan Wang and Weiping Hu. 2018. Speech Emotion Recognition Based on Improved

MFCC. In Proceedings of the 2nd International Conference on Computer Science and

Application Engineering (CSAE '18). ACM, New York, NY, USA, Article 88, 7 pages

Appendices

Program source code with documentation
#emotionClassification.py

import os

os.environ['CUDA_VISIBLE_DEVICES'] = '3'

os.environ['KERAS_BACKEND'] = 'tensorflow'

from sklearn.linear_model import LogisticRegression

import sklearn

from sklearn.svm import SVC

from sklearn.multiclass import OneVsRestClassifier

import numpy as np

import tensorflow as tf

import random

random.seed(0)

tf.set_random_seed(0)

np.random.seed(0)

set a constant random seed for comparable results

Y_SHAPE = 3

N_LABELS = 6

N_FEATURES = 34

LEN_SENTENCE = 25

LEN_WORD = 60

data = np.load("train.npz")

x = data['x']

y = data['y']

x.shape

x = x.reshape(x.shape[0], N_FEATURES, -1)

y_hot = tf.keras.utils.to_categorical(y, num_classes=N_LABELS)

val_data = np.load("valid.npz")

val_x = val_data['x']

val_y = val_data['y']

val_x = val_x.reshape(val_x.shape[0], N_FEATURES, -1)

val_y_hot = tf.keras.utils.to_categorical(val_y, num_classes=N_LABELS)

def cnn():

 model = tf.keras.Sequential()

 model.add(tf.keras.layers.Conv1D(16, 3, activation='relu',

 input_shape=(N_FEATURES, 1500)))

 model.add(tf.keras.layers.MaxPool1D(8))

 model.add(tf.keras.layers.Flatten())

 model.add(tf.keras.layers.Dense(N_LABELS))

 model.add(tf.keras.layers.Activation('softmax'))

 model.compile('adam', 'categorical_crossentropy',

metrics=['accuracy'])

 history = model.fit(x, y_hot, epochs=50, verbose=2,

validation_data=(val_x, val_y_hot))

 return history

def gru():

 model = tf.keras.Sequential()

 model.add(tf.keras.layers.Permute((2,1), input_shape =

(N_FEATURES, LEN_SENTENCE * LEN_WORD)))

 l2Reg = tf.keras.regularizers.l2(0.01)

model.add(tf.keras.layers.TimeDistributed(tf.keras.layers.Dense(16,

activation='relu', kernel_regularizer=l2Reg, bias_regularizer=l2Reg)))

 model.add(tf.keras.layers.Dropout(0.9))

 model.add(tf.keras.layers.GRU(N_LABELS, activation='relu',

kernel_regularizer=l2Reg, recurrent_regularizer=l2Reg,

bias_regularizer=l2Reg))

 model.add(tf.keras.layers.Activation('softmax'))

 model.compile(optimizer='Adam', loss='categorical_crossentropy',

metrics=['accuracy'])

 history = model.fit(x, y_hot, epochs=50, verbose=2,

validation_data=(val_x, val_y_hot))

 return history

def lg_svm():

 model = LogisticRegression().fit(x.max(2), y)

 predict = model.predict(val_x.max(2))

 print('Logistic Regression Accuracy')

 print(sklearn.metrics.accuracy_score(predict, val_y))

 model = SVC(kernel='linear')

 model = OneVsRestClassifier(model)

 model.fit(x.max(2), y)

 predict = model.predict(val_x.max(2))

 print('SVM Accuracy')

 print(sklearn.metrics.accuracy_score(predict, val_y))

if __name__=='__main__':

 h = cnn()

 print('CNN accuracy:')

 print(h.history['val_acc'][-1])

 lg_svm()

 h = gru()

 print('GRU accuracy:')

 print(h.history['val_acc'][-1])

Readme
Our program requires tensorflow > 1.4 which can be installed by first
installing anaconda from https://www.anaconda.com/download/.

Tensorflow can then be installed with:
$conda install tensorflow

The test and train data can be found at:
https://github.com/chf2117/emotionClassification

Download train.npz and valid.npz and put them in the same directory as
emotionClassification.py then run the program as:
$python emotionClassification.py

Input/ Output listing
$python emotionClassification.py

0.2857142857142857
0.2857142857142857
Train on 62 samples, validate on 7 samples
Epoch 1/50
 - 4s - loss: 4.3592 - acc: 0.1774 - val_loss: 3.8241 - val_acc: 0.4286
Epoch 2/50
 - 0s - loss: 6.1037 - acc: 0.1129 - val_loss: 3.8984 - val_acc: 0.4286
Epoch 3/50
 - 0s - loss: 5.8958 - acc: 0.1613 - val_loss: 3.9012 - val_acc: 0.2857
Epoch 4/50
 - 0s - loss: 4.1182 - acc: 0.2097 - val_loss: 4.1826 - val_acc: 0.2857
Epoch 5/50
 - 0s - loss: 3.8878 - acc: 0.1613 - val_loss: 4.4766 - val_acc: 0.2857
Epoch 6/50
 - 0s - loss: 4.8856 - acc: 0.1774 - val_loss: 4.7254 - val_acc: 0.2857
Epoch 7/50
 - 0s - loss: 4.2569 - acc: 0.1935 - val_loss: 4.9760 - val_acc: 0.2857
Epoch 8/50
 - 0s - loss: 3.7973 - acc: 0.1290 - val_loss: 5.1718 - val_acc: 0.2857
Epoch 9/50
 - 0s - loss: 4.9107 - acc: 0.1613 - val_loss: 5.3347 - val_acc: 0.2857
Epoch 10/50
 - 0s - loss: 4.2882 - acc: 0.1613 - val_loss: 5.4458 - val_acc: 0.2857
Epoch 11/50
 - 0s - loss: 4.6679 - acc: 0.1774 - val_loss: 5.5110 - val_acc: 0.2857
Epoch 12/50
 - 0s - loss: 5.2415 - acc: 0.1935 - val_loss: 5.5953 - val_acc: 0.2857
Epoch 13/50
 - 0s - loss: 4.7104 - acc: 0.1129 - val_loss: 5.7097 - val_acc: 0.2857
Epoch 14/50
 - 0s - loss: 3.7289 - acc: 0.1613 - val_loss: 5.8048 - val_acc: 0.2857
Epoch 15/50
 - 0s - loss: 3.7667 - acc: 0.1613 - val_loss: 5.7606 - val_acc: 0.2857
Epoch 16/50
 - 0s - loss: 4.7166 - acc: 0.1774 - val_loss: 5.8457 - val_acc: 0.2857
Epoch 17/50
 - 0s - loss: 4.6852 - acc: 0.1452 - val_loss: 6.0550 - val_acc: 0.2857
Epoch 18/50
 - 0s - loss: 2.8564 - acc: 0.1452 - val_loss: 6.1820 - val_acc: 0.4286

Epoch 19/50
 - 0s - loss: 3.1221 - acc: 0.1613 - val_loss: 6.1366 - val_acc: 0.4286
Epoch 20/50
 - 0s - loss: 4.6116 - acc: 0.2097 - val_loss: 6.1982 - val_acc: 0.4286
Epoch 21/50
 - 0s - loss: 3.6334 - acc: 0.1935 - val_loss: 6.1344 - val_acc: 0.4286
Epoch 22/50
 - 0s - loss: 3.1255 - acc: 0.1613 - val_loss: 6.1293 - val_acc: 0.4286
Epoch 23/50
 - 0s - loss: 3.7325 - acc: 0.1774 - val_loss: 6.1612 - val_acc: 0.4286
Epoch 24/50
 - 0s - loss: 4.4974 - acc: 0.1129 - val_loss: 6.1834 - val_acc: 0.4286
Epoch 25/50
 - 0s - loss: 5.0983 - acc: 0.1613 - val_loss: 6.1849 - val_acc: 0.4286
Epoch 26/50
 - 0s - loss: 3.7952 - acc: 0.1452 - val_loss: 6.1768 - val_acc: 0.4286
Epoch 27/50
 - 0s - loss: 3.7837 - acc: 0.1935 - val_loss: 6.1596 - val_acc: 0.4286
Epoch 28/50
 - 0s - loss: 3.7889 - acc: 0.1290 - val_loss: 6.1461 - val_acc: 0.4286
Epoch 29/50
 - 0s - loss: 3.6361 - acc: 0.1290 - val_loss: 6.2393 - val_acc: 0.4286
Epoch 30/50
 - 0s - loss: 3.6965 - acc: 0.1774 - val_loss: 6.2722 - val_acc: 0.4286
Epoch 31/50
 - 0s - loss: 4.6424 - acc: 0.1452 - val_loss: 6.2575 - val_acc: 0.4286
Epoch 32/50
 - 0s - loss: 4.7173 - acc: 0.1290 - val_loss: 6.2461 - val_acc: 0.4286
Epoch 33/50
 - 0s - loss: 4.4262 - acc: 0.1452 - val_loss: 6.2349 - val_acc: 0.4286
Epoch 34/50
 - 0s - loss: 3.1356 - acc: 0.1613 - val_loss: 6.2662 - val_acc: 0.4286
Epoch 35/50
 - 0s - loss: 3.9161 - acc: 0.1452 - val_loss: 6.2959 - val_acc: 0.4286
Epoch 36/50
 - 0s - loss: 4.2455 - acc: 0.1290 - val_loss: 6.3220 - val_acc: 0.4286
Epoch 37/50
 - 0s - loss: 4.7273 - acc: 0.1290 - val_loss: 6.3437 - val_acc: 0.4286
Epoch 38/50
 - 0s - loss: 4.4894 - acc: 0.0968 - val_loss: 6.3476 - val_acc: 0.4286
Epoch 39/50
 - 0s - loss: 3.7860 - acc: 0.1774 - val_loss: 6.3510 - val_acc: 0.4286
Epoch 40/50

 - 0s - loss: 3.3067 - acc: 0.1613 - val_loss: 6.3546 - val_acc: 0.4286
Epoch 41/50
 - 0s - loss: 4.1955 - acc: 0.2097 - val_loss: 6.2628 - val_acc: 0.4286
Epoch 42/50
 - 0s - loss: 4.0090 - acc: 0.0968 - val_loss: 6.1994 - val_acc: 0.4286
Epoch 43/50
 - 0s - loss: 4.4169 - acc: 0.1613 - val_loss: 6.1602 - val_acc: 0.4286
Epoch 44/50
 - 0s - loss: 5.7774 - acc: 0.1290 - val_loss: 6.1195 - val_acc: 0.4286
Epoch 45/50
 - 0s - loss: 3.3043 - acc: 0.1935 - val_loss: 6.0806 - val_acc: 0.4286
Epoch 46/50
 - 0s - loss: 4.0351 - acc: 0.1613 - val_loss: 6.0491 - val_acc: 0.4286
Epoch 47/50
 - 0s - loss: 3.7153 - acc: 0.2097 - val_loss: 5.9780 - val_acc: 0.4286
Epoch 48/50
 - 0s - loss: 3.0653 - acc: 0.1774 - val_loss: 5.8493 - val_acc: 0.4286
Epoch 49/50
 - 0s - loss: 3.6765 - acc: 0.1613 - val_loss: 5.6734 - val_acc: 0.4286
Epoch 50/50
 - 0s - loss: 4.7502 - acc: 0.1290 - val_loss: 5.5554 - val_acc: 0.4286

GRU training
Train on 62 samples, validate on 7 samples
Epoch 1/50
2018-12-04 05:44:49.366761: I tensorflow/core/common_runtime/process_util.cc:69] Creating
new thread pool with default inter op setting: 2. Tune using inter_op_parallelism_threads for
best performance.
 - 8s - loss: 2.0880 - acc: 0.2419 - val_loss: 2.0848 - val_acc: 0.2857
Epoch 2/50
 - 7s - loss: 2.0839 - acc: 0.1613 - val_loss: 2.0801 - val_acc: 0.2857
Epoch 3/50
 - 7s - loss: 2.0793 - acc: 0.1613 - val_loss: 2.0754 - val_acc: 0.2857
Epoch 4/50
 - 7s - loss: 2.0746 - acc: 0.1613 - val_loss: 2.0706 - val_acc: 0.2857
Epoch 5/50
 - 7s - loss: 2.0699 - acc: 0.1613 - val_loss: 2.0659 - val_acc: 0.2857
Epoch 6/50
 - 7s - loss: 2.0652 - acc: 0.1613 - val_loss: 2.0612 - val_acc: 0.2857
Epoch 7/50
 - 7s - loss: 2.0605 - acc: 0.1613 - val_loss: 2.0566 - val_acc: 0.2857

Epoch 8/50
 - 7s - loss: 2.0559 - acc: 0.1613 - val_loss: 2.0521 - val_acc: 0.2857
Epoch 9/50
 - 7s - loss: 2.0514 - acc: 0.1613 - val_loss: 2.0476 - val_acc: 0.2857
Epoch 10/50
 - 7s - loss: 2.0469 - acc: 0.1613 - val_loss: 2.0432 - val_acc: 0.2857
Epoch 11/50
 - 7s - loss: 2.0424 - acc: 0.1613 - val_loss: 2.0388 - val_acc: 0.2857
Epoch 12/50
 - 7s - loss: 2.0381 - acc: 0.1613 - val_loss: 2.0345 - val_acc: 0.2857
Epoch 13/50
 - 7s - loss: 2.0338 - acc: 0.1613 - val_loss: 2.0303 - val_acc: 0.2857
Epoch 14/50
 - 7s - loss: 2.0295 - acc: 0.1613 - val_loss: 2.0262 - val_acc: 0.2857
Epoch 15/50
 - 7s - loss: 2.0253 - acc: 0.1613 - val_loss: 2.0221 - val_acc: 0.2857
Epoch 16/50
 - 7s - loss: 2.0212 - acc: 0.1613 - val_loss: 2.0181 - val_acc: 0.2857
Epoch 17/50
 - 7s - loss: 2.0172 - acc: 0.1613 - val_loss: 2.0141 - val_acc: 0.2857
Epoch 18/50
 - 7s - loss: 2.0132 - acc: 0.1613 - val_loss: 2.0102 - val_acc: 0.2857
Epoch 19/50
 - 7s - loss: 2.0093 - acc: 0.1613 - val_loss: 2.0064 - val_acc: 0.2857
Epoch 20/50
 - 7s - loss: 2.0055 - acc: 0.1613 - val_loss: 2.0026 - val_acc: 0.0000e+00
Epoch 21/50
 - 7s - loss: 2.0017 - acc: 0.1613 - val_loss: 1.9989 - val_acc: 0.0000e+00
Epoch 22/50
 - 7s - loss: 1.9980 - acc: 0.1613 - val_loss: 1.9952 - val_acc: 0.0000e+00
Epoch 23/50
 - 7s - loss: 1.9944 - acc: 0.1613 - val_loss: 1.9917 - val_acc: 0.0000e+00
Epoch 24/50
 - 7s - loss: 1.9908 - acc: 0.1613 - val_loss: 1.9881 - val_acc: 0.0000e+00
Epoch 25/50
 - 7s - loss: 1.9873 - acc: 0.1613 - val_loss: 1.9849 - val_acc: 0.0000e+00
Epoch 26/50
 - 7s - loss: 1.9838 - acc: 0.2097 - val_loss: 1.9817 - val_acc: 0.0000e+00
Epoch 27/50
 - 7s - loss: 1.9803 - acc: 0.2097 - val_loss: 1.9785 - val_acc: 0.0000e+00
Epoch 28/50
 - 7s - loss: 1.9769 - acc: 0.2097 - val_loss: 1.9755 - val_acc: 0.0000e+00
Epoch 29/50

 - 7s - loss: 1.9735 - acc: 0.2097 - val_loss: 1.9727 - val_acc: 0.0000e+00
Epoch 30/50
 - 7s - loss: 1.9703 - acc: 0.2097 - val_loss: 1.9699 - val_acc: 0.0000e+00
Epoch 31/50
 - 7s - loss: 1.9670 - acc: 0.2097 - val_loss: 1.9671 - val_acc: 0.0000e+00
Epoch 32/50
 - 7s - loss: 1.9638 - acc: 0.2097 - val_loss: 1.9644 - val_acc: 0.0000e+00
Epoch 33/50
 - 7s - loss: 1.9606 - acc: 0.2097 - val_loss: 1.9617 - val_acc: 0.0000e+00
Epoch 34/50
 - 8s - loss: 1.9575 - acc: 0.2097 - val_loss: 1.9591 - val_acc: 0.0000e+00
Epoch 35/50
 - 9s - loss: 1.9545 - acc: 0.2097 - val_loss: 1.9566 - val_acc: 0.0000e+00
Epoch 36/50
 - 9s - loss: 1.9514 - acc: 0.2097 - val_loss: 1.9540 - val_acc: 0.0000e+00
Epoch 37/50
 - 9s - loss: 1.9486 - acc: 0.2097 - val_loss: 1.9516 - val_acc: 0.0000e+00
Epoch 38/50
 - 13s - loss: 1.9456 - acc: 0.2097 - val_loss: 1.9492 - val_acc: 0.0000e+00
Epoch 39/50
 - 18s - loss: 1.9428 - acc: 0.2097 - val_loss: 1.9468 - val_acc: 0.0000e+00
Epoch 40/50
 - 18s - loss: 1.9400 - acc: 0.2097 - val_loss: 1.9445 - val_acc: 0.0000e+00
Epoch 41/50
 - 18s - loss: 1.9373 - acc: 0.2097 - val_loss: 1.9422 - val_acc: 0.0000e+00
Epoch 42/50
 - 18s - loss: 1.9346 - acc: 0.2097 - val_loss: 1.9399 - val_acc: 0.0000e+00
Epoch 43/50
 - 18s - loss: 1.9319 - acc: 0.2097 - val_loss: 1.9377 - val_acc: 0.0000e+00
Epoch 44/50
 - 18s - loss: 1.9293 - acc: 0.2097 - val_loss: 1.9356 - val_acc: 0.0000e+00
Epoch 45/50
 - 18s - loss: 1.9268 - acc: 0.2097 - val_loss: 1.9335 - val_acc: 0.0000e+00
Epoch 46/50
 - 17s - loss: 1.9242 - acc: 0.2097 - val_loss: 1.9314 - val_acc: 0.0000e+00
Epoch 47/50
 - 18s - loss: 1.9218 - acc: 0.2097 - val_loss: 1.9294 - val_acc: 0.0000e+00
Epoch 48/50
 - 18s - loss: 1.9194 - acc: 0.2097 - val_loss: 1.9274 - val_acc: 0.0000e+00
Epoch 49/50
 - 18s - loss: 1.9169 - acc: 0.2097 - val_loss: 1.9254 - val_acc: 0.0000e+00
Epoch 50/50
 - 18s - loss: 1.9146 - acc: 0.2097 - val_loss: 1.9235 - val_acc: 0.0000e+00

