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Abstract 
With the increased popularity of Smart Home technologies, more is expected in Natural 
Language Processing. We propose a emotion-sensing module with only speech signal as input 
to detect and analyze the user’s emotion based on his or her pitch and volume in the speech 
sample. This modal uses Convolutional Neural Networks (CNN) to classify emotion from 
speech. 

Introduction 
The ultimate goal of our project is to create an emotion-sensing module to be used in 
Smart Home systems for enriching the user experience and evaluating the user’s 
mental health.This module will detect and analyze emotions in speech samples. 
Emotion is portrayed in intonation, pitch, volume, and word choice in human. Even with 
the same sentence, emotions can be ambiguous. Therefore, it is still an area with great 
potential. In our project, we are focusing on detecting emotions according to pitch and 
volume. This project is inspired by topics learnt from our class syllabus on text 
processing, speech recognition, signal processing, and grammar ambiguity.  
 
Many in the industry are detecting emotions from biometrics collected from wearable 
technologies, which we believe to be not as accessible as microphones. Using pure 
speech signals, this module can be incorporated into Smart Home or Phone system, 
which can be shared with a large group of users with just one device around.  
 
In terms of uniqueness of our algorithm and output generation, based on our research, 
many studies use machine learning methods like Support Vector Machine (SVM) or 
Recurrent Neural Network (RNN). We decided to use CNN instead because of its 
improved speed and similar accuracy.  
 

Theoretical Bases and Literature Review 
Classically, speech processing has been done by extracting low level descriptors from a 
voice signal and handcrafting a model. Gu et al. used tuned filters to classify 5 emotions 
with 94% accuracy[4]. However, these filters were used for a specific dataset of 
speakers from a specific region. To use this model for another set of speakers, the 
filters must be re-tuned by experts. 



 
With the rise of machine learning, the features are extracted from a training set, and a 
model is generated from that data. Wang and Hu extracted 10 features from voice 
signals and used a SVM to classify voice samples into 7 categories, achieving 85% 
accuracy [8].  
 
Another common machine learning technique for audio processing is the neural 
network, which has proven to be more accurate than linear classifiers such as SVM as 
more data becomes available. Since speech is a time domain signal, it naturally fits the 
structure of a RNN. Mirsamadi et al showed that an RNN could achieve 64% accuracy 
in classifying speech into four emotions[6]. Han et al. used an RNN to achieve 66% 
accuracy in detecting stress from a voice signal[5]. While an RNN intuitively matches 
speech processing, training is much more costly than training other types of neural 
networks. In particular, CNN capture local relationships while being faster to train than 
RNNs. 
 
Abdelwahab and Busso proposed using a Domain Adversarial Neural Network which 
can more easily be executed on datasets different than the training data[1]. However 
these adversarial networks are also slow to train. 
 
We cannot directly compare the accuracy between all these results because they all 
used different datasets, but the higher accuracy of the SVM than the RNNs indicates 
that explicitly modeling the time relationship of the speech may not be necessary. 
Recent work has shown that state-of-the-art results on sequential tasks can be obtained 
with convolutional or non-recurrent architectures (Vaswani et al., 2017) (Gehring, Auli, 
Grangier, Yarats, & Dauphin, 2017). Furthermore, the use of CNNs will allow for highly 
parallelizable computation rather than a slow conditional RNN. Therefore, we propose 
the use of a CNN to classify emotion from speech. Results from others in this area have 
shown that learning from extracted features can be more accurate, but in other fields, 
such as Computer Vision, research has shown that training on raw data can be just as, 
if not more effective as the feature extraction is “learned” by the network. We will train 
on the raw time series data, frequency domain data, and extracted features. 
 
Using a CNN will greatly reduce training time compared to other RNN approaches, and 
scale to large datasets better than the SVM or tuned filter based approaches. 



Hypothesis 

We hypothesize that recognition of emotions in speech are not heavily dependent on a 
fully conditional probability of the entire speech waveform. Rather a sliding window on 
the audio will be able to detect strong enough features. Hence, we propose to use a 
convolutional neural network which will make training much faster, easing development 
and reducing resources spent on training. 

Methodology 

Dataset 
We will use the IEMOCAP dataset  which consists of interactions of male and female 1

actors with improvised and scripted sessions of speech consisting of at least three 
different annotators labeling one of the following emotions: angry, happy, sad, neutral, 
frustrated, excited, fearful, surprised, disgusted, other. 

Algorithm Design 
We will solve the problem of classifying emotions for a given utterance of speech using 
a Convolutional Neural Network. Specifically, the max-time delay neural network variant 
(Collobert & Weston, 2008). A given waveform of speech will be encoded with a 
convolution to capture nonlinear local temporal features.  
 
Language: Python 
Tools/Libraries: Keras with TensorFlow backend. 
How to generate output:  
We will evaluate the performance of our model with respect to baseline models such as 
logistic regression and support vector machines. If time permits we will also explore the 
various trade offs between RNNs and CNNs. 
 
How to test against hypotheses: We will use classification accuracy. 

1 "IEMOCAP- Home - USC/Sail - University of Southern California." https://sail.usc.edu/iemocap/. 
Accessed 4 Nov. 2018. 

https://sail.usc.edu/iemocap/


Implementation 

Code 
We used the Keras framework with Tensorflow as the backend to code the Neural Nets 
and scikit-learn for the Logistic Regression and SVM. 
 

Design document and flow chart 
CNN Architecture 

 
GRU Architecture 

 



 
 
 
Comparison of methods 

● RNN - A recurrent neural network with a fully connected layer applied at each 
timestep and a GRU 

● CNN - Max time delay neural network with 16 filters of kernel size 3. A max 
pooling window of 9 is applied to feature maps obtained followed by a fully 
connected layer. 

● Logistic Regression - A standard logistic regression model was fit to the data 
where the temporal speech features were pooled by taking the max over its 
dimension. 

● Support Vector Machine - A standard support vector machine with a linear kernel 
was applied in a One Vs All fashion to handle the multi-class nature of the 
problem.  

 

Data Analysis and Discussion 

Output Analysis 
 

Model Accuracy 

CNN 42.86% 

RNN N/A 

Logistic Regression 28.57% 

SVM 28.57% 
 

Compare Output against Hypothesis 
Our implementation of a GRU network did not work, so the accuracy cannot be 
compared, but each epoch of the CNN took less than a second to train, while the GRU 
took about 7 seconds, so our hypothesis that using a CNN would reduce training time 
was correct. 
 



Discussion 
The SVM and Logistic Regression baseline methods perform similarly. This could be 
due to the fact that the input features are max-pooled in time and hence they obtain the 
same feature vectors. Furthermore, as both are linear models the ability to correctly 
classify the speech is limited. The CNN model outperforms SVM and logistic regression 
particularly due to its ability to capture temporal dependencies over a given timespan. 
 
We are not sure why the GRU failed. We tried many configurations with different 
activation functions, optimizers, regularizers and surrounding layers, but none of them 
produced good results. The failure may be due to insufficient support from a small 
dataset. 

Conclusions and Recommendations 

Summary and conclusions 
In summary, a CNN can perform better than some classifiers such as SVM or logistic 
regression, and is much faster to train than a GRU.  

Recommendations for future studies  
In the future, improving the RNN architecture and working with larger datasets would 
allow for better results. We also used relatively simple architectures for both categories 
of NN, so further comparison of more advanced architectures is needed to compare 
both accuracy and training resources. 
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Appendices 

Program source code with documentation 
#emotionClassification.py 
 
import os 

os.environ['CUDA_VISIBLE_DEVICES'] = '3' 

os.environ['KERAS_BACKEND'] = 'tensorflow' 

from sklearn.linear_model import LogisticRegression 

 

import sklearn 

from sklearn.svm import SVC 

from sklearn.multiclass import OneVsRestClassifier 

import numpy as np 

import tensorflow as tf 

import random 

random.seed(0) 

tf.set_random_seed(0) 

np.random.seed(0) 

 

# set a constant random seed for comparable results 

Y_SHAPE = 3 

N_LABELS = 6 

N_FEATURES = 34 

LEN_SENTENCE = 25 

LEN_WORD = 60 

 

data = np.load("train.npz") 

x = data['x'] 

y = data['y'] 

# x.shape 

x = x.reshape(x.shape[0], N_FEATURES, -1) 

y_hot = tf.keras.utils.to_categorical(y, num_classes=N_LABELS) 

val_data = np.load("valid.npz") 

val_x = val_data['x'] 

val_y = val_data['y'] 



val_x = val_x.reshape(val_x.shape[0], N_FEATURES, -1) 

val_y_hot = tf.keras.utils.to_categorical(val_y, num_classes=N_LABELS) 

 

 

def cnn(): 

    model = tf.keras.Sequential() 

    model.add(tf.keras.layers.Conv1D(16, 3, activation='relu', 

                                     input_shape=(N_FEATURES, 1500))) 

    model.add(tf.keras.layers.MaxPool1D(8)) 

    model.add(tf.keras.layers.Flatten()) 

    model.add(tf.keras.layers.Dense(N_LABELS)) 

    model.add(tf.keras.layers.Activation('softmax')) 

    model.compile('adam', 'categorical_crossentropy', 

metrics=['accuracy']) 

 

    history = model.fit(x, y_hot, epochs=50, verbose=2, 

validation_data=(val_x, val_y_hot)) 

    return history 

 

def gru(): 

    model = tf.keras.Sequential() 

    model.add(tf.keras.layers.Permute((2,1), input_shape = 

(N_FEATURES, LEN_SENTENCE * LEN_WORD))) 

    l2Reg = tf.keras.regularizers.l2(0.01) 

 

model.add(tf.keras.layers.TimeDistributed(tf.keras.layers.Dense(16, 

activation='relu', kernel_regularizer=l2Reg, bias_regularizer=l2Reg))) 

    model.add(tf.keras.layers.Dropout(0.9)) 

    model.add(tf.keras.layers.GRU(N_LABELS, activation='relu', 

kernel_regularizer=l2Reg, recurrent_regularizer=l2Reg, 

bias_regularizer=l2Reg)) 

    model.add(tf.keras.layers.Activation('softmax')) 

    model.compile(optimizer='Adam', loss='categorical_crossentropy', 

metrics=['accuracy']) 

    history = model.fit(x, y_hot, epochs=50, verbose=2, 

validation_data=(val_x, val_y_hot)) 

    return history 

  

 



def lg_svm(): 

    model = LogisticRegression().fit(x.max(2), y) 

    predict = model.predict(val_x.max(2)) 

    print('Logistic Regression Accuracy') 

    print(sklearn.metrics.accuracy_score(predict, val_y)) 

 

    model = SVC(kernel='linear') 

    model = OneVsRestClassifier(model) 

    model.fit(x.max(2), y) 

    predict = model.predict(val_x.max(2)) 

    print('SVM Accuracy') 

    print(sklearn.metrics.accuracy_score(predict, val_y)) 

 

if __name__=='__main__': 

    h = cnn() 

    print('CNN accuracy:') 

    print(h.history['val_acc'][-1]) 

    lg_svm() 

    h = gru() 

    print('GRU accuracy:') 

    print(h.history['val_acc'][-1]) 

 
# Readme 
Our program requires tensorflow > 1.4 which can be installed by first 
installing anaconda from https://www.anaconda.com/download/. 
 
Tensorflow can then be installed with: 
$conda install tensorflow 
 
The test and train data can be found at: 
https://github.com/chf2117/emotionClassification 
 
Download train.npz and valid.npz and put them in the same directory as 
emotionClassification.py then run the program as: 
$python emotionClassification.py  
 
 



Input/ Output listing 
$python emotionClassification.py 

0.2857142857142857 
0.2857142857142857 
Train on 62 samples, validate on 7 samples 
Epoch 1/50 
 - 4s - loss: 4.3592 - acc: 0.1774 - val_loss: 3.8241 - val_acc: 0.4286 
Epoch 2/50 
 - 0s - loss: 6.1037 - acc: 0.1129 - val_loss: 3.8984 - val_acc: 0.4286 
Epoch 3/50 
 - 0s - loss: 5.8958 - acc: 0.1613 - val_loss: 3.9012 - val_acc: 0.2857 
Epoch 4/50 
 - 0s - loss: 4.1182 - acc: 0.2097 - val_loss: 4.1826 - val_acc: 0.2857 
Epoch 5/50 
 - 0s - loss: 3.8878 - acc: 0.1613 - val_loss: 4.4766 - val_acc: 0.2857 
Epoch 6/50 
 - 0s - loss: 4.8856 - acc: 0.1774 - val_loss: 4.7254 - val_acc: 0.2857 
Epoch 7/50 
 - 0s - loss: 4.2569 - acc: 0.1935 - val_loss: 4.9760 - val_acc: 0.2857 
Epoch 8/50 
 - 0s - loss: 3.7973 - acc: 0.1290 - val_loss: 5.1718 - val_acc: 0.2857 
Epoch 9/50 
 - 0s - loss: 4.9107 - acc: 0.1613 - val_loss: 5.3347 - val_acc: 0.2857 
Epoch 10/50 
 - 0s - loss: 4.2882 - acc: 0.1613 - val_loss: 5.4458 - val_acc: 0.2857 
Epoch 11/50 
 - 0s - loss: 4.6679 - acc: 0.1774 - val_loss: 5.5110 - val_acc: 0.2857 
Epoch 12/50 
 - 0s - loss: 5.2415 - acc: 0.1935 - val_loss: 5.5953 - val_acc: 0.2857 
Epoch 13/50 
 - 0s - loss: 4.7104 - acc: 0.1129 - val_loss: 5.7097 - val_acc: 0.2857 
Epoch 14/50 
 - 0s - loss: 3.7289 - acc: 0.1613 - val_loss: 5.8048 - val_acc: 0.2857 
Epoch 15/50 
 - 0s - loss: 3.7667 - acc: 0.1613 - val_loss: 5.7606 - val_acc: 0.2857 
Epoch 16/50 
 - 0s - loss: 4.7166 - acc: 0.1774 - val_loss: 5.8457 - val_acc: 0.2857 
Epoch 17/50 
 - 0s - loss: 4.6852 - acc: 0.1452 - val_loss: 6.0550 - val_acc: 0.2857 
Epoch 18/50 
 - 0s - loss: 2.8564 - acc: 0.1452 - val_loss: 6.1820 - val_acc: 0.4286 



Epoch 19/50 
 - 0s - loss: 3.1221 - acc: 0.1613 - val_loss: 6.1366 - val_acc: 0.4286 
Epoch 20/50 
 - 0s - loss: 4.6116 - acc: 0.2097 - val_loss: 6.1982 - val_acc: 0.4286 
Epoch 21/50 
 - 0s - loss: 3.6334 - acc: 0.1935 - val_loss: 6.1344 - val_acc: 0.4286 
Epoch 22/50 
 - 0s - loss: 3.1255 - acc: 0.1613 - val_loss: 6.1293 - val_acc: 0.4286 
Epoch 23/50 
 - 0s - loss: 3.7325 - acc: 0.1774 - val_loss: 6.1612 - val_acc: 0.4286 
Epoch 24/50 
 - 0s - loss: 4.4974 - acc: 0.1129 - val_loss: 6.1834 - val_acc: 0.4286 
Epoch 25/50 
 - 0s - loss: 5.0983 - acc: 0.1613 - val_loss: 6.1849 - val_acc: 0.4286 
Epoch 26/50 
 - 0s - loss: 3.7952 - acc: 0.1452 - val_loss: 6.1768 - val_acc: 0.4286 
Epoch 27/50 
 - 0s - loss: 3.7837 - acc: 0.1935 - val_loss: 6.1596 - val_acc: 0.4286 
Epoch 28/50 
 - 0s - loss: 3.7889 - acc: 0.1290 - val_loss: 6.1461 - val_acc: 0.4286 
Epoch 29/50 
 - 0s - loss: 3.6361 - acc: 0.1290 - val_loss: 6.2393 - val_acc: 0.4286 
Epoch 30/50 
 - 0s - loss: 3.6965 - acc: 0.1774 - val_loss: 6.2722 - val_acc: 0.4286 
Epoch 31/50 
 - 0s - loss: 4.6424 - acc: 0.1452 - val_loss: 6.2575 - val_acc: 0.4286 
Epoch 32/50 
 - 0s - loss: 4.7173 - acc: 0.1290 - val_loss: 6.2461 - val_acc: 0.4286 
Epoch 33/50 
 - 0s - loss: 4.4262 - acc: 0.1452 - val_loss: 6.2349 - val_acc: 0.4286 
Epoch 34/50 
 - 0s - loss: 3.1356 - acc: 0.1613 - val_loss: 6.2662 - val_acc: 0.4286 
Epoch 35/50 
 - 0s - loss: 3.9161 - acc: 0.1452 - val_loss: 6.2959 - val_acc: 0.4286 
Epoch 36/50 
 - 0s - loss: 4.2455 - acc: 0.1290 - val_loss: 6.3220 - val_acc: 0.4286 
Epoch 37/50 
 - 0s - loss: 4.7273 - acc: 0.1290 - val_loss: 6.3437 - val_acc: 0.4286 
Epoch 38/50 
 - 0s - loss: 4.4894 - acc: 0.0968 - val_loss: 6.3476 - val_acc: 0.4286 
Epoch 39/50 
 - 0s - loss: 3.7860 - acc: 0.1774 - val_loss: 6.3510 - val_acc: 0.4286 
Epoch 40/50 



 - 0s - loss: 3.3067 - acc: 0.1613 - val_loss: 6.3546 - val_acc: 0.4286 
Epoch 41/50 
 - 0s - loss: 4.1955 - acc: 0.2097 - val_loss: 6.2628 - val_acc: 0.4286 
Epoch 42/50 
 - 0s - loss: 4.0090 - acc: 0.0968 - val_loss: 6.1994 - val_acc: 0.4286 
Epoch 43/50 
 - 0s - loss: 4.4169 - acc: 0.1613 - val_loss: 6.1602 - val_acc: 0.4286 
Epoch 44/50 
 - 0s - loss: 5.7774 - acc: 0.1290 - val_loss: 6.1195 - val_acc: 0.4286 
Epoch 45/50 
 - 0s - loss: 3.3043 - acc: 0.1935 - val_loss: 6.0806 - val_acc: 0.4286 
Epoch 46/50 
 - 0s - loss: 4.0351 - acc: 0.1613 - val_loss: 6.0491 - val_acc: 0.4286 
Epoch 47/50 
 - 0s - loss: 3.7153 - acc: 0.2097 - val_loss: 5.9780 - val_acc: 0.4286 
Epoch 48/50 
 - 0s - loss: 3.0653 - acc: 0.1774 - val_loss: 5.8493 - val_acc: 0.4286 
Epoch 49/50 
 - 0s - loss: 3.6765 - acc: 0.1613 - val_loss: 5.6734 - val_acc: 0.4286 
Epoch 50/50 
 - 0s - loss: 4.7502 - acc: 0.1290 - val_loss: 5.5554 - val_acc: 0.4286 
 
 
 
GRU training 
Train on 62 samples, validate on 7 samples 
Epoch 1/50 
2018-12-04 05:44:49.366761: I tensorflow/core/common_runtime/process_util.cc:69] Creating 
new thread pool with default inter op setting: 2. Tune using inter_op_parallelism_threads for 
best performance. 
 - 8s - loss: 2.0880 - acc: 0.2419 - val_loss: 2.0848 - val_acc: 0.2857 
Epoch 2/50 
 - 7s - loss: 2.0839 - acc: 0.1613 - val_loss: 2.0801 - val_acc: 0.2857 
Epoch 3/50 
 - 7s - loss: 2.0793 - acc: 0.1613 - val_loss: 2.0754 - val_acc: 0.2857 
Epoch 4/50 
 - 7s - loss: 2.0746 - acc: 0.1613 - val_loss: 2.0706 - val_acc: 0.2857 
Epoch 5/50 
 - 7s - loss: 2.0699 - acc: 0.1613 - val_loss: 2.0659 - val_acc: 0.2857 
Epoch 6/50 
 - 7s - loss: 2.0652 - acc: 0.1613 - val_loss: 2.0612 - val_acc: 0.2857 
Epoch 7/50 
 - 7s - loss: 2.0605 - acc: 0.1613 - val_loss: 2.0566 - val_acc: 0.2857 



Epoch 8/50 
 - 7s - loss: 2.0559 - acc: 0.1613 - val_loss: 2.0521 - val_acc: 0.2857 
Epoch 9/50 
 - 7s - loss: 2.0514 - acc: 0.1613 - val_loss: 2.0476 - val_acc: 0.2857 
Epoch 10/50 
 - 7s - loss: 2.0469 - acc: 0.1613 - val_loss: 2.0432 - val_acc: 0.2857 
Epoch 11/50 
 - 7s - loss: 2.0424 - acc: 0.1613 - val_loss: 2.0388 - val_acc: 0.2857 
Epoch 12/50 
 - 7s - loss: 2.0381 - acc: 0.1613 - val_loss: 2.0345 - val_acc: 0.2857 
Epoch 13/50 
 - 7s - loss: 2.0338 - acc: 0.1613 - val_loss: 2.0303 - val_acc: 0.2857 
Epoch 14/50 
 - 7s - loss: 2.0295 - acc: 0.1613 - val_loss: 2.0262 - val_acc: 0.2857 
Epoch 15/50 
 - 7s - loss: 2.0253 - acc: 0.1613 - val_loss: 2.0221 - val_acc: 0.2857 
Epoch 16/50 
 - 7s - loss: 2.0212 - acc: 0.1613 - val_loss: 2.0181 - val_acc: 0.2857 
Epoch 17/50 
 - 7s - loss: 2.0172 - acc: 0.1613 - val_loss: 2.0141 - val_acc: 0.2857 
Epoch 18/50 
 - 7s - loss: 2.0132 - acc: 0.1613 - val_loss: 2.0102 - val_acc: 0.2857 
Epoch 19/50 
 - 7s - loss: 2.0093 - acc: 0.1613 - val_loss: 2.0064 - val_acc: 0.2857 
Epoch 20/50 
 - 7s - loss: 2.0055 - acc: 0.1613 - val_loss: 2.0026 - val_acc: 0.0000e+00 
Epoch 21/50 
 - 7s - loss: 2.0017 - acc: 0.1613 - val_loss: 1.9989 - val_acc: 0.0000e+00 
Epoch 22/50 
 - 7s - loss: 1.9980 - acc: 0.1613 - val_loss: 1.9952 - val_acc: 0.0000e+00 
Epoch 23/50 
 - 7s - loss: 1.9944 - acc: 0.1613 - val_loss: 1.9917 - val_acc: 0.0000e+00 
Epoch 24/50 
 - 7s - loss: 1.9908 - acc: 0.1613 - val_loss: 1.9881 - val_acc: 0.0000e+00 
Epoch 25/50 
 - 7s - loss: 1.9873 - acc: 0.1613 - val_loss: 1.9849 - val_acc: 0.0000e+00 
Epoch 26/50 
 - 7s - loss: 1.9838 - acc: 0.2097 - val_loss: 1.9817 - val_acc: 0.0000e+00 
Epoch 27/50 
 - 7s - loss: 1.9803 - acc: 0.2097 - val_loss: 1.9785 - val_acc: 0.0000e+00 
Epoch 28/50 
 - 7s - loss: 1.9769 - acc: 0.2097 - val_loss: 1.9755 - val_acc: 0.0000e+00 
Epoch 29/50 



 - 7s - loss: 1.9735 - acc: 0.2097 - val_loss: 1.9727 - val_acc: 0.0000e+00 
Epoch 30/50 
 - 7s - loss: 1.9703 - acc: 0.2097 - val_loss: 1.9699 - val_acc: 0.0000e+00 
Epoch 31/50 
 - 7s - loss: 1.9670 - acc: 0.2097 - val_loss: 1.9671 - val_acc: 0.0000e+00 
Epoch 32/50 
 - 7s - loss: 1.9638 - acc: 0.2097 - val_loss: 1.9644 - val_acc: 0.0000e+00 
Epoch 33/50 
 - 7s - loss: 1.9606 - acc: 0.2097 - val_loss: 1.9617 - val_acc: 0.0000e+00 
Epoch 34/50 
 - 8s - loss: 1.9575 - acc: 0.2097 - val_loss: 1.9591 - val_acc: 0.0000e+00 
Epoch 35/50 
 - 9s - loss: 1.9545 - acc: 0.2097 - val_loss: 1.9566 - val_acc: 0.0000e+00 
Epoch 36/50 
 - 9s - loss: 1.9514 - acc: 0.2097 - val_loss: 1.9540 - val_acc: 0.0000e+00 
Epoch 37/50 
 - 9s - loss: 1.9486 - acc: 0.2097 - val_loss: 1.9516 - val_acc: 0.0000e+00 
Epoch 38/50 
 - 13s - loss: 1.9456 - acc: 0.2097 - val_loss: 1.9492 - val_acc: 0.0000e+00 
Epoch 39/50 
 - 18s - loss: 1.9428 - acc: 0.2097 - val_loss: 1.9468 - val_acc: 0.0000e+00 
Epoch 40/50 
 - 18s - loss: 1.9400 - acc: 0.2097 - val_loss: 1.9445 - val_acc: 0.0000e+00 
Epoch 41/50 
 - 18s - loss: 1.9373 - acc: 0.2097 - val_loss: 1.9422 - val_acc: 0.0000e+00 
Epoch 42/50 
 - 18s - loss: 1.9346 - acc: 0.2097 - val_loss: 1.9399 - val_acc: 0.0000e+00 
Epoch 43/50 
 - 18s - loss: 1.9319 - acc: 0.2097 - val_loss: 1.9377 - val_acc: 0.0000e+00 
Epoch 44/50 
 - 18s - loss: 1.9293 - acc: 0.2097 - val_loss: 1.9356 - val_acc: 0.0000e+00 
Epoch 45/50 
 - 18s - loss: 1.9268 - acc: 0.2097 - val_loss: 1.9335 - val_acc: 0.0000e+00 
Epoch 46/50 
 - 17s - loss: 1.9242 - acc: 0.2097 - val_loss: 1.9314 - val_acc: 0.0000e+00 
Epoch 47/50 
 - 18s - loss: 1.9218 - acc: 0.2097 - val_loss: 1.9294 - val_acc: 0.0000e+00 
Epoch 48/50 
 - 18s - loss: 1.9194 - acc: 0.2097 - val_loss: 1.9274 - val_acc: 0.0000e+00 
Epoch 49/50 
 - 18s - loss: 1.9169 - acc: 0.2097 - val_loss: 1.9254 - val_acc: 0.0000e+00 
Epoch 50/50 
 - 18s - loss: 1.9146 - acc: 0.2097 - val_loss: 1.9235 - val_acc: 0.0000e+00 


