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Preface: 

 

With the evolution of latest personal assistants like Siri/Google assistant,          

chatbots became the biggest trend in every application. But all of them lack             

one important aspect called Context. Context based conversations are still an           

unsolved problem. We want to combine various techniques and provide our           

solution for conversation agents driven to speech to text conversions.  
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Abstract 

 

In this project, we are using natural language techniques to develop a            

conversational agent using sequence to sequence long short-term memory cell          

neural network (LSTM). Neural Networks can be used to do more than            

classification such as mapping of complex functions. The user will be able to             

converse with the system using audio and will receive audio responses with            

context to the conversation. The user can say anything to the system, the             

sentences are converted to text and pre-processed and the LSTM will be used             

to extract the semantic information between the sentences. The aim is to help             

the user make decisions by storing previous context.  

 

 

 

 

 

 

 

 

 

 

 



1.  Introduction 

 

1.1. Objective  

 

The objective of this project is to create a voice based conversational agent             

which can mimic a human conversation by maintaining the state of the            

conversation and responding in the current context. 

 

 

1.2. What is the problem  

 

The problem with chatbots are that they are not trained to respond to all              

possible scenarios and often result in closed conversations. Also, the          

responses generated are based on the previous message it receives. To           

determine the best possible response for any given message it receives, the            

agent has to hold context. This will help the agent to respond to the message               

with the relevant information and ask follow up questions to continue the            

conversation. Figure 1 shows an example of how chatbots are not able to             

understand our intentions and are not able to get us the correct information. 

 



 

Figure 1: Problems with chatbot 

Mimicking a human conversation is complex since they include sarcasm,          

leverage contextual information for a response and reading between the lines.           

A bot cannot hold contextual information for more than a few chats and end              

up losing track of what the user was saying unless they are powered by              

natural language processing technology. Also developers forget to narrow the          

scope of focus and do not try to solve problems outside the scope.  

 

Chatbots represent an effective way to scale messaging with users. But this            

sometimes leaves users frustrated if the chatbot is built without a clear            

understanding of the current pitfalls. 

 

 

1.3. Why this is project related to this class  

 



In this project, we are going to apply various models to extract useful             

information from the voice input message and will train the model to respond             

within the same context. In natural language processing, we care about           

understanding the key insight of the given information which is related to our             

project in which we are interested in discovering various techniques to model            

out chatbot that can be applied to many industries. The approach we will take              

to model a conversational agent to generate responses will utilize multiple           

techniques in natural language processing such as sequence to sequence          

modelling, LSTM networks. The voice input file will be preprocessed utilizing           

techniques in natural language processing that are crucial for accurate feature           

extraction and responding to users messages within the same context. 

 

 

1.4. Why other approach is no good  

 

Chatbots used to build using a rule based model which could not train the bot               

to respond to all possible scenarios. Machine learning methods have helped           

understand how responses can be generated instead of just using the           

responses used for training. 

The challenge is to create a bot which can understand the context of a              

conversation, hold a long conversation, handle flow based conversations and          

multi turn dialogues. 

The Google Language API had incorporated a contextual algorithm in its           

searches but the results were based on user search patterns and not the             

current flow of the conversation. 



 

Figure 2: Google Language API 

 

Most bots are built on a decision tree logic where the response depends on the               

keywords found in the input given by the user. There are very few bots with               

linguistic and natural language learning capabilities. Most companies try to be           

the first to deploy bots in a category, resulting in poor customer experience or              

irrelevant use cases. 

 

 

1.5. Why you think your approach is better  

 

In our project, we are trying to build a conversational agent that can respond              

to messages within the given context and also help make decisions for you. To              

help provide the user a more personalized experience, the user can provide an             

audio input and will get a response as an audio file. There are two types of                

chatbots: Retrieval based bots come with a set of written responses to            

minimize grammatical errors and solve simple recurring problems but does          

not come with responses for all possible scenarios. Generative chat bots come            



with responses which are generated by a program without any active human            

assistance. Their advantage over retrieval based is that they can easily be            

adapted or trained to be used in diverse domains. 

 

To understand the context of a conversation, hold a long conversation, handle            

flow based conversations and multi turn dialogues, our proposed approach          

has the following steps:  

 

1. Convert the audio message into a text file. 

2. Text preprocessing: Tokenize the words, remove stop words, perform         

stemming and lemmatization. 

3. Bag of words: Map each word to a n*n dimensional vector 

4. TF-IDF: Rescale frequency of common words and use inverse document          

frequency to score rare words across documents. 

5. Cosine similarity: Find similarity between 2 documents by taking their          

dot product. 

6. Long short term memory (LSTM) neural network: A recurrent neural          

network can also be used to train the model but it suffers from two              

problems which makes it unstable. These problems are vanishing         

gradient and exploding gradient. LSTM is a form of RNN that learns long             

term dependencies of sequence inputs and remembers information for         

long periods of time. They predict the likelihood of a word to show up in               

a sentence given a sequence of previous input words.  

Figure 3 shows the components of a LSTM. 

a. Forget gate (forgetting) is used to filter the amount of past           



information the LSTM should keep such as when the subject of           

interest changes during a conversation. 

b. Input gate (ignoring) decides which information should be input         

into the network. 

c. Candidate state (selection) generates a vector of potential        

candidate 

d. The ⊕ and ⊗ symbols are used to filter out possibilities. 

 

Figure 3: LSTM model 

 

Figure 4 shows an example between a good chatbot and a bad chatbot. The              

good chatbot did a better job at automating the process and was faster than              

using a chatbot without context. 

 



 

Figure 4: Good chatbot vs Bad chatbot 

 1.6. Area or scope of investigation  

 

The proposed conversational agent should be able to hold both long and short             

conversations using a generative based model to generate responses. Training          

a model to mimic a human conversation is still a work in progress. Some of the                

challenges include: speech recognition and synthesis, syntactic and semantic         

analysis, real world knowledge. Linking all these technologies is the hardest           

part in order to create a conversational flow and avoid dead ends. 

 

 

1. Theoretical background of the problem: 

A chatbot (also known as a smartbots, talkbot, chatterbot, Bot, IM bot,            

interactive agent, Conversational interface or Artificial Conversational Entity)        

is a computer program or an artificial intelligence which conducts a           

https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Artificial_intelligence


conversation via auditory or textual methods. Such programs are often          

designed to convincingly simulate how a human would behave as a           

conversational partner, thereby passing the Turing test. Chatbots are typically          

used in dialog systems for various practical purposes including customer          

service or information acquisition. Some chatterbots use sophisticated natural         

language processing systems, but many simpler systems scan for keywords          

within the input, then pull a reply with the most matching keywords, or the              

most similar wording pattern, from a database. 

The term "ChatterBot" was originally coined by Michael Mauldin (creator of           

the first Verbot, Julia) in 1994 to describe these conversational programs.           

Today, most chatbots are either accessed via virtual assistants such as Google            

Assistant and Amazon Alexa, via messaging apps such as Facebook Messenger           

or WeChat, or via individual organizations' apps and websites. Chatbots can           

be classified into usage categories such as conversational commerce         

(e-commerce via chat), analytics, communication, customer support, design,        

developer tools, education, entertainment, finance, food, games, health, HR,         

marketing, news, personal, productivity, shopping, social, sports, travel and         

utilities. 

In 1950, Alan Turing's famous article "Computing Machinery and Intelligence"          

was published, which proposed what is now called the Turing test as a             

criterion of intelligence. This criterion depends on the ability of a computer            

program to impersonate a human in a real-time written conversation with a            

human judge, sufficiently well that the judge is unable to distinguish           

reliably—on the basis of the conversational content alone—between the         

https://en.wikipedia.org/wiki/Conversation
https://en.wikipedia.org/wiki/Turing_test
https://en.wikipedia.org/wiki/Dialog_system
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Michael_Loren_Mauldin
https://en.wikipedia.org/wiki/Verbot
https://en.wikipedia.org/wiki/Virtual_assistant_(artificial_intelligence)
https://en.wikipedia.org/wiki/Google_Assistant
https://en.wikipedia.org/wiki/Google_Assistant
https://en.wikipedia.org/wiki/Amazon_Alexa
https://en.wikipedia.org/wiki/Messaging_apps
https://en.wikipedia.org/wiki/Facebook_Messenger
https://en.wikipedia.org/wiki/WeChat
https://en.wikipedia.org/wiki/Conversational_commerce
https://en.wikipedia.org/wiki/E-commerce
https://en.wikipedia.org/wiki/Alan_Turing
https://en.wikipedia.org/wiki/Computing_Machinery_and_Intelligence
https://en.wikipedia.org/wiki/Turing_test


program and a real human. The notoriety of Turing's proposed test stimulated            

great interest in Joseph Weizenbaum's program ELIZA, published in 1966,          

which seemed to be able to fool users into believing that they were conversing              

with a real human. However, Weizenbaum himself did not claim that ELIZA            

was genuinely intelligent, and the Introduction to his paper presented it more            

as a debunking exercise: 

[In] artificial intelligence ... machines are made to behave in wondrous ways,            

often sufficient to dazzle even the most experienced observer. But once a            

particular program is unmasked, once its inner workings are explained ... its            

magic crumbles away; it stands revealed as a mere collection of procedures ...             

The observer says to himself "I could have written that". With that thought he              

moves the program in question from the shelf marked "intelligent", to that            

reserved for curios ... The object of this paper is to cause just such a               

re-evaluation of the program about to be "explained". Few programs ever           

needed it more. 

ELIZA's key method of operation (copied by chatbot designers ever since)           

involves the recognition of cue words or phrases in the input, and the output              

of corresponding pre-prepared or pre-programmed responses that can move         

the conversation forward in an apparently meaningful way (e.g. by responding           

to any input that contains the word 'MOTHER' with 'TELL ME MORE ABOUT             

YOUR FAMILY'). Thus an illusion of understanding is generated, even though           

the processing involved has been merely superficial. ELIZA showed that such           

an illusion is surprisingly easy to generate, because human judges are so            

https://en.wikipedia.org/wiki/Joseph_Weizenbaum
https://en.wikipedia.org/wiki/ELIZA


ready to give the benefit of the doubt when conversational responses are            

capable of being interpreted as "intelligent". 

Interface designers have come to appreciate that humans' readiness to          

interpret computer output as genuinely conversational—even when it is         

actually based on rather simple pattern-matching—can be exploited for useful          

purposes. Most people prefer to engage with programs that are human-like,           

and this gives chatbot-style techniques a potentially useful role in interactive           

systems that need to elicit information from users, as long as that information             

is relatively straightforward and falls into predictable categories. Thus, for          

example, online help systems can usefully employ chatbot techniques to          

identify the area of help that users require, potentially providing a "friendlier"            

interface than a more formal search or menu system. This sort of usage holds              

the prospect of moving chatbot technology from Weizenbaum's "shelf ...          

reserved for curios" to that marked "genuinely useful computational         

methods". 

The classic historic early chatbots are ELIZA (1966) and PARRY (1972). More            

recent notable programs include A.L.I.C.E., Jabberwacky and D.U.D.E (Agence         

Nationale de la Rechercheand CNRS 2006). While ELIZA and PARRY were           

used exclusively to simulate typed conversation, many chatbots now include          

functional features such as games and web searching abilities. In 1984, a book             

called The Policeman's Beard is Half Constructed was published, allegedly          

written by the chatbot Racter (though the program as released would not            

have been capable of doing so). 

https://en.wikipedia.org/wiki/ELIZA
https://en.wikipedia.org/wiki/PARRY
https://en.wikipedia.org/wiki/Artificial_Linguistic_Internet_Computer_Entity
https://en.wikipedia.org/wiki/Jabberwacky
https://en.wikipedia.org/wiki/Agence_Nationale_de_la_Recherche
https://en.wikipedia.org/wiki/Agence_Nationale_de_la_Recherche
https://en.wikipedia.org/wiki/CNRS
https://en.wikipedia.org/wiki/Racter


One pertinent field of AI research is natural language processing. Usually,           

weak AI fields employ specialized software or programming languages         

created specifically for the narrow function required. For example, A.L.I.C.E.          

uses a markup language called AIML, which is specific to its function as a              

conversational agent, and has since been adopted by various other developers           

of, so called, Alicebots. Nevertheless, A.L.I.C.E. is still purely based on pattern            

matching techniques without any reasoning capabilities, the same technique         

ELIZA was using back in 1966. This is not strong AI, which would require              

sapience and logical reasoning abilities. 

Jabberwacky learns new responses and context based on real-time user          

interactions, rather than being driven from a static database. Some more           

recent chatbots also combine real-time learning with evolutionary algorithms         

that optimise their ability to communicate based on each conversation held.           

Still, there is currently no general purpose conversational artificial         

intelligence, and some software developers focus on the practical aspect,          

information retrieval. 

Chatbot competitions focus on the Turing test or more specific goals. Two            

such annual contests are the Loebner Prize and The Chatterbox Challenge           

(offline since 2015, materials can still be found from web archives). 

According to Forrester (2015), AI will replace 16 percent of American jobs by             

the end of the decade. Chatbots have been used in applications such as             

customer service, sales and product education. However, a study conducted          

by Narrative Science in 2015 found that 80 percent of their respondents            

believe AI improves worker performance and creates jobs. 

https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Artificial_general_intelligence
https://en.wikipedia.org/wiki/Markup_language
https://en.wikipedia.org/wiki/AIML
https://en.wikipedia.org/wiki/Dialogue_system
https://en.wikipedia.org/wiki/Alicebot
https://en.wikipedia.org/wiki/Pattern_matching
https://en.wikipedia.org/wiki/Pattern_matching
https://en.wikipedia.org/wiki/Sapience
https://en.wikipedia.org/wiki/Evolutionary_algorithm
https://en.wikipedia.org/wiki/Information_retrieval
https://en.wikipedia.org/wiki/Loebner_Prize


  

2. Related research to solve the problem: 

  

a. Sample Efficient Deep Reinforcement Learning for Dialogue Systems With         

Large Action Spaces: 

  

In spoken dialogue systems, Aim was to deploy artificial intelligence to build            

automated dialogue agents that can converse with humans. A part of this            

effort is the policy optimization task, which attempts to find a policy            

describing how to respond to humans, in the form of a function taking the              

current state of the dialogue and returning the response of the system. In this              

paper, we investigate deep reinforcement learning approaches to solve this          

problem. Particular attention is given to actor-critic methods, off-policy         

reinforcement learning with experience replay, and various methods aimed at          

reducing the bias and variance of estimators. When combined, these methods           

result in the previously proposed ACER algorithm that gave competitive          

results in gaming environments. These environments, however, are fully         

observable and have a relatively small action set so, in this paper, we examine              

the application of ACER to dialogue policy optimization. It can be shown that             

this method beats the current state of the art in deep learning approaches for              

spoken dialogue systems. This not only leads to a more sample efficient            

algorithm that can train faster, but also allows us to apply the algorithm in              

more difficult environments than before. We thus experiment with learning in           

a very large action space, which has two orders of magnitude more actions             



than previously considered. We find that ACER trains significantly faster than           

the current state of the art. 

  

b. A neural-network based chat bot: 

  

In this paper, they explored the avenues of teaching computers to process            

natural language text by developing a chat bot. They took an experiential            

approach from a beginner level of understanding, in trying to appreciate the            

processes, techniques, the power and possibilities of natural language         

processing using recurrent neural networks (RNN). To achieve this, they kick           

started our experiment by implementing sequence to sequence long         

short-term memory cell neural network (LSTM) in conjunction with Google          

word2vec. Their results show the relationship between the number of          

training times and the quality of language model used for training our model             

bot affect the quality of its prediction output. Furthermore, they demonstrate           

reasoning and generative capabilities or RNN based chat bot. 

  

Let's imagine for a minute world where instead of a human being at a              

customer support centre, a chat bot helps us fix our router and the internet              

starts working again. Such an invention would be of great convenience in this             

ever connected world where we cannot afford to wait several hours per year             

to fix our internet connection, it is the internet. But is it possible? Simple              

answer is yes. Today's applications and technologies like Apple's Siri,          

Microsoft Cortana, are at the forefront of highly personalised virtual          

assistants. They do not do what we have imagined but they are, by no              



reasonable doubt, a stone throw away from being able to do so. Now where do               

we begin? 

The most obvious solution that leads us one step closer to living in our              

imaginary world is knowing that the chat bot must be able to understand             

messages we present it and how to respond appropriately. But computers are            

dumb. For starters, they use numbers raised to the powers of two, which is              

binary and that is all they know, whilst humans normally use decimal            

numbers, expressed as powers of ten, humans can read, write, and are            

intelligent. How do we make them understand our natural language when all            

they know is 0 and 1? Luckily for us there is a field of computer science called                 

Natural Language Processing (NLP) and linguistics that comes to our rescue.           

As the name suggests, NLP is a form of artificial intelligence that helps             

machines “read” text by simulating the human skill to comprehend language.           

Given the benefit of time, driven by cognitive and semantic technologies,           

natural language processing will make great strides in human -like          

understanding of speech and text, thereby enabling computers to understand          

what human language input is meant to communicate. 

A chat bot is a computer program capable of holding conversations in a single              

or multiple human languages as if it were human. Applications can range from             

customer assistance, translation, home automation to name just a few. This           

paper explores the technologies behind such innovation, implements a simple          

model and experiments with the model. 

Recent research has demonstrated that deep neural networks can be trained           

to do more than classification but mapping of complex functions to complex            

functions. An example of this mapping is the sequence to sequence mapping            



done in language translation. This same mapping can be applied to           

conversational agents, i.e. to map input to responses by using probabilistic           

computation of occurrence of tokens in sequences that belong to a finite set of              

formally defined model of utility such as a language model. We develop our             

own sequence to sequence model with the intention of experimenting with           

this technology in hope of understanding the underlying functionality,         

concepts and capabilities of deep neural networks. 

We trained our model on a small conversational dataset to kick start a series              

of experiments with the model. 

 

 This research is inspired by the investigation initiated by a group of            

researchers who treated generation of conversational dialogue as a statistical          

machine translation (SMT) problem. Previously dialogue systems were based         

on hand-coded rules, typically either building statistical models on top of           

heuristic rules or templates or learning generation rules from a minimal set of             

authored rules or labels. The SMT is data driven and it learns to converse from               

human to human corpora. SMT researched on modelling conversation from          

micro blogging sites. In their research they viewed response generation as a            

translation problem where a post needed to be translated into a response.            

However, it was discovered that response generation is considerably more          

difficult than translating from one language to another due to lack of a             

plausible response and lack of phrase alignment between each post and           

response. Improved upon by re-scoring the output of a phrasal SMT-based           

conversation system with a SEQ2SEQ model that incorporates prior context.          

They did this using an extension of (Cho et al 2014) Hierarchical Recurrent             



Encoder Decoder Architecture (HRED). Hidden state LSTMs that implement         

GRUs were the ingredient that improved on STM. Both the encoder and            

decoder make use of the hidden state LSTM/GRUs. However in their paper            

they were using triples not full length dialogue conversations which they           

mentioned in their future work. One of the biggest problems was that            

conversational NLP systems could not keep the context of a conversation but            

was only able to respond from input to input. Hochreitern et al. wrote a paper               

on long short memory (LSTM) retention in deep nets. At the time of             

publication of paper, they had not found practical solutions for the LSTM but             

now it is being used by conversational NLP systems to keep the context of a               

conversation as it uses the LSTM to keep previous responses and inputs of             

text into a deep net. Training proposes techniques of improving training in            

deep nets which overcome the vanishing gradient or exploding gradient in           

Neural nets by using a stack of restricted Boltzman machine. The vanishing            

gradient would make the layers closer to the output learn faster than ones             

closer the input. This would end up with a network that has the output layers               

trained whilst the input layers were not trained. Tsung-Hsien Wen at al.            

proposed a paper on NLG using LSTM for spoken dialog system (SDS) which             

help in the structuring of Chatbot. Finally, Mikolov et al. at google produced a              

paper that describes the efficient use of word vectors for large data sets which              

is currently being used by google for its Deep mind machine. Our Chat Bot will               

use Word2vec which is based on the publication of Mikolov et al. to convert              

words in its language into vectors representation. 

  



Chat bot models come packaged in different shapes and sizes. To begin with,             

there are two types of Chat bots i.e. Retrieval-based and Generative. 

The Retrieval based bots come with a set of written responses to minimize             

grammatical errors, improve coherence, and avoid a situation where the          

system can be hacked to respond in less appropriate ways. Retrieval based            

chat bots best suit closed domain systems. 

Closed domain chat bot systems are built to specifically solve simple recurring            

problems for instance an elevator voice assistant. The draw backs with closed            

domain chat bots is that the set of data they come with does not come with                

responses for all possible scenarios. 

Generative model conversational agents are more intelligent but more difficult          

to implement than retrieval based chat bots. With generative chat bots,           

responses are generated by a program without any active human assistance.           

Their advantage over retrieval based is that they can easily be adapted or             

trained to be used in diverse domains. 

Open domain systems include popular virtual assistance services like Siri and           

Cortana which are not constrained to a particular type of a conversation            

domain. Apple users can ask Siri anything from time of day to business advice              

and still get reasonable human like responses. 

  

c. A Neural Chatbot with Personality 

  

Conversational modeling is an important task in natural language processing          

as well as machine learning. Like most important tasks, it’s not easy.            

Previously, conversational models have been focused on specific domains,         



such as booking hotels or recommending restaurants. They were built using           

hand-crafted rules, like ChatScript, a popular rule-based conversational        

model. 

  

In 2014, the sequence to sequence model being used for translation opened            

the possibility of phrasing dialogues as a translation problem: translating          

from an utterance to its response. The systems built using this principle, while             

conversing fairly fluently, aren’t very convincing because of their lack of           

personality and inconsistent persona. 

  

A basic sequence-to-sequence model, as introduced in Cho et al., 2014,           

consists of two recurrent neural networks (RNNs): an encoder that processes           

the input and a decoder that generates the output. The encoder maps a             

variable-length source sequence to a fixed-length vector, and the decoder          

maps the vector representation back to a variable length target sequence.           

Sequence-to-sequence is often used with attention-based that allows the         

decoder more direct access to the input. This model has been successfully            

used for many different natural language processing tasks, such as alignment,           

translation, and summarization. 

Conversational modeling can be phrased as a mapping between utterances          

and responses, and therefore can benefit from the encoder-decoder setup. In           

our model, the encoder processes an utterance by human, and the decoder            

produces the response to that utterance. We train the word embeddings as we             

train the model. We also use attentional mechanism and experimenting with           

using GLoVe pre-trained word vectors to initialize our word embeddings. 



  

To make the bot speak like a certain character, we train vector embeddings             

for different characters with the hope that these embeddings would be able to             

encode information and style of speech of these characters. These character           

embeddings are trained together with the word embeddings. This is inspired           

by Google’s Zero-shot multilingual translation system. 

3.5 Your solution to solve this problem  

 

Conversational chatbot is one of the most researched topics that is going            

around. Our project involves Voice drives contextual chatbot. So we have           

various components involved for our process.  

 

● Voice to text conversion 

● Text interpretation 

● Tracking and store previous context 

● Respond to the text  

 

Voice to text conversion:  

Since our main goal is to build a conversational bot, we are going to use               

standard google text to voice conversion. We use standard microphone to           

record the voice . Feed the signal to voice to text conversion apis. The result of                

the voice to text conversion apis would be text that is interpreted from the              

text.  

 

Text Interpretation:  



Once we receive the text from the voice to text conversion api, we try to               

interpret the text as a question and answer agent. We interpret the text that              

came by feeding it to the model that we build from our system. Our model               

internally uses LSTM with various techniques to interpret the text and send            

appropriate response which we will discuss in the further sections.  

 

Tracking and store previous context: 

As we take the text input and interpret the text, we store the text within the                

model . Our model uses the old text history that is part of the conversation and                

moves along with further answers. As we take more history of the            

conversation in place, the training process can take a lot of time further             

affecting the accuracy and other tuning parameters.  

 

Respond to the text:  

Once we have the response from the model for the conversation that is going              

on, we make the system read out to us. We use the text to speech conversion                

apis to convert the response output to the voice so that output seems to be a                

voice driven conversation.  

 

The overall flow of the project working is as shown in the below picture:  



 



3.6 where your solution different from others  

Standard chatbots includes text processing using LSTM algorithms. But we are           

planning to use a solution where we combine LSTM with Seq2Seq generation            

with the objective function of semantic coherence. So for semantic coherence,           

We need to measure the adequacy of responses to avoid situations in which             

the generated replies are highly rewarded but are un- grammatical or not            

coherent.We also need to measure the adequacy of responses to avoid           

situations in which the generated replies are highly rewarded but are un-            

grammatical or not coherent. Our model thus integrates the power of           

SEQ2SEQ systems to learn compositional semantic meanings of utterances         

with the strengths of reinforcement learning in optimizing for long-term goals           

across a conversation 

 

3.7 why your solution is better : 

Since our solution includes Seq2Seq model with an optimized Semantic          

coherence function, we are expecting the predicted accuracy would be higher           

than the normal. We have taken two samples of the algorithms as given below.  

 

 

 

 



 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 



 

3.  Hypothesis 

 

The goal of the project is to develop a user-friendly and efficient system for              

developing a conversational agent. The system receives an input in the form of             

a digital audio file and converts it to a text file. Given a text file, we want the                  

system to be able to generate responses to the message by maintaining the             

state of the conversation and responding in the current context. There are            

many algorithms to solve this problem and we select the best ones so that we               

can find the best features to train the model. 

 

3.1 Hypothesis 1 

 

Our goal is to take real time audio files and convert them to text and create a                 

chatbot to mimic a human conversation using an ensemble of data mining            

algorithms.  

 

3.2 Hypothesis 2 

 

The model should generate responses to the messages given by the user as             

input by maintaining the state of the conversation and responding in the            

current context. It should also be able to help the user make decisions using              

previous context and not just the response given in the previous dialogue. 

 



5. Methodology 

 

5.1 How to generate/collect input data? 

We are going to use a dataset form the below sources:  

Cornell Movie Dialog Corpus:  

Ubuntu corpus 

Microsoft’s Social Media Conversation Corpus 

 

5.2 How to solve the problem? 

We are solving the problem using LSTM model using Seq2Seq generation.  

As discussed in the previous sections, our system takes the voice , converts the              

voice to text . Converted text will be fed to the model which will result in the                 

next possible conversation.  

So the approach of the model is as follows:  

LSTM is a special case of RNN. Long Short Term Memory networks – usually              

just called “LSTMs” – are a special kind of RNN, capable of learning long-term              

dependencies. In standard RNNs, this repeating module will have a very           

simple structure, such as a single tanh layer. The repeating module in a             

standard RNN contains a single layer. An RNN contains the number of hidden             

state vectors, which each represent information from the previous time steps.           

For example, the hidden state vector at the 3rd time step will be a function of                

the first 3 words. By this logic, the final hidden state vector of the encoder               

RNN can be thought of as a pretty accurate representation of the whole input              

text. 

https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html
http://dataset.cs.mcgill.ca/ubuntu-corpus-1.0/
https://www.microsoft.com/en-us/download/details.aspx?id=52375&from=http%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fdownloads%2F6096d3da-0c3b-42fa-a480-646929aa06f1%2F


The decoder is another RNN, which takes in the final hidden state vector of the               

encoder and uses it to predict the words of the output reply. Let's look at the                

first cell. The cell's job is to take in the vector representation v, and decide               

which word in its vocabulary is the most appropriate for the output response.             

Mathematically speaking, this means that we compute probabilities for each of           

the words in the vocabulary, and choose the argmax of the values. 

 

The 2nd cell will be a function of both the vector representation v, as well as                

the output of the previous cell. The goal of the LSTM is to estimate the               

following conditional probability. 

 

 

When we deconstruct what that equation is: The left side refers to the             

probability of the output sequence, conditioned on the given input sequence.           

The right side contains the term p(yt|v, y1, …, yt-1), which is a vector of               

probabilities of all the words, conditioned on the vector representation and           

the outputs at the previous time steps. The Pi notation is simply the             

multiplication equivalent of Sigma (or summation). The right hand side can be            

reduced to p(y1|v) * p(y2|v, y1) * p(y3|v, y1, y2) ... and so on. 

 

Let’s go over a quick example before moving on. Let’s take the input text we               

saw in the first image. Given the phrase “Are you free tomorrow?”, let’s think              



about how most people would answer the question. A majority will start with             

something along the lines of “Yes”, “Yeah”, “No”, etc. After we’re done training             

our network, the probability p(y1|v) will be a distribution that looks like the             

following. 

 

The second probability we need to compute, p(y2|v, y1), will be a function of              

the word this distribution y1 as well as the vector representation v. The result              

of the Pi (product) operation will give us the most likely sequence of words,              

which we’ll use as our final response.The most important characteristics of           

sequence to sequence models is the versatility that it provides. When you            

think of traditional ML methods (linear regression, SVMs) and deep learning           

methods like CNNs, these models require a fixed size input, and produce fixed             

size outputs as well. The lengths of the inputs must be known before hand.  

This is a significant limitation to tasks such as machine translation, speech            

recognition, and question answering. These are tasks where we don't know           

the size of the input phrase, and we'd also like to be able to generate variable                

length responses, not just be constrained to one particular output          

representation. Seq2Seq models allow for that flexibility. 

 

 

5.3 Algorithm design 

Our rough pseudo code of the algorithm is as follows:  

The algorithm includes following steps :  



Step 1: Voice to speech conversion.  

String convertToSpeech(String inputWav); 

Step 2: Text to next sentence prediction.  

String getNextSentence(String inputText) { 

//Feed the input text to the LSTM and Seq2Seq generation model with            

//semantic coherence and get the the output text of the sequence.  

} 

Step 3: Convert output text from text 2 to voice:  

Object textToSpeech(String text); 

 

5.4 Language used 

Python:  

Python is an interpreted high-level programming language for        

general-purpose programming. Created by Guido van Rossum and first         

released in 1991, Python has a design philosophy that emphasizes code           

readability, notably using significant whitespace (wiki link)  

 

5.5 Tools used: 

NLTK Libraries 

Tensor flow  

Skykit py 

 

 

 

 



6. Implementation 

 

Used ChatterBot to train the model on Mongo database adapter and enhanced            

the model to give better results. Various datasets from different sources were            

used to train the model. 

 

Chatterbot: ChatterBot is a Python library that makes it easy to generate            

automated responses to a user’s input. ChatterBot uses a selection of           

machine learning algorithms to produce different types of responses. This          

makes it easy for developers to create chat bots and automate           

conversations with users. 

 

An example of typical input would be something like this: 

user: Good morning! How are you doing? 

bot:  I am doing very well, thank you for asking. 

user: You're welcome. 

bot:  Do you like hats? 

Language Independence: The language independent design of ChatterBot        

allows it to be trained to speak any language. Additionally, the           

machine-learning nature of ChatterBot allows an agent instance to improve          

it’s own knowledge of possible responses as it interacts with humans and            

other sources of informative data. 

 

How ChatterBot Works: An untrained instance of ChatterBot starts off with no            

knowledge of how to communicate. Each time a user enters a statement, the             

library saves the text that they entered and the text that the statement was in               

response to. As ChatterBot receives more input the number of responses that            



it can reply and the accuracy of each response in relation to the input              

statement increase. 

The program selects the closest matching response by searching for the 

closest matching known statement that matches the input, it then chooses a 

response from the selection of known responses to that statement. 

 

Process flow diagram: 

 
Figure 5: Process flow 

https://chatterbot.readthedocs.io/en/stable/glossary.html#term-response


6. Data analysis and discussion 

6.1 Output generation 

The input datasets used are: 

ChatterBot Corpus: English words, Greetings , Conversations 

Cornell Movie Dataset 

These datasets were used to train the model. After training, the model is             
tested with sample user inputs to check the results. 

 
6.2 Output analysis 

User Interface: 

 

Figure 6: User Interface 



 

Chatbot results with sample user input: 

 

Figure 7: Chatbot Results 

 

 

Chatbot status on Server side: 



 

Figure 8: Chatbot server status 

 

 

Chatbot result using LSTM: 



 

Figure 9: Chatbot Result using LSTM 

 

 
6.3 Compare output against hypothesis 

Hypothesis: Our goal is to take real time audio files and convert them to text               

and create a chatbot to mimic a human conversation using an ensemble of             

data mining algorithms.  

We have taken a real time audio file, converted it to text and passed the input                

to the chatbot. The response generated by the chatbot is given to the user as               

an audio file for ease of conversation. The scope of responses and the length of               

the response to have a meaningful conversation is still limited. 

 

 



6.4 Abnormal case explanation 

With less training samples, the output generated was out of context and did             
not align with the users input. Training the chatbot on a larger dataset             
improved the accuracy but it was a very small improvement. The accuracy            
of the model was seen to increase as the type of data and source of data                
changed. 

 

 

 

 

 

 

 

 

 

 

 

 

 



7. Conclusions and recommendations 
 

7.1 Summary and conclusions 

In this project, we have taken multiple datasets, preprocessed the data           
using different natural language preprocessing techniques like tokenization,        
stemming, bag of words. Given an input by the user, the chatbot selects             
one of the closest matching responses by searching for the closest           
matching statements using Jaccard similarity and uses Naive Bayes         
classification algorithm to check if the input meets a set of criteria to get a               
valid response. 

 
7.2 Recommendations for future studies 

This project can be further enhanced by training the model with larger data             
sources and data sources from different areas. This will help to have a             
more human like conversation.  
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10. Appendices  

 

10.1 Program source code with documentation  

 

1)Android code for user interface: 

package com.pramod.voicebot; 

 

import java.io.BufferedReader; 

import java.io.IOException; 

import java.io.InputStreamReader; 

import java.net.HttpURLConnection; 

import java.net.MalformedURLException; 

import java.net.URL; 

import java.util.ArrayList; 

import java.util.Locale; 

 

import android.app.Activity; 

import android.content.ActivityNotFoundException; 

import android.content.Intent; 

import android.os.AsyncTask; 

import android.os.Build; 

import android.os.Bundle; 

import android.speech.RecognizerIntent; 

import android.speech.tts.TextToSpeech; 



import android.util.Log; 

import android.view.Menu; 

import android.view.View; 

import android.widget.ImageButton; 

import android.widget.TextView; 

import android.widget.Toast; 

 

import com.pramod.voicebot.R; 

 

public class MainActivity extends Activity { 

 

    private TextView txtSpeechInput; 

    private TextView outputText; 

    private ImageButton btnSpeak; 

    private final int REQ_CODE_SPEECH_INPUT = 100; 

    private TextToSpeech textToSpeech; 

 

 

    @Override 

    protected void onCreate(Bundle savedInstanceState) { 

        super.onCreate(savedInstanceState); 

        setContentView(R.layout.activity_main); 

 

        txtSpeechInput = (TextView) findViewById(R.id.txtSpeechInput); 

        btnSpeak = (ImageButton) findViewById(R.id.btnSpeak); 



        outputText = findViewById(R.id.outputText); 

        // hide the action bar 

        //getActionBar().hide(); 

 

        btnSpeak.setOnClickListener(new View.OnClickListener() { 

 

            @Override 

            public void onClick(View v) { 

                promptSpeechInput(); 

            } 

        }); 

 

textToSpeech = new TextToSpeech(getApplicationContext(), new      

TextToSpeech.OnInitListener() { 

            @Override 

            public void onInit(int status) { 

                if (status == TextToSpeech.SUCCESS) { 

                    int ttsLang = textToSpeech.setLanguage(Locale.US); 

 

                    if (ttsLang == TextToSpeech.LANG_MISSING_DATA 

                            || ttsLang == TextToSpeech.LANG_NOT_SUPPORTED) { 

                        Log.e("TTS", "The Language is not supported!"); 

                    } else { 

                        Log.i("TTS", "Language Supported."); 

                    } 



                    Log.i("TTS", "Initialization success."); 

                } else { 

Toast.makeText(getApplicationContext(), "TTS Initialization    

failed!", Toast.LENGTH_SHORT).show(); 

                } 

            } 

        }); 

 

    } 

 

    /** 

     * Showing google speech input dialog 

     */ 

    private void promptSpeechInput() { 

Intent intent = new     

Intent(RecognizerIntent.ACTION_RECOGNIZE_SPEECH); 

        intent.putExtra(RecognizerIntent.EXTRA_LANGUAGE_MODEL, 

                RecognizerIntent.LANGUAGE_MODEL_FREE_FORM); 

intent.putExtra(RecognizerIntent.EXTRA_LANGUAGE,  

Locale.getDefault()); 

        intent.putExtra(RecognizerIntent.EXTRA_PROMPT, 

                getString(R.string.speech_prompt)); 

        try { 

            startActivityForResult(intent, REQ_CODE_SPEECH_INPUT); 

        } catch (ActivityNotFoundException a) { 



            Toast.makeText(getApplicationContext(), 

                    getString(R.string.speech_not_supported), 

                    Toast.LENGTH_SHORT).show(); 

        } 

    } 

 

    /** 

     * Receiving speech input 

     */ 

    @Override 

protected void onActivityResult(int requestCode, int resultCode, Intent        

data) { 

        super.onActivityResult(requestCode, resultCode, data); 

 

        switch (requestCode) { 

            case REQ_CODE_SPEECH_INPUT: { 

                if (resultCode == RESULT_OK && null != data) { 

 

                    ArrayList<String> result = data 

                            .getStringArrayListExtra(RecognizerIntent.EXTRA_RESULTS); 

                    String text = result.get(0); 

                    txtSpeechInput.setText(text); 

                    callHttpRequest(text); 

                } 

                break; 



            } 

 

        } 

    } 

 

    String ip = "172.20.117.245"; 

    String url = "http://" + ip + ":9999/chatbot/"; 

 

    void callHttpRequest(String text) { 

        String fullUrl = url + text; 

        new HttpTask().execute(fullUrl); 

    } 

 

    @Override 

    public boolean onCreateOptionsMenu(Menu menu) { 

        // Inflate the main; this adds items to the action bar if it is present. 

        getMenuInflater().inflate(R.menu.main, menu); 

        return true; 

    } 

 

 

    class HttpTask extends AsyncTask<String, Integer, String> { 

 

 

        @Override 



        protected String doInBackground(String... urls) { 

URL url = null; // this is url         

http://api.football-data.org/v1/competitions 

            try { 

                url = new URL(urls[0]); 

HttpURLConnection urlConnection = (HttpURLConnection)     

url.openConnection(); 

                try { 

BufferedReader bufferedReader = new BufferedReader(new      

InputStreamReader(urlConnection.getInputStream())); 

                    StringBuilder stringBuilder = new StringBuilder(); 

                    String line; 

                    while ((line = bufferedReader.readLine()) != null) { 

                        stringBuilder.append(line).append("\n"); 

                    } 

                    bufferedReader.close(); 

                    return stringBuilder.toString(); 

                } finally { 

                    urlConnection.disconnect(); 

                } 

            } catch (Exception e) { 

                e.printStackTrace(); 

            } 

 

            return null; 



        } 

 

        @Override 

        protected void onPostExecute(String output) { 

            outputText.setText(output); 

 

            int speechStatus = 0; 

            if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.LOLLIPOP) { 

speechStatus = textToSpeech.speak(output,    

TextToSpeech.QUEUE_FLUSH, null, null); 

            } else { 

speechStatus = textToSpeech.speak(output,    

TextToSpeech.QUEUE_FLUSH, null); 

            } 

            if (speechStatus == TextToSpeech.ERROR) { 

                Log.e("TTS", "Error in converting Text to Speech!"); 

            } 

        } 

    } 

 

    public void onDestroy() { 

        super.onDestroy(); 

        if (textToSpeech != null) { 

            textToSpeech.stop(); 

            textToSpeech.shutdown(); 



        } 

    } 

 

} 

 

 

2) Training and Pre-processing code for Cornell Movie Dataset: 

from chatterbot import ChatBot 

from chatterbot.trainers import ChatterBotCorpusTrainer 

from flask import Flask, render_template 

from chatterbot.conversation import Statement 

from chatterbot.trainers import Trainer 

from chatterbot import utils 

from flask import Flask, render_template 

 

app = Flask(__name__) 

 

chatbot = ChatBot('PramodBot', 

                  storage_adapter='chatterbot.storage.MongoDatabaseAdapter', 

                  database_uri='mongodb://localhost/voicebot', 

                  database='localbot', 

                  ) 

 

 

@app.route("/chatbot/<string:query>/") 



def index(query): 

    print(query) 

    reply = chatbot.get_response(query) 

    return str(reply) 

 

 

class CornellMovieDatabaseTrainer(Trainer): 

 

    def preprocess(self, path): 

        with open(path + 'xaa', 'r', encoding="ISO-8859-1") as file: 

            core_move_data = file.readlines() 

        cornel_data = [] 

        for line in core_move_data: 

            line_list = line.split("\n")[0].split("+++$+++") 

            cornel_data.append(line_list[3:]) 

 

        result = [] 

        last_point = '' 

        for i in range(0, len(cornel_data)): 

            if last_point == cornel_data[i][0]: 

                result[-1] += " " + cornel_data[i][1] 

            else: 

                result.append(cornel_data[i][1]) 

                last_point = cornel_data[i][0] 

 



        return result 

 

    def train(self, datasetpath): 

        """ 

        Train the chat bot based on the provided list of 

        statements that represents a single conversation. 

        """ 

        dataset = self.preprocess(datasetpath) 

        previous_statement_text = None 

 

        for conversation_count, text in enumerate(dataset): 

            if self.show_training_progress: 

                utils.print_progress_bar( 

                    'CornelMovieDatabase Trainer', 

                    conversation_count + 1, len(dataset) 

                ) 

 

            statement = self.get_preprocessed_statement( 

                Statement( 

                    text=text, 

                    in_response_to=previous_statement_text, 

                    conversation='training' 

                ) 

            ) 

 



            previous_statement_text = statement.text 

 

            self.chatbot.storage.create( 

                text=statement.text, 

                in_response_to=statement.in_response_to, 

                conversation=statement.conversation, 

                tags=statement.tags 

            ) 

 

 

# trainer = CornellMovieDatabaseTrainer(chatbot) 

 

# trainer.train('/Users/pramod/Documents/NLP/dataset/cornel/') 

 

# chat = ChatBot('ChatBotCorpus', 

#                storage_adapter='chatterbot.storage.MongoDatabaseAdapter', 

#                database_uri='mongodb://localhost/voicebot', 

#                database='voicebot', 

#                ) 

corpustrainer = ChatterBotCorpusTrainer(chatbot) 

 

if __name__ == '__main__': 

    app.debug = True 

    app.run(host='0.0.0.0', port=9999) 

 



# Train the chatbot based on the english corpus 

# corpustrainer.train("chatterbot.corpus.english") 

 

# Get a response to an input statement 

# resp = chatbot.get_response("Hello, how are you today?") 

 

# while True: 

#     message = input('You:') 

#     if message.strip() != 'Bye': 

#         reply = chatbot.get_response(message) 

#         print('ChatBot :', reply) 

#     if message.strip == 'Bye': 

#         print('ChatBot : Bye') 

#         break 

 

3) Training Twitter Dataset on Chatbot model using LSTM: 

from chatterbot import ChatBot 

from chatterbot.trainers import ListTrainer 

 

TWITTER = { 

    "CONSUMER_KEY": "sohYJD3hOgAVRMemXiY0dS6Z4", 

"CONSUMER_SECRET":  

"8tIdlylU2x0S9LpXcQKEJEndesN7lu0e8SqeO0Gfj5t16WsCon", 

"ACCESS_TOKEN":  

"219348556-dO5Tu28dmltK6fOMTIERGBr2b5KTGGr6KpCJ6bDE", 



"ACCESS_TOKEN_SECRET":  

"SoPpEzqRwX86Y7ntWomEEfnMXXcCHafJSHTOt3bRBVcoB" 

} 

 

chatbot = ChatBot( 

    "TwitterBot", 

    logic_adapters=[ 

        "chatterbot.logic.BestMatch" 

    ], 

    input_adapter="chatterbot.input.TerminalAdapter", 

    output_adapter="chatterbot.output.TerminalAdapter", 

    database="./twitter-database.db", 

    twitter_consumer_key=TWITTER["CONSUMER_KEY"], 

    twitter_consumer_secret=TWITTER["CONSUMER_SECRET"], 

    twitter_access_token_key=TWITTER["ACCESS_TOKEN"], 

    twitter_access_token_secret=TWITTER["ACCESS_TOKEN_SECRET"], 

) 

 

cbot = ChatBot('ListBot', 

               storage_adapter='chatterbot.storage.MongoDatabaseAdapter', 

               database_uri='mongodb://localhost/pmd_chatterbot', 

               database='pmd_chatterbot', 

               ) 

 

trainer = ListTrainer(cbot) 



 

trainer.train([ 

    "Hi there!", 

    "Hello", 

]) 

 

trainer.train([ 

    "Greetings!", 

    "Hello", 

]) 

 

#trainer.train() 

 

chatbot.logger.info('Trained database generated successfully!') 

 

while True: 

    message = input('You:') 

    if message.strip() != 'Bye': 

        reply = cbot.get_response(message) 

        print('ChatBot :', reply) 

    if message.strip == 'Bye': 

        print('ChatBot : Bye') 

        break 

 

 



 

 

10.2 Input/output listing 

 

The input will be the user input for interacting with the chatbot using audio. 

The output will be the response generated by the chatbot for that particular             

user input based on the datasets it has been trained with. 

 

README: 

 �Install chatterbot:  

 

pip intall chatterbot 

Install chatterbot_corpus dataset.  

 

Clone the dataset:  

From cornel database:  

https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html 

 

To Train the model:  

Put the files in a directory:  

For training cornel database:  

Run: python3  chatbotcornel.py  

 

For training Chatterbot corpus dataset  

Run: python3  chatbotcornel.py with uncommented lines for train methods 



 

This will start a server on a port 9999 

Input the machine server ip in the Android app and start the app in the               

android studio 

Start speaking with the app and see the output printing and narrating on the              

screen. 

 


