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1. Introduction

1.1 Objective

Our objective is to implement a stable Peer to Peer (P2P) Network by providing
dynamic replication of data using dynamic churn prediction.

1.2 What is the problem

P2P systems are deployed in networks with millions of nodes. The rate that these
nodes leave or join the network can range from static to dynamic. When nodes leave
the network, there is data loss if the data on the leaving nodes is not replicated.
Minimizing data loss and increasing stability in a P2P system is a challenging endeavor.

1.3 Why this is a project related to this class

Our project focuses on the following topics related to the class:
P2P systems

Distributed Hash Table

Data Replication

Churn Prediction



1.4 Why other approach is no good

Most distributed hash tables have a fixed replication factor (RF) when deployed.
This rigidity often leads to inefficiency in the P2P system when the system is stable and
churn rate is low. Furthermore, the system can become unstable if the churn rate is high
if the number of replicas in the system is small.

1.5 Why you think your approach is better

Our approach prevents data loss while being more efficient than existing
methods for data replication in P2P systems. We accomplish this by using an algorithm
called dynamic replication mechanism. Dynamic RM computes a dynamic replication
factor that changes as the churn rate in the system changes. Since the system predicts
what the churn rate should be, it can adapt the replication factor so the system will be
fault tolerant when churn is high and efficient when churn is low.

1.6 Area or scope of investigation

Our goal in this project is to implement a distributed hash table that will be fault
tolerant and efficient in a P2P deployment. We will accomplish this by providing an
algorithm to predict the churn rate and an algorithm to determine the replication factor
for the system once churn rate is predicted.

2. Theoretical bases and literature review

2.1 Definition of the problem

To provide dynamic replication of data in a P2P system by using churn
prediction.

2.2 Theoretical background of the problem

In the case of churn in a distributed P2P system, redundancy of resources and
data can help compensate for the loss of data when nodes leave the network. The
amount of redundancy in the system depends on the churn rate of the network. In a
local cluster environment, redundancy requirement is much less compared to a P2P file
sharing network with millions of nodes. Thus, to determine the replication factor (the



number of replicas to create for the system), one must first know the churn rate in the
system.

2.3 Related research to solve the problem

Many authors have attempted to tackle the issue of churn by devising replication
algorithms. Some of the more popular replication mechanisms are Symmetric
Replication[3], Successor-List Replication[4], ID-Replication[4], and Multiple Identity
Replication.

The symmetric replication[3] put each node in a group in which this node will
store all other group members’ items such that any other node’s items can be found by
put a request get to this node. In successor-list replication [4] the items of a node are
replicated to its immediate k successors and in RelaxDHT[5] the items are replicated to
a set of leaves. ID-replication [4] and [6] use the idea to assign an identifier to a group
and node identifiers are only unique inside a group such that a group is responsible for
a key range and not a single node. All nodes of a group replicate every key in the
group’s responsibility.

2.4 Advantage/disadvantage of those research

The symmetric replication[3] is super stable, it works even each group has been
reduced to just one node. But it suffers from the replication overhead problem because
every node has to save all the information of other group members. Successor-list
replication and RelaxDHT are easy to implemented but have the similar issue.
ID-replication [4] and [6] eliminate the drawback of a successor-list replication which
assign an identifier to every node but they suffer from two issues. The first issue of this
design is that they are still using fixed RF. Also, the control overhead due to group
merge and split need to be handled.

We would like to emphasize the common issues with the above replication
algorithms are they don’t follow an adaptive replication scheme and they don’t predict
churn rate using local churn observations.

2.5 Your solution to solve this problem

Our solution revolves around using churn prediction where nodes make local
churn observations. To estimate churn, moving averages are used for short term
prediction. There are many models for computing moving averages such as Simple



Moving Average, Simple Weighted Moving Average, Exponential Moving Average,
Dynamic Exponential Moving Average.

In addition, in our conditional probability matrix (CPM) method, we try to identify
the characteristics the the sequence of the number of departing nodes as a random
process. In our PID Feedback Estimator (PIDFE), we try to combine the advantage of
moving average with feedback mechanism which enable our prediction to quickly
respond to the change of churn rate.

2.6 Where your solution is different from others

Our solution is different since we use a dynamic replication factor instead of a
static replication factor. This makes our system more efficient when the network is
stable as well as fault tolerant during heavy churn. Furthermore, when predicting churn,
nodes make local observations that are not dependent on other nodes in the system
which makes the system more robust. Also, we try to take into account the possibility
that the correlation of the number of departing neighbor nodes over time is more
complicated than linear correlation.

2.7 Why your solution is better

The systems we design perform better than The Dynamic Exponential Moving
Average (DEMA) when the number of neighborhood leaving for each node is according
to a random distribution rather than based on the assumption that the predicted number
of departing nodes in future can be treated as a simple linear combination of previous
estimation or observation.

3. Hypothesis (or goals)

Our goal is to design and implement a dynamic replication mechanism. By using
churn prediction, the system would automatically adjust its replication configuration.

For churn prediction, we prepare three algorithms. We would compare these
algorithms based on their prediction result. Then we can find out which algorithm is
most suitable for churn prediction.

By periodically calculating the churn and replication factor, the system could
automatically adjust its replication configuration so that to satisfy the desired reliability.



4. Methodology

4.1 How to generate/collect input data

There would be a data set generated for simulating churn. We'd simulate a
network with 500 nodes, then using random number between 0 to 500 every 60
seconds to get the swarm size. We assume at each observation time a uniformly
distributed percentage of nodes is removed and added to the system. So this would
cover the most critical case, in which almost every nodes leave at the same time in a
turn.

4.2 How to solve the problem

4.2.1 Prediction Algorithm design

Churn prediction is the basis of dynamically calculating the replication factor
(RF). In P2P network any node might have local information of neighbour joining or
leaving. Based on these information every node can make churn prediction. We would
use different prediction models and compare them to see how accurate these models
would be in predicting churn. Those Models are described as following:

e Algorithm 1: Moving Average

A moving average [1] is commonly used with time series data to smooth out
short-term prediction and show longer-term trends or cycles. Moving average is often
applied in stock market prediction or forecasting sales.

If an observation x is made during a time interval At, e.g. 20 minutes. The
number of observations used to calculate the prediction m is called Observation Length
(OL) and denoted k.

The Simple Moving Average (SMA)[1] is calculated as the regular average
except that only the k last observations x of churn at time t are considered instead of all
observations made. Therefore, SMA changes with every new observation. The SMA is
defined by the formula:
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The Exponential Moving Average (EMA)[1] reacts on recent changing
behaviors while a certain smoothing effect on the churn prediction will be maintained.
Another advantage of EMA is that it does not require all observations to be stored, since
it can be calculated from the last EMA and the new observation x, at time t, as shown in
the formula:

ema; = emas_1 + a(xy —emaz_1), t>1

The smoothing factor a can be calculated by the formula:
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The Dynamic Exponential Moving Average (DEMA)[1] uses linear regression
analysis to determine the OL , which gives the best linear fit. For each possible value of
k, the regression line with the least squares and the coefficient of determination,
denoted R?, is calculated. The closer R?is to 1, the better the regression line fits. The
OL which gives the highest value for R2 is used for k .

In moving average model, the Observation Length(OL) would influence the
smoothness of the prediction curve. More changes of the churn rate will lead to a lot of
overhead due to too frequent changing of replication factor. So a proper Observation
Length needs to be determined.

Then we come up with two algorithms that we would like to apply for the
prediction of the next number of departing neighbors for each node. The first idea is we
enable each node to maintain some knowledge about the possibilities of the number of
departing neighbors in future based on the previous observation. With this knowledge,
each node will predict the coming two observations and this knowledge will be updated
based on new observations. The second idea is to borrow the concept of PID controller
in control system. In this prediction method, we consider the integral part by using the
simple moving average to track the long-time tendency. We use proportional term to
rectify the error between the observation and the prediction. Then, we try to apply the
third derivative term to settle the possible overhead by the previous two parts.

e Algorithm 2: PID Feedback Estimator (PIDFE)

In the paper [a], the author proposed several moving average methods, here we
propose one method in which we leverage the basic concept of PID controller in system
control. Suppose each node has their observation O(1), O(2), ... O(t-1), O(t). And they



have their prediction as P(0), P(1), ... P(t-2), P(t-1). OL indicates observation length
which is the time interval between two observation. Then their next prediction could be
Pt)=K1*(O(t-k+1)+...+O(t)k
+ K2 * (O(t) - P(t- 1))
+ K3 * ((O(t)-P(t-1)-(O(t-1)-P(t-2)))/0L)
in which, K1, K2, and K3 can be adjusted based on the network characteristics. If we
set K1 as 1 and K2 and K3 as 0, then this algorithm reduces as simple moving average
method. If we set K3 as 0 and replace the term with K1 with P(t-1), then it reduces to
the Exponential Moving Average (EMA) method. The K3 term is used to catch a fast
change of the churn by predicting the change tendency of the departing of neighbor
nodes and thus improves settling time and stability of the system. However, how to
adjust the three parameters are still a problem for us. Also, in a high churn
circumstance, the K3-term might not be applicable because it is too sensitive to the
rapid change.

e Algorithm 3: Conditional Probability Matrix (CPM)

In this algorithm, each node will maintain a conditional probability matrix X of size
m by m where m is the total number of its neighbors. The entry X(O(t+1) =i | O(t) =)
(denoted as X( i |j ) for short) in row i and column j of the matrix X means the
conditional probability of the next number of departing nodes is i at time t+1 given the
fact that j nodes depart from this node at current time t. Basically, X acts as a
“knowledge” for the node. When an observation i comes based on the previous
observation j, we update column j of matrix X by using the following equation:

X(ol|j)=X(o] j)/(1+X(o]| j)) whereo!=i
X(j)=1-X(115)-X(2[j)- - X(i-1[])-X(i+1][])-...X(m]])

In this way, each X( o | j ) will be decreased if o !=i and the entry with high
probability will get high penalty (decrease more). The conditional probability X(i|j ) will
be increased based on the current observation i and the previous observation j. We are
still trying to figure a smarter way to update this matrix. Each node will also maintain two
vector V_next and V_next2 of size m by 1. V_next indicates the probability prediction of
next observation of departing nodes, suppose our current observation is O(t) = j, after
we update X by using the observation, we can set V_next as a weighted sum of X’s
column j and the V_next2 vector.

V_next2 is 2-hop prediction of the number of departing nodes. When current
observation is O(t) = j, after we update V_next, we will update V_next2 by

V_next2 = X * V_next.



In this way, once my next observation O(t+1) comes, V_next2 is actually a
prediction of the coming departing nodes based on my previous knowledge before this
observation O(t+1).

Then each time, we could predict the number of coming departing nodes as

E(t+1)=[123 ... m]' * V_next

4.2.2 Replication Factor

For calculation of the replication factor(RF) part, we use the same method as
mentioned in [1], in which we calculate RF based on the prediction number m and
calculate it by using

p = m(m-1)...(m-RF+1)/n(n-1)...(n-RF+1)
in which, n is the number of neighbor nodes; m is the number of nodes will leave the
system; r is the probability that a record is kept safe; p is the probability of RF nodes will
leave. Then we recursively increase RF and recalculate p until
1-p>=r.

4.2.3 Language and tool used

We use Java as our programming language.

For P2P network simulation, we use TomP2P, which is a open source P2P
framework providing an advanced DHT. We would use TomP2P as underlying
framework and the prediction model is built on top of it. TomP2P itself has two kind of
replication mechanisms available. In both replication types, the replication factor is
automatically set by the dynamic RM.

4.3 How to generate output

For prediction part, we use generated data set to calculate the prediction of
different models. By comparing the result, we’'d get the most suitable model. After that,
the experiment based on churn prediction would be run on TomP2P to test if dynamic
replication mechanism works well.

4.4 How to test against hypothesis

The data loss experiment would show how the system react towards the
changing churn rate and if the replication factor is set dynamically. As the desired



reliability is increased, the data loss decrease because of the dynamically re-calculated
RF.

5. Implementation

5.1 Programming Requirements

5.1.1 Use Cases

Use Case 1: Generate random churn

Primary Actor: churn generator

Scope: Evaluation for prediction and replication

Brief:

A random churn will be generated based on the previous churn and a fluctuation rate.

Preconditions:

Initial churn rate and churn fluctuation rate.

Minimal Guarantees:

A random churn is generated at each time based on the previous churn and some
random distribution.

Success Guarantees:

The random churn sequence almost matches the real-life churn.

Triggers:

When we start the prediction or replication evaluation process, the system starts to
generate random churns.

Basic flow:

1. A random churn fluctuation for current time is generated based on some
random distribution.

2. A new churn is generated by adding the fluctuation to the previous churn rate.

Use Case 2: Evaluate prediction performance

Primary Actor:

prediction submodule (see 5.2.1 for modules)

prediction evaluation submodule

Scope: Evaluation for prediction

Brief:

Generate the churn prediction data. Calculate RF based on prediction and real RF
based on observation. Compare real churn with prediction. Compare calculated RF with real RF.

Preconditions:

use case 1

Triggers:



A new churn is generated and input to the prediction submodule.

Basic flow:

1. Generate a new churn.

2. Generate the churn prediction.

2. Calculate RF based on the prediction.

3. Calculate real RF based on the next observation.

4. Record all data above including the real current churn to a data file.
5. Plotting.

Use Case 3: Evaluate replication performance

Primary Actor:

dynamic replication module (including prediction and replication parts)

prediction evaluation submodule

Scope: Evaluation for replication(data loss)

Brief:

The DHT see the new churn to drop peer nodes. The replication system use the new
observation to do prediction and replication. The system check all keys and record the data in a
data file. Create data plot.

Preconditions:

use case 1, use case 2

Triggers:

A new churn is generated and input to the prediction submodule and the P2P DHT.

Basic flow:

. Generate a new churn.

. Drop nodes based on the churn.

. Generate the churn prediction and calculate the RF.
. Do Replication based on RF.

. Traverse all key in DHT to figure out loss of keys.

. Record all data above.

. Plotting and do comparison.

a b~ WO, ON -

5.2 Design

5.2.1 Modules

Based on our requirements, we modularize the main system into 4 main parts.

The first module is the dynamic replication system, which should include a
prediction submodule based on the observation and prediction data, and a replication
submodule which will calculate the RF based on the prediction from prediction
submodule and replicates data.



The second module is the performance comparison environment, which includes
2 submodules. We can set up different testing environment and this module generate all
the experiment data for the 4 different algorithm for our future analysis. The first
submodule is used to evaluate the churn prediction accuracy and the RF win rate for
different algorithms. The second submodule is used for the evaluation of data loss
performance of the 4 algorithms.

Besides, we also need the third module for analyzing data. This include a
submodule to handle file I/O tasks to save our experiment data from the second
module. Here we export the experiment data to a small Python plotting program for our
analysis.

Also, we need to implement a random churn generator.

5.2.2 Class Diagram

Our main class diagram is shown in Figure 1.
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Figure 1 Implementation Class Diagram

Class Churn is used to create the random churn rate sequence, which will call on
the random churn generator class RandomChurn. Class Prediction provides our churn
prediction algorithm and SMA, EMA and DEMA as the benchmark algorithms. Class
Replication will replicate data based on the predicted churn rate and the calculated RF.
Class Mysimulator focuses on the prediction part. The performance of the 4 algorithms
are compared based on their win rate of churn prediction and accuracy of RF
calculation. The experiment data is written to some record files for future analysis. Class
DataLossTest carries out the task of evaluating the data loss performance of the 4



algorithm. Class test is also implemented as a temporary visual data analysis tool and
later on we switched to Python to get a more precise data plotting for analysis.

5.3 Data Flow

5.3.1 Prediction Evaluation

The data flow chart for prediction evaluation is shown in Figure 2. At each time
step, a random churn will be generated and fed into the churn prediction system. The
churn prediction system will predict the next churn and calculate the current RF based
on its prediction. Also, based on the real churn rate, a correct RF will be calculated. The
real churn rate of current time step, the churn prediction for next time, the calculated RF
and the real RF that should be applied for current time will be written into a data
document. Then the data will be used to draw plots for future analysis.

Churn
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Churn Prediction
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Figure 2 Prediction Data Flow
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5.3.2 Data Loss Evaluation

The data flow chart for prediction evaluation is shown in Figure 3. At each time
step, a random churn will be generated and fed into both the churn prediction system
and the P2P DHT. The churn prediction/replication system will predict churn, calculate
RF and do data replication for the P2P DHT. The P2P DHT will randomly remove and
add nodes based on the random data it get from Churn Synthesization part. The system
will check the available keys at each time and record it in a data document. Then the
data will be used to draw plots for future analysis.
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6. Data Analysis and Discussion

6.1 Output Generation

First, we evaluate the performance of prediction models by feeding them the
synthetic churn data set we generate, calculating their predictions, and comparing with
the original data set. Second, after finding the best model, a data loss test is run for
validation while data loss is measured.

Figure 4 is the example of our synthetic data set, which is generated with initial
peer size 1000, initial churn 150, and churn fluctuation 10%.

Synthetic Churn Data Set
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Fig.4 Synthetic Churn Data



6.2 Output Analysis

6.2.1 Comparison of Prediction Model

In our implementation, four prediction models are evaluated. The first model is
SMA, a very simple and basic moving average approach. The second one is EMA,
which gives more responsive react on recent changes. The third model is DEMA,
considered the best fitting one in the paper[1]. It uses linear regression to determine the
smoothing factor in the prediction. Last one PIDFE is the one we proposed, which
explicitly takes prediction history into account.

Figure 5-8 show the predictions made by different models for OL10,20,40 and
60.
The result of DEMA gives the most fitting curve comparing with others. It is proved that
DEMA is the most suitable algorithm for prediction. As for PIDEF, it seems like it works
not bad, slightly better than EMA, when OL is small. But for large OL, it's more like
SMA.

Figure 9-10 gives the comparison between 4 models for OL10 and OL20.
Obviously, the lower OL results in a more responsive curve.
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Fig.10 Comparison of 4 Models for OL20

Now we know the optimal Observation Length, which is OL10. We also need to
identify the model with most accurate prediction. So the convergence of the prediction
to the ideal model is analyzed. The result shows in Figure 11 and DEMA wins.
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Fig.11 Convergence of 4 Prediction Models

As we mentioned before, the prediction is the basis of RF, to better evaluate the
prediction, we also verify the accuracy of predicted RF. The ideal Replication Factor RF
is calculated from the churn data set. The model-specific predRF_model is calculated
for 4 models with different OLs respectively. For each time step, RF is compared to
predRF_model. The predRF_model would be considered to be accurate when
RF<=predRF_model<=RF+3[1], which means the higher-than-necessary RF is to be

tolerated but not a lower one. Figure 12 shows the convergence result of 4 models with
different OLs.
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Therefore, we conclude that the DEMA model with OL=10 can be considered the

generally most accurate prediction model in our evaluation. And this would be used in
the data loss test.

6.2.2 Data Loss Test

To evaluate how much data would be lost when using dynamic replication
mechanism, we design the synthetic data with initial peer map size 5000 and initial
hashkey size around 5000, which represents the data. We use prediction model DEMA
with OL=10. Figure 13 shows the percentage of data loss for reliability value of 0.9, and
Figure 14 shows the percentage of data loss for reliability value of 0.99.
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Fig.13 Data Loss Result for reliability 0.9

initKeyiize=4975

initRF=2

Interwval 100: dataloss is
Interwval 200: dataloss is
Interwval 300: dataloss is ,J266331658291497%
Interwval 400: dataloss is L8743 7185929652%
Interwval final: dataloss i=s 1.969549:246231159%

L1256251407035162%
LZ220130653266333%

N o e

Fig.14 Data Loss Result for reliability 0.99



Both the figures show that data loss behaves as expected, the more churn the
more loss and the higher the reliability value the less the data loss.

6.3 Compare against Hypothesis

We implemented our PIDFE algorithm and it works for churn prediction and the
system is able to adjust its replication configuration to satisfy the desired reliability.

Compared to the three algorithm, in prediction, our algorithm is better than SMA
when there is a frequent churn fluctuation as it responds fast to the change of churn and
is better than EMA in a less fluctuating churn environment as it has less vibration
motivated by the fluctuation of the churn change. However, the performance of our
system largely depends on how we select the parameters in the algorithm as OL, k1, k2
and k3 and this is still an open question for future study. DEMA is still the best among
all the algorithm since it dynamically change the observation length OL. The data loss
experiment provides similar results as in the prediction parts since this part is based on
the prediction experiment.

6.4 abnormal case explanation

6.4.1 Small/Large Peer Size

In the data loss experiment, if we pick up a too small initial peer size, then the
churn rate is relatively too large compared to the peer size, then no matter what
algorithm we pick up, the data loss is very large and increase very fast to 100%. The
reason is that each time there are too many peer leaving the network. The real RF is
bounded between 2 and 6 (TomP2P), so the peer nodes cannot make enough copies
for its data to response to this large churn rate. If the initial peer size is too large, in
most case of the experiment, the peer size will be always large. Then the churn rate is
relatively small with a fixed initial churn and a small fluctuation. This will lead to a result
that all algorithms perform well since there is no enough churn to affect the network’s
data loss. Therefore, we need to select the peer size appropriately.

6.4.2 Small/Large Observation Size

Basically, for every algorithm, if the OL is set to be small, the algorithm more
relies on the recent observation of churn while if the OL is large, the algorithm more
relies on the history. For our algorithm, the selection of OL affects the performance of
the system a lot since it will affect both the moving averaging part (how many previous



observation should we use) and the second part (by affecting the weight parameter k2).
A very small OL makes the prediction of our system more fluctuate. A very large OL will
make our system too slow to respond to the change of churn.

6.4.3 Change of Peer Size

Since we use a uniformly distribution to simulate the process of leaving and
adding peer nodes for the data loss experiment. It is possible that for a long period the
number of leaving node is always greater than the number of adding nodes, which
might lead to the result that the peer size become smaller and smaller and finally close
to 0, or reversely, if the number of leaving node is always less than the number of
adding nodes, the peer size will be too large. Both of this two cases will fall into the
abnormal case 6.4.1 we just talked about. This could happen because we use random
functions to create these numbers. In the future, more restrictions might be introduced
based on the real network environment. Here we just simulate the experiment and
disregard such extreme cases.

6.5 Discussion

Both the setup of the prediction and replication module of the P2P network and
the setup of the testing environment is critically important for us to detect the behaviors
of the replication mechanism based on each algorithm. As we talked in the analysis
abnormal case explanation, how to select initial peer size, average churn rate, churn
fluctuation will affect if the network environment will work normally. Only if the
environment of the P2P network itself is good, then we can apply our replication design
and see its performance. The test environment should be set up to be as close to the
real life as possible. Also, it's very important to determine the parameters of the
algorithm, different algorithm with different configuration only works if the algorithm is
able to be applied to that test environment and the configuration is appropriate.

7. Conclusion

7.1 Summary and Conclusion

In this project, we study 3 available prediction algorithms in P2P network and
then propose our PIDFE algorithm to address the churn issue for data loss in P2P
network. Then we abstract and simulate the replication overlay of P2P DHT. We
implement 4 different algorithms to do the simulation and compare their performance
based on different observation length(OL) and other parameters. Based on the



generated experimental data, we compare the performance of each algorithm and the
impact of different parameters on our PIDFE algorithm.

Based on our study and research, churn is a serious issue in P2P network.
DEMA is the current best algorithm for the prediction of the churn and the replication of
data. Our algorithm is better than SMA in a more fluctuating churn environment and has
less vibration than EMA in a less fluctuating churn environment. But how to determine
and adjust the parameter OL, k1, k2, and k3 precisely is difficult and still an open
question.

7.2 Recommendations for Future Studies

7.2.1 Real P2P Network Simulation

In this project, we abstract and simulate the replication overlay of a P2P DHT,
and apply 4 different algorithms to this overlay and compare their performance. In the
future, the algorithm can be applied to a real P2P network to test its performance in a
real-life network. In additional, we generate the random churn sequence by using a
Normal Distribution, however, in a real life, the next churn might be generated based on
a different distribution depending on the actual environment. In order to get a more
precise analysis about the performance of different algorithm, the real-life churn data
could be sampled from some real P2P network such as BitTorrent.

7.2.2 Conditional Probability Matrix

One could also implement the second algorithm - conditional probability matrix.
This algorithm expects to explore each peer’s individual ability to distinguish the
characteristics of the random distribution according to which churn rate is changing.
Therefore, each node tries to understand the churn process better and better. For
example, the current work assumes that the churn is generated based on a certain
Normal Distribution. With conditional probability matrix algorithm, the peer node could
slowly figure out the average and the standard deviation of the distribution and therefore
the prediction of each peer might be more precise.
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