

What Should I Watch Next: A Movie Recommendation Study

Shruti Jagadeesh Bhat

Tri Han

Krishna Sahithi Manneti

Santa Clara University

Summer 2020

Acknowledgements

We would like to thank our parents,

our professor, and our classmates

for their continued support

Table of Contents
Abstract...7

II. Introduction ...8

II.A. Objective ..8

II.B. What is the problem ...9

II.C. Why is this project related to this class ...10

II.D. Why other approaches fall short ...11

II.E. Why our approach is better ..15

II.F. Statement of the problem ...15

II.G. Area or scope of investigation ..15

III. Theoretical bases and literature review ..17

III.A. Theoretical Background of the problem ...17

III.B. Related research to solve the problem, Merits and Demerits ...19

III.B. Our solution to solve this problem ...24

III.C. Where our solution is different from others ..24

IV. Hypothesis ...26

V. Methodology ...27

V.A. How to generate/collect input data ...27

V.B. How to solve the problem...28

V.B.I. Algorithm Design ...28

V.B.II. Language Used ..32

V.B.III. Tools Used...33

V.C. How to generate output ...33

V.D. How to test against hypothesis ..33

VI. Implementation ..34

VI.A. Code (refer programming requirements) ...34

VI.B. Design document and flowchart ..34

VII. Data Analysis and Discussion ...40

VII.A. Output Generation ...40

VII.B. Output Analysis ..41

VII.C. Compare Output Against Hypothesis ...49

VIII. Conclusions and Recommendations ..51

VIII.A. Summary and Conclusions ...51

VIII.B. Recommendations for Future Studies ...51

IX. Bibliography ...52

X. Appendices ...54

X.A. Program source code with documentation ...54

X.B. Input/Output Listing ..71

List of Figures

Figure 1: Example for Dimensionality Reduction: Image courtesy - “Local linear transformation

embedding” research gate publication by Chenping Hou) ...19

Figure 2: User-Item Matrix Factorization. Image courtesy - ResearchGate.net from “Integrating

spatial and temporal contexts into a factorization model for POI recommendation” pub.)20

Figure 3: Advantages and Disadvantages of CF techniques. Image courtesy: “Movie

Recommendation Systems” by Vivek dalal, Raj Sankhe, Tej Sankhe21

Figure 4: SVD Approach ...31

Figure 5: Generic approach for building the models ..34

Figure 6: Hybrid SVD Content-Based Model Steps ...35

Figure 7: Varying RMSE with increase of factors ..42

Figure 8: RMSE Variation with increasing epochs ...42

Figure 9: Effect of learning rate on RMSE ...43

Figure 10: Effect of regularization..43

Figure 11: Precision@k and Recall@k scores for hybrid SVD content model44

Figure 12: Top 10 highly rated movies by user 60 ...44

Figure 13: Top 10 recommendations for user 60 by SVD content based model45

Figure 14: Top 10 recommendations for user 10 by SVD++ model ...45

Figure 15: Precision@k and Recall@k scores SVD++ model..46

Figure 16: Top 10 highly liked movies by user 10 ..46

Figure 17: Top 10 recommendations for user 10 by KNN model ...47

Figure 18: Precision@k and Recall@k scores for KNN model ..47

Figure 19: Top 10 recommendations for the users; known positives - the movies liked by the

users ...49

https://d.docs.live.net/69b5aff5704b6c13/COEN%20281%20Project%20Proposal/Project%20Proposal.docx#_Toc50050503

 List of Tables

Table 1: Parameters used in Gridsearch for the hybrid SVD Content-based model...................41

Table 2: Evaluating models with AUC Score ...50

Table 3: Metric scores for models except lightFM ...50

Abstract

Historically, when searching for the best option, one would typically refer to an expert’s

advice for guidance. Who is the best doctor for a specific disease? Which restaurant

serves the kind of food that I like the most? All of these kinds of problems require the

input and advice of someone with knowledge and expertise. What if we told you that with

modern technology that is no longer the case?

In this paper, we address a similar problem. These kinds of questions and problems fall

under a field of data mining called Recommendation Systems and it is the aim of this

paper to propose such a system. Specifically, this paper aims to address the issue of

recommending movies that are most likely to be enjoyable to watch for a user.

Though the existing traditional collaborative and content based approaches in

recommender systems are effective, these methods have certain drawbacks like cold

start, scalability and sparsity in collaborative approach and diversity problem in content

based. In this project, we propose two hybrid models – SVD Content based model and

LightFM model which resolves the issue with cold start, diversity problems and provide

relevant high quality recommendations.

II. Introduction

In the field of data mining, there is an assortment of problems and applications that one

can study. Some topics that are often studied include Finding Similar Items, Data

Streams, Clustering, and Large-Scale Machine Learning. There is an endless array of

problems and associated approaches to solving these problems. In this paper, we narrow

the scope of this research to the area of data mining called recommender systems. In

particular, we study the various approaches to building a recommendation system and

how it is applied in the specific problem space of movie recommendation.

II.A. Objective

In this paper, there are several explicit objectives that we have. These objectives are (1)

the study of recommendation systems and its application in movie recommendations, (2)

the study of existing and state of the art approaches to understand the current state of

affairs, and (3) to design and propose a recommendation system that is able to outperform

existing methods in a particular scope. Below, we will briefly describe each of these

objectives in a bit more detail.

The study of recommendation systems and its application in movie recommendations is

important because it allows us to understand the baseline methods that are used to solve

this problem. Underlying this objective is the study of collaborative filtering, content-based

filtering, and hybrid systems that underpin the backbone of any recommendation systems.

Without this knowledge, we are unable to grasp the more state of the art technology and

approaches that have since replaced these core techniques.

The study of existing methods and current research to understand the current state is

another important objective because it allows us to expand on the baseline knowledge

and understand where the community stands in terms of progress. For instance, using

only the collaborative and content-based filtering approaches, there are many known

limitations and gaps that afflict those approaches. Through the years, researchers have

built upon that knowledge to propose and design better methods that help to close those

gaps. It is the study of this body of work that is crucial so that we are able to pick up as

best as we can from where things currently stand.

The third objective of this paper is to propose a recommendation system that outperforms

existing recommendations systems in a particular scope. What does this mean? By

understanding the baseline methods and work since then, we are able to identify where

there are still gaps in the approaches and then we are able to propose a solution that

closes those gaps. In essence, we are contributing to this body of work to help move

progress forward by proposing two hybrid models that solve the issues underlying the

traditional methods.

II.B. What is the problem

To illustrate the problem, we will first describe a scenario before diving into an

explanation. To begin, imagine yourself at home. You are sitting in front of the tv and you

want to watch a movie. However, when you scroll through the list of available movies,

there are so many and you have a hard time picking. A couple of the movies look

promising but you wonder if there is anything better. There are other movies that you

know are certainly not your kind of movie. How can the system quickly and accurately

recommend a list of movies that you are most likely to watch and enjoy? That is the

problem that we are addressing in this paper.

Specifically, given a user’s movie preferences and tastes, out of all possible movies,

which one should we recommend that they will most likely enjoy watching? This is a

simple problem statement. However, there are many nuances that we need to consider.

For instance, what if there is no existing data about this user’s preferences? Or, what if

there are new movies that have no ratings yet? What if this user loves watching unique

and niche kinds of movies that are not popular? Are we able to find and recommend those

movies to this user? There is an endless list of considerations that we need to take into

account such as those just mentioned. It is the aim of this paper to identify those problems

and propose a solution that addresses each one.

II.C. Why is this project related to this class

This project is related to this class because of several reasons. The first reason is that

this project is a specific study of a data mining problem. As listed above in the introduction,

data mining problems span a wide range of topics, ranging from finding similar items to

large scale machine learning problems. This particular project focuses on the study of

recommendation systems, which is one of many subjects in data mining.

Taking this thought a step further, it might even be appropriate to say that this project

spans across multiple areas of data mining, making it even more appropriate for this class.

For instance, in this problem, we need to find similar items (or movies in this case) which

is another field of study under data mining. Not only that, we may also need to apply

clustering algorithms in order to determine similar users and similar movies that we can

then derive movie recommendations from. To gather the appropriate data to be used in

this study, we may need to mine social-network graphs, which is yet another field of study

in data mining. How will we synthesize all of this together? We will need to use large-

scale machine learning algorithms in order to apply the concepts and derive

recommendations to the user. This is why this project is applicable and related to this

class.

Another reason why this project is related to this class is because it trains us to be

effective researchers in the field of data mining, which allows us to be competitive in the

real world after graduation. For those who seek to solve similar data mining problems

post graduation, this project helps them understand the process of (1) understanding

base knowledge, (2) studying state of the art research, and (3) proposing and applying

new concepts to further the field of research. By going through this process and being

familiar with it, upon post graduation, we will be able to solve any related problem under

the recommendation system field of study by knowing what to look for and how to best

approach the problem.

II.D. Why other approaches fall short

Studying the baseline methods and the contributions to this field of study, it is apparent

that known approaches to recommendation systems are sufficient. They all perform the

job reasonably well. However, where they fall short is often usually in a very niche and

specific scope that is unique to each method. Where one method is strong, another

method may be weak, and vice versa. In order to understand these shortcomings, a brief

description of known limitations for recommendation systems is presented below.

The first problem that some methods face is called the Cold Start problem (also known

as the First Rater Problem). What is this problem exactly? Essentially, the reason for this

problem is that systems that rely on historical data will not be able to recommend new

users or items as accurately because there is no historical data to use for them. For

example, let’s imagine that a user enjoys watching the Avengers movie series.

Oftentimes, the recommendation system does a good job of recommending similar action

and superhero based movies to the user. However, imagine that a new Avengers movie

has come out this year and there is no existing data for this movie. Intuitively, the system

should recommend this movie to the user because it is part of the franchise. However, it

does not! Why? There is no data to associate the user’s preferences with this movie. This

is known as the cold start problem and it is a limitation that is often faced by systems

based on the collaborative filtering approach.

Another limitation that is often faced by systems is called the scarcity problem. What is

the scarcity problem? This issue is when the user and movie matrix is sparse which

makes movie recommendation challenging since it is harder to find similar users. This

idea is still confusing so I will illustrate it with an example. Imagine there are 100 movies

and imagine that there are 2 users, User A and User B. User A has watched movies 1

and 2 while User B has watched movies 3 and 4. If we were to construct a user by movie

matrix for this illustration, one can see that most of the matrix is sparse. It is very difficult

to find any correlation between these two users! Let’s take it a step further. Let’s imagine

that both User A and User B like movie 5. However, that is only one movie out of 100 that

they share a common interest for. Does this single data point really tell us anything? This

is the limitation of recommendation system called the scarcity problem. It is often faced

by traditional collaborative filtering approaches and is a limitation that we hope to address

in this paper.

Another limitation of recommendation systems is that the systems are often seen as a

black box when it comes to providing recommendations. Why was a particular movie

recommended? Why was another one not recommended? Although in practice, the final

results matter more than the reasoning and underlying logic to coming up with these

recommendations, it is still an important aspect to be cognizant of. Content based filtering

approaches are able to provide transparency into this black box. However, other systems

have a harder to show this same level of clarity.

Another limitation of recommendation systems is the challenge in finding the appropriate

features to use in the model. For instance, what about a user is important enough so that

it will accurately predict what kind of movies they will enjoy watching? Or, alternatively,

what is it about a movie that will make it more appealing to a specific user or not? Coming

up with these features is often challenging, difficult, and does not follow any one scripted

approach. Often, it relies on intuition and heuristics. This is a challenge that content-based

approaches suffer from.

Another problem faced by certain recommendation system approaches is

overspecialization. What is this problem? This problem is essentially the tuning of the

model to precisely recommend movies to a particular user based on their likes and

preferences. However, because it is specially tailored for this user, there is no input or

factor outside of this particular user that will influence the movies that are recommended.

Essentially, what ends up happening is that this user will be shown the same kinds of

recommendations again and again without much variety. To illustrate this dynamic,

imagine a user says they like comedy movies. For a particular recommendation system,

it will accurately recommend and suggest comedies to this user. However, let’s imagine

that the user also likes action movies, but they never specify that! In effect, what ends up

happening is that the user will never be shown an action movie to watch even though they

do like it! This is what is known as overspecialization. Oftentimes, the kind of

recommendation system that suffers from this problem is the content-based approach

method.

One final known limitation of recommendation systems is what is known as popularity

bias. Popularity bias is basically when popular items, with the highest and most ratings,

bias the recommendation so that these kinds of movies are more often recommended

than those movies with not as many ratings. Normally, recommending really popular

movies is a good thing right? Well, in some cases, it is not. For instance, imagine a user

who loves independent movies. These kinds of movies are not well known but to certain

users they are their preferred kind of movie to watch. Due to popularity bias, it is possible

that users with this preference will not be recommended independent films. Instead, they

would recommend mainstream movies that are popular to the masses. Unfortunately for

this particular user with niche preferences, they will not be recommended independent

films as often as they would like. This is the issue that is caused by popularity bias.

Oftentimes, recommendation systems that are based on collaborative filtering face this

kind of problem.

II.E. Why our approach is better

Now that we have gone through the list of known limitations of existing recommendation

system approaches, we now present an approach that we believe fills in the gaps

mentioned above. Because every recommendation system has their own strengths, it

would not be wise to dismiss them and just throw them out. Each one has a specific

strength over the others. If each system has a problem that is unique to them and only

them, how can we resolve it?

The most simple and straightforward suggestion is to combine these systems into one

hybrid system, where the different approaches can overlap and the strengths of one

system can make up for the weaknesses of another system. From the study of

collaborative and content-based systems, it is apparent that both approaches have their

own set of weaknesses. But when viewed at a high level, one can see that they

complement each other well. The gap of one system is met by the strength of the other.

With these two systems, there are still yet potential gaps that can be improved upon. In

this case, we add another approach to this hybrid system that helps fill in this gap.

II.F. Statement of the problem

The problem that we want to address is simple: how do we provide a list of recommended

movies that the user is most likely to enjoy watching given the common issues faced by

existing models such as cold start, scarcity of data, etc.

II.G. Area or scope of investigation

Given the synopsis above, and after discussing all the different aspects of this

undertaking, we want to clarify what will not be covered in this paper. Specifically, we will

not be covering recommendation systems that involve recommending videos on social

networks. For instance, let’s take a look at YouTube. It is one of the largest video sharing

websites (if not the largest) in the world. Although video recommendation may seem

similar to movie recommendation, these two areas have two separate scopes and we will

not be covering this kind of recommendation in this paper. Yes, the methods are similar

but there are nuances to video recommendation on YouTube that needs to be addressed

but is not covered in this paper.

Another scope that we will not be covering in this paper is streaming data. The data sets

that we use in this paper is pre-fetched and stored in data storage (on disk for instance).

We do not make use of streaming data to improve and provide recommendations in a

real time fashion. We believe that there is no added benefit to providing recommendations

using real time data, as most ratings of movies are already established and known in

advance.

In this paper, we focus primarily on using existing movie data sets in order to provide

users with accurate and reliable movie recommendations that they most likely and most

probably enjoy.

III. Theoretical bases and literature review

III.A. Theoretical Background of the problem

With every research paper, the proposed algorithms are intended to make the system

better. We referred to research papers as recent as 2018 to 2020 from IEEE and ACM

conferences by researchers from different organizations. One of the major resources for

data scientists, “kaggle.com,” is also our research pit, along with a couple of other website

links mentioned in the reference section.

As we were researching these baseline models of Recommendation Systems, we found

that the problems with collaborative filtering and content-based filtering are quite

prevalent in the world of recommendation systems. Almost every research paper

mentions the issue of not having sufficient data in the initial stage for prediction, especially

when the recommendations are based on the history of user selections.

Collaborative Filtering (CF)

CF is carried out by considering the opinion of the popular crowd. Each user’s item

preferences and user information are stored for say, ‘n’ number of users and ‘i’ number

of items, multiple features about the products bought, are stored. A boolean matrix is

created for each user-item combination for size n x i. For ‘n+1’ th user, the previous data

is used to recommend the product which users of similar tastes have bought so far.

Research stumbles when the data is freshly created, where there is not enough

information about the previous users/items to make good predict. This is referred to as

“cold start”. This is one of the issues that led us to pick this topic for our research.

There is another method which may seem to overcome this issue - Content based filtering

(CB): In this filtering technique, each individual’s opinions about an item is treated

independently, with no connection to the taste of other customers. This has its own merits

and demerits. Merits being, the outliers have equal weightage in consideration, meaning

the customers with unique tastes can be recommended with appropriate products to

them, even if no one else preferred that item, as it is completely objective. This solves the

cold start issue mentioned before. The demerits to this are the problem that we are trying

to address in our proposal. The product details are still required before the system learns

to recommend more, which is another version of cold start. This leads to unresolved

issues in the research by only using these two filtering techniques.

Furthermore, there are other issues in collaborative filtering techniques that data

scientists have faced, including scalability and sparsity. With the transition to big data,

millions of users and products began to become a part of the recommendations, which

extracted extreme high computing resources. The increase of data size over time led to

the need for the reduction of data, which is done by a method called “Matrix Factorization”.

Regarding scarcity, not all the users end up mentioning their opinions about the products

they bought online. Even for the popular products, there are only a few ratings and fewer

reviews. This brings down the quality of the recommendation systems as the user-item

matrix is highly sparse, making the computing inefficient in terms of both hardware and

software.

III.B. Related research to solve the problem, Merits and Demerits

Data Reduction

1. Memory based Collaborative Filtering

The researchers came up with a reduction technique to store only the relevant data

according to the distance (or similarity) based neighborhood approach on the raw data,

so that the further calculations can be done on the user’s preferences alone. This

technique is called Dimensionality Reduction.

Reasons to reduce dimensionality:

- Computational issues with large number of predictors

- Certain statistical methods like regression could not be applied when the density

of observations per predictor is low.

- Noisy data provides less accurate results

In other words, only the tastes and preferences of the user is derived from the raw data

using the Dimensionality Reduction aka, low-rank Matrix factorization.

Figure 1: Example for Dimensionality Reduction: Image courtesy - “Local linear transformation embedding”

research gate publication by Chenping Hou)

2. Model-based Collaborative filtering

This type of technique for data reduction is based on “Matrix Factorization”, an

unsupervised learning method for latent variable decomposition and dimensionality

reduction. In this technique, the user-item Matrix is decomposed into a product of two

lower dimensionality rectangular matrices.

Figure 2: User-Item Matrix Factorization. Image courtesy - ResearchGate.net from “Integrating spatial and

temporal contexts into a factorization model for POI recommendation” pub.)

In the recent years of research, both the techniques mentioned above have been

combined to form a hybrid approach, with a better system to recommend products. There

are various ways of combining these techniques, either making predictions separately

and merging them together, or add one of the techniques to another, or combining CB

and CF along with some other models too.

We, as a part of our proposal, intend to combine one of these hybrid techniques with other

models which we researched upon, majorly, hybrid CB + SVD and LightFM models.

SVD model, or Singular Vector Decomposition model

SVD is a well-known Matrix factorization method, where a matrix A is decomposed into

its best possible lower rank matrix approximation. Mathematically, it is decomposing the

matrix into two unitary* matrices and a diagonal matrix.

(*In linear algebra, a complex square matrix 𝑈 is unitary if its conjugate transpose 𝑈𝑇is also its

inverse, that is, if where 𝐼 is the identity matrix. Unitary matrix is also known as orthogonal matrix

)

Figure 3: Advantages and Disadvantages of CF techniques. Image courtesy: “Movie Recommendation

Systems” by Vivek dalal, Raj Sankhe, Tej Sankhe

In this model a matrix is decomposed into three other Matrices :

𝐴 = 𝑈𝑆𝑉𝑇……………(1)

Where:

A is an m × n matrix

U is an m × r orthogonal matrix

S is an r × r diagonal matrix

V is an r × n orthogonal matrix

The diagonal matrix S is collapsed into a vector 𝑎𝑖𝑗 .

.....................(2)

The variables {sk} are called “singular values” and are arranged in descending order.

The columns of U are called left singular vectors, while those of V are called right singular

vectors.

Also since U and V are orthogonal,

 ……………….(3)

𝐼 is called Identity Matrix (Only Diagonal values are 1, rest are 0)

Advantages

Decomposing matrix into relatively smaller vectors, it tackles the scalability problem by

dimensionality reduction.

Latent Factor Model - A modern recommender system

So far the models that were discussed above were based only on the available data or

the history of preferred items. In more recent research, another layer is added to the

previous ones for optimized recommendations, where machine learning concepts have

been introduced into this system to predict the missing ratings.

In the case of User-Item matrix R, we know that it is a sparse matrix with a lot of missing

values and the Latent Factor Model is meant to predict them. If matrix R can be

represented as 𝑅 = 𝑃 • 𝑄𝑇

where ,

 𝑃 ∈ 𝑚 × 𝑘

 𝑄𝑇 ∈ 𝑘 × 𝑛

 𝑅 ∈ 𝑚 × 𝑛 ,

Thus automatically able to generate all values of 𝑟𝑖𝑗 ∈ 𝑅 , 𝑟𝑖𝑗 = 𝑝𝑖𝑞𝑗𝑇 , which is achieved

by the SVD as well.

SVD minimizes the error using the RMSE (Root Mean Squared Error), by applying the

approximation,

LightFM hybrid recommender model

Another proposed model is LightFM, which is one of the hybrid matrix factorization

models, where users and items are represented in a linear combination of the content

feature’s latent factors.

Advantages

This model is better than the previous hybrid model discussed, as,

- It provided good results as the hybrid model of CB and CF, in that it performed well

even for the cold start and sparse user-item matrix.

- When the collaborative information is sufficiently large in the training set or when

the user features are available, it outperforms the content based (CB).

- it even performs as well as the collaborative matrix factorization model for the

warm-start, dense user-item matrix (i.e. When the data is abundant)

- Another advantage of LightFM, it implements implicit feedback to train the system,

hence performs well for such a scenario.

- Tested and used by many developers and brands resp.

- Model Evaluation metrics provision for evaluating the performance of the model

- Faster

III.B. Our solution to solve this problem

Importing the models discussed so far (ie. Hybrid recommendation systems for content

filtering and Singular Value Decomposition, and Hybrid LightFM model), we intend to

replace the baseline recommender systems with these hybrid systems to potentially

create a more accurate recommendation system for the dataset chosen, for the cold start

and sparse matrices. We intend to choose the best of both worlds and integrate in the

hybrid CB - SVD model and Light FM models. We propose showing the results from the

comparison of these two models and present them here in our paper.

III.C. Where our solution is different from others

Most proposed solutions either use the traditional baseline models to solve the problem.

Because there are limitations to the baseline models, we will take it a step further by

proposing hybrid models and we hypothesize that will deliver better quality of results in

terms of the relevance in the recommended items. While the cold start and scarcity issue

still exists, we intend to reduce its effect on the recommendations.

IV. Hypothesis

Our hypothesis for this paper is such: to develop hybrid models, specifically the SVD

Content based model and the LightFM model, that will achieve better results than

baseline recommendation systems. We will test this by comparing our proposed hybrid

models against the baseline models.

V. Methodology

V.A. How to generate/collect input data

For developing and evaluating our models in this project, we have used MovieLens

dataset which was collected as part of GroupLens Project in University of Minnesota. This

dataset contains comprehensive information on movies, users and the individual ratings

for a movie by user. The dataset contains 100,836 ratings on 9742 movies by 610 users

and contains 3683 tag applications. This data is generated between March 29, 1996 and

September 24, 2018. Each user in this dataset rated at least 20 movies and is uniquely

represented by an ID. The data is available in four files in csv format - links, movies,

ratings and tags. Links file contains three fields which link to the popular open IMDB and

TMDB databases and is used for getting more contextual information from the IMDB

database. Movies file contains three fields related to movie information like movie name,

and its genres. Ratings file contains ratings given by each user, and are on a 1-5 scale

with half-star increments. Tags are the user generated metadata about movies.

In addition to the MovieLens dataset, we also made use of IMDB’s movie data set. Why

the need for this data set? In the MovieLens data set, there was a file for movies.

However, it lacked additional dimensional data such as director, actors, writers,

Production Company, etc. By linking the MovieLens data set to IMDB’s movie data set,

we are then able to obtain dimensions, such as release year, country, language, director,

writer, actors, etc, which will then be used in the content based recommender system. As

an overview, the movies csv file has data on over 80k movies, more than enough for our

purposes in this study.

V.B. How to solve the problem

Many techniques in data mining, information retrieval and machine learning exist and are

widely used in recommender systems to get personalized recommendations. These

traditional methods are effective, but each of these methods lack in different areas. For

example, the cold start problem is not seen in a content based traditional approach while

it is quite evident in a simple collaborative model. So combining these methods and

building a hybrid model not only overcomes these drawbacks, but also provides

recommendations of high quality.

V.B.I. Algorithm Design

In order to solve issues like cold start in existing collaborative filtering approaches and

diversity problems in content based filtering techniques, we proposed two hybrid

recommendation systems which take the best of each approach to provide high quality

recommendations. One such hybrid recommendation model is a combination of a movie

content based model and Singular Value Decomposition (SVD). Another proposed model

is LightFM which is a hybrid matrix factorization model that denotes users and items as a

linear combination of content features latent factors. In order to compare our proposed

models, three baseline models are implemented. One is a simple content filtering model,

and the other two models are based on collaborative filtering techniques using KNN and

SVD++ models.

Hybrid content based filtering and Singular Value Decomposition model:

It is a combination of two standalone models – content based model and SVD model.

The content based model output is sent to the SVD model which gives a list of the

recommended movies along with the user's likely ratings. The higher the user’s predicted

ratings are, the more relevant the recommendations for a particular user are generated.

Content based approach:

This is a data mining technique which finds similarity between movies based on

contextual information on movies like genre, actor, director and recommends movies

which are more similar to a movie that a user watched or liked. It mainly contains two

steps.

● The first step is to find the relative importance of the movies with help of contextual

information on movies using TF-IDF. These measures are found as there is no

quantitative approach in the text.

● The second step is to find similarity between the movies.

In order to find the relative importance of a movie with the help of contextual information,

term frequency (TF) and inverse document frequency (IDF) are used.TF gives the

frequency of a tokenizer in a particular movie context while IDF is the inverse of the

context frequency among the whole corpus.

Cosine similarity is the cosine angle between two vectors of inner product space. In other

words, it is the inner product of two vectors over the L2 norm of each of these vectors.

This will give the list of movies which are highly similar and recommend them to the user.

Singular Value Decomposition:

This is a collaborative filtering technique which uses linear algebra concepts. This method

helps in learning latent factors, highly scalable and works well even in the presence of

noisy data. As per the SVD method, the user-movie-ratings matrix, M of dimensions, mxn,

is decomposed into three matrices that are of lower dimensionality - U, ∑ and V. The rank

of the matrix M is the largest number of rows or columns which are linearly independent

with other rows or columns and is denoted by r. U is an orthogonal singular left matrix of

dimensions mxr, contains users and its related latent factors. ∑ is an rxr diagonal matrix

that describes latent factors strength or weights. V is an orthogonal singular right matrix

of dimensions rxn, consisting of movies and its related features. U decomposed matrix

tells us how much a user liked each feature while V tells how much a movie is related to

that feature. The M matrix is to be approximated using the decomposed matrices which

keeps top k most important features out of the total r features.

This approximated matrix is found which is an optimization problem where the root mean

squared error between the actual ratings and predicted ratings is minimized using

stochastic gradient descent.

Figure 4: SVD Approach

Hybrid LightFM Model:

LightFM model is a hybrid matrix factorization model which represents the user and items

as a linear combination of their content features’ latent factors and solves the cold start

and scarcity problems.

LightFM states that for the given user-item-rating matrix, let U be the user set, I be the

item set, features related to users as FU, and features related to items as FI. The

interactions whether positive or negative are stored in the user-interaction set (u,i) ∈ UxI

as S+ , S-. Each user in the set U is described using certain subset of features fu ⊂ FU

and each item in I is described using a subset of item features, f i ⊂ FI. The models’ item

and user features are translated to a latent dimension space and learns the embeddings

respectively, eI and eU for all features. A bias term is associated with both item and user

features, bU and bI. The latent representation of the user u and item i is equal to the sum

of user features’ latent factors and sum of item features latent factors respectively.

The bias term for user and item is calculated as the sum of features biases respectively.

The model prediction for user u and item i is equal to sum of the dot product of user and

item representations, user and feature biases.

The function, f, is taken as sigmoid which gives the prediction in the range of 0 and 1.

The approximate predictions are achieved by maximizing the likelihood of data with

respect to the parameters.

V.B.II. Language Used

For developing and implementing our models, python programming language is used.

V.B.III. Tools Used

For data preprocessing, standard libraries pandas and numpy are used. Matplotlib library

is used for visualization and plotting graphs. Scikit learn, surprise library and lightFM are

used for building our baseline and proposed hybrid models. Open source web application

Jupyter notebook and Kaggle are used for creating our models using python programming

language.

V.C. How to generate output

The dataset is split into two parts - training and testing. With training data, the proposed

models are developed and tested with test dataset which provides the list of

recommendations and the estimated ratings for each user. We also find the evaluation

metrics like RMSE, precision @ k, recall @ k and AUC score, wherever possible for the

models, to compare them.

V.D. How to test against hypothesis

The main aim of this project is to develop two hybrid models – Hybrid SVD Content based

model and lightFM model that overcomes the issues with traditional approaches. We

would test our proposed models and evaluate them against AUC score. Upon comparing

these metrics in standalone traditional and hybrid models, it shows that the hybrid models

outperform the standalone models and provide more quality recommendations tailored to

each individual.

VI. Implementation

VI.A. Code (refer programming requirements)

Refer appendix and submit file for code

VI.B. Design document and flowchart

The generic approach involved in the two proposed models is shown in Figure 5.

Figure 5: Generic approach for building the models

Hybrid content-based filtering and Singular Value Decomposition model:

The first proposed model implemented is a combination of two standalone models –

content-based filtering model and SVD model. We have used surprise and sklearn

libraries for building the models. Figure 6 shows the brief steps of the model.

Figure 6: Hybrid SVD Content-Based Model Steps

Detailed steps of this model is as follows:

1. Content-based model:

a. MovieLens and IMDB dataset is loaded from CSV files

i. Specifically, load the movies, links, and IMDb movie data sets

b. Join the three data sets so that you have the complete set of movie data in

one format

c. Extract the features of a movie that you will base similarity scores off of

i. Specifically, in this implementation, extract the genre, language,

director, writer, production company, and actors fields and combine

them into a single token separated by a comma

d. Use TF.IDF Vectorizer function provided by sklearn to generate a matrix of

movies vs features. In this matrix, the rows correspond to a specific movie

and the columns correspond to the feature that this movie may or may not

have. If a movie does not have a specific feature (ie. The movie is not an

action movie), then it will have a 0 for that feature

e. Use the linear_kernel function provided by sklearn to then transform the

matrix above into a similarity matrix, based on the cosine distance. The

resulting matrix is an n by n matrix, where the rows and columns correspond

to movies and the value at (n,n) is the cosine similarity between those two

movies, based on the features that they share

f. To generate a list of recommendations for a given user, the algorithm then

performs the following steps

i. Retrieve all the movies that this user has viewed

ii. For every movie, use the matrix from step 5 to generate a list of

similar movies

iii. Sort the list of similar movies from largest to smallest based on the

similarity score

iv. Select the top n movies to recommend to the movie

2. SVD model:

a. Movielens dataset is loaded and preprocessed by removing unwanted

columns like timestamps.

b. Convert the dataset into a matrix that contains users as the rows and

movies as the columns with ratings as the data.

c. Randomly initialize the user latent feature matrix and item latent feature

matrix according to a normal distribution

d. Split the dataset into train and test sets in 0.75-0.25 ratio with a random

seed to replicate the same results over multiple function calls

e. Assign some set of values for hyperparameters like the number of most

significant features, number of epochs, learning rate, and regularization

parameters.

f. Run the grid search to find the best hyperparameters.

g. Develop and train the model with the best hyperparameters until the loss is

minimized or the number of epochs is reached.

i. Perform stochastic gradient descent to minimize the loss and update

the user and item features accordingly.

ii. Calculate the root mean squared error between the actual ratings

and predicted ratings in the utility matrix

h. Test the model for predicting the ratings and generate a list of

recommendations for each user based on the estimated ratings

3. The recommendation list from the content-based model is passed to the SVD

model to get the predicted ratings

4. Sorting and filtering are performed on the list to get more quality and relevant

recommendations for each user.

5. Calculate precision and recall metrics for top n recommendations where the range

of n is 2 to 20.

SVD++ Model: This is one of the baseline models which is an extension of the SVD model

that uses implicit ratings. We have used the surprise library for building the model,

generate a list of recommendations to users, and to calculate precision and recall metrics.

The parameters used for this model are similar to the proposed models to have an

unbiased comparison with the hybrid model.

KNN Model: KNN Model is another baseline traditional collaborative model that is

developed for comparing the model with proposed models. KNN Model is built using

sklearn and surprise libraries. The steps involved in this model are as follows:

1. Load the MovieLens rating file

2. Split the data into a training set and a testing set

3. Create a KNN model that is provided by the surprise library

4. Fit the model with the rating data

5. Generate predictions using the fitted model

6. Run evaluation functions to gather performance metrics

LightFM Model:

This model is a combination of content-based filtering and collaborative filtering baseline

models. It includes implementation of BPR(Bayesian Personalised Ranking pairwise loss)

and WARP(Weighted Approximate-Rank Pairwise loss) loss functions. We used WARP

as Maximizes the rank of positive examples by repeatedly sampling negative examples

until rank violating one is found, which is best suited for the current context of

recommendation systems.

This model also follows the generic approach as shown in the figure of the flowchart at

the beginning of this section.

1. The data fetching and preprocessing is done using the fetch_movielens library

provided by the lightfm package, by also mentioning the threshold for ratings.

2. The data is then split into train and test sparse matrices, also while preprocessing,

along with the item feature matrix.

3. The train data is fit into the lightfm model, along with some hyperparameters like

loss, number of epochs, learning rate, number of samples, number of threads as

required.

4. A recommender function is defined which takes the training data and tests it

against that data. The user ratings above the threshold mentioned while fetching

the data are considered as known positives, which is used to display the

recommendation for movies as well as the known positives as a table.

5. Further, some more evaluation metrics functions are defined in the lightfm model

by varying all the hyperparameters among a range of data by trying out random

combinations. The evaluation metrics for all the combinations, including the best

is displayed.

VII. Data Analysis and Discussion

VII.A. Output Generation

For all the proposed and baseline models, the output is the list of top 10 movie

recommendations for each user. To evaluate all the models, we are using AUC score.

For lightFM, AUC score is the best metric used for comparison. For other models, we

found RMSE, precision @5, precision @10, recall @5, recall@10 metrics to compare and

evaluate the models. In information retrieval, these are some of the widely used

evaluation metrics for recommender systems. For a user, the metric precision @ k is

equal to the fraction of retrieved recommendations that are relevant to the query.

Recall @ k is the fraction of the relevant documents that are successfully retrieved.

In the recommended items, a movie is relevant if its true rating is greater than threshold

and a movie is recommended if the predicted rating is greater than threshold and is

among the top k estimated ratings.

VII.B. Output Analysis

VII.B.I. Hybrid genre based content filtering and Singular Value Decomposition

model:

For the first proposed hybrid content-based and SVD model, we have used grid search

for choosing the best hyper parameters and their values for the model. Table 1 shows

the different hyper parameters and their values. The model is trained with the best

values highlighted in bold.

Table 1: Parameters used in Gridsearch for the hybrid SVD Content-based model

Hyper Parameter Value

Number of features 10,20,25,30,35,40,50,100

Number of epochs 10,20,30,40,50

Learning rate 0.9,0.09,0.009,0.1,0.01,0.001,0

Regularization parameter 0.9,0.09,0.009,0.1,0.01,0.001,0

We compared each hyper parameter with RMSE to see how the presence or absence

of hyper parameter and its value affects the RMSE. Figure 7 shows how the RMSE

varies with respect to the number of features for test data. The root mean square error

between the estimated and actual ratings did not affect much with respect to different

number of factors. When the number of factors is 100, the RMSE is 0.852, is almost flat

and did not change much as the factors keep on increasing. Figure 8 shows how the

RMSE varies in multiple epochs.

Figure 8: RMSE Variation with increasing epochs

With respect to epochs, the RMSE did not change much similar to the factors. As the

number of epochs keep on increasing, RMSE almost went flat and did not have much

difference. Figure 9 shows the effect of learning rate with RMSE. The graph shows that

without any learning rate, the RMSE is pretty high and the presence of learning rate made

Figure 7: Varying RMSE with increase of factors

a difference. However, as the learning rate increased, the RMSE also started increasing.

At learning rate 0.01, the RMSE is minimum which is used for training the model.

Figure 9: Effect of learning rate on RMSE

The effect of the presence of regularization is seen in the figure 10. For training data, the

data is overfitting without regularization and RMSE is increasing as the parameter value

keeps on increasing. For testing dataset, the RMSE starts decreasing and becomes flat

at regularization parameter 0.10.

Figure 10: Effect of regularization

The evaluation of the model using precision @ K and recall @ K starting from top 5 to 10

recommendations is shown in figure 11. The model achieves a precision of 0.91 and a

recall of 0.56 for the top 10 recommendations.

Figure 11: Precision@k and Recall@k scores for hybrid SVD content model

The content-based model retrieves a list of recommendations based on cosine similarity

for all users. The final output of the model is the list of relevant recommendations from

content based model with the estimated ratings coming from the SVD model which is

sorted in descending order.

Figure 12: Top 10 highly rated movies by user 60

Figure 12 shows a list of top 10 movies that are highly rated and liked by user 60. We can

depict from the list that the user generally enjoys movies that are related to Drama, Action,

Crime genres. The output of the hybrid model is shown in figure 13, the movie

recommendations for a user 60, and the likely ratings user would provide. We can see

that the recommendations are mostly from the Action, Crime, and Drama genre and the

model is producing more quality and relevant recommendations.

Figure 13: Top 10 recommendations for user 60 by SVD content based model

VII.B.II. SVD++ Model:

The model is developed using learning rate and regularization parameters to avoid

overfitting. For test dataset, the RMSE between actual and estimated ratings achieved is

0.90. The model is evaluated using precision @ 5, precision @ 10, recall @5 and recall

@10 metrics. We have achieved a precision of 0.90 and recall of 0.56 for top 10

recommendations. The output of the model is shown in figure 14 for user 10

Figure 14: Top 10 recommendations for user 10 by SVD++ model

Figure 15 shows the precision and recall metrics starting from top 5 to top 10

recommendations.

Figure 15: Precision@k and Recall@k scores SVD++ model

VII.B.III. KNN Model

Similar to the SVD++ model, this model is tuned with various parameters. It is also

evaluated based on the same metrics. For instance, we’ve obtained RMSE score,

precision@, and recall@ scores so that the model itself can be compared against other

baseline models as well as the proposed hybrid models. Below is a brief analysis on the

output.

Similar to SVD++, we show here the top 10 rated movies that user 10 rated. For this user,

it seems like they enjoy Comedy, Action, and Adventure movies.

Figure 16: Top 10 highly liked movies by user 10

Now, if we use the KNN model to suggest the top 10 movies that this user may like, it will

present the following list. The recommended movies seem to be very much aligned with

what the user enjoys. It returns many Comedy, Action, and Adventure movies. How does

this model actually perform?

Figure 17: Top 10 recommendations for user 10 by KNN model

Coming to the KNN model evaluation, it has an RMSE score of 0.985, which is a bit higher

than what the other models have shown. When we look at its precision@k and recall@k

scores, we see that it performs reasonably. The precision and recall are not as good but

decent when compared to other models.

Figure 18: Precision@k and Recall@k scores for KNN model

The KNN Model performs decently. However, it can already be seen that other models

can perform much better.

VII.B.IV. LightFM Model

LightFm library is developed based on the sklearn library, with a scope of creating

interaction matrices, evaluation metrics and many more. Also contains a large set of

datasets related to the movie rating, called ‘Movielens’ dataset.

It fetches input from movielens, and divides into train and test sparse matrices.There are

fitted into the lightfm model, tweaking hyperparameters. The model is further used to

predict the recommendations based on the known likes of the user. Output of Known

positives are shown on the right side in Figure 19 shows the known likes or (known

positives) of the user.

Left side image in Figure 19 shows the output dataframe of lightfm model for the

recommended movies based on those likes.

Evaluation of LightFM

We calculated Precision@k, Recall@k metrics provided by lightfm library and AUC score

evaluation metrics provided by the sklearn.metrics is applied on the lightfm model.

We used AUC score to compare it with other models as it is the recommended metric for

evaluation.We see that the model performed better than the other models with respect to

AUC score.

Values : Train set = 0.94, Test_set = 0.91

Top-10 recommendations are taken into account to compute true positive rate and false

positive rate?

All the ratings treated as binary for the AUC score in LightFM.

Figure 19: Top 10 recommendations for the users; known positives - the movies liked by the users

VII.C. Compare Output Against Hypothesis

The hypothesis of our project is to develop two hybrid models – SVD Content based

model and LightFM model which outperform the traditional baseline approaches. All the

models are compared against AUC Score since this is the recommended metric for

comparison with respect to LightFM model. The other three models are compared with

three metrics – Precision @5, Recall @5, and AUC Score evaluation metrics. The Table

2 shows comparison of all models with AUC score while table 3 shows all the metric

scores calculated for models except LightFM.

Table 2: Evaluating models with AUC Score

Method Type of model AUC Score

KNN Baseline 0.68

SVD++ Baseline 0.73

Hybrid SVD

Content-Based
Hybrid 0.77

LightFM Hybrid 0.92

On seeing the evaluation metrics with respect to all models, in a nutshell, we can conclude

that the proposed models perform better than the baseline models. The best values

achieved are highlighted in bold. When we compare the hybrid SVD Content based model

with the baselines, the hybrid model performs better with respect to precision and recall

which retrieves most of the relevant recommendations. Although the recall metric is

similar to SVD++ model, the precision and AUC score is higher for the proposed model.

Table 3: Metric scores for models except lightFM

Method Type of model Precision@5 Precision@10 Recall @5 Recall @10 AUC Score

KNN Baseline 0.91 0.9 0.33 0.53 0.68

SVD++ Baseline 0.91 0.9 0.37 0.56 0.73

Hybrid SVD

Content-Based
Hybrid 0.92 0.91 0.37 0.56 0.77

VIII. Conclusions and Recommendations

VIII.A. Summary and Conclusions

In this study, we have come to the conclusion that hybrid recommender systems

outperform their more basic content based and collaborative filtering counterparts. How

did we come to this conclusion? We first did research on existing technologies out there.

Then, we figured out what were the base models (content based and collaborative filtering

models) and the enhancements that have been made to these models since. From there,

we mixed and mashed several different approaches, including content based and SVD,

latent factorization through LightFM, etc. By combining the different approaches, we were

able to implement models that outperformed their basic counterparts.

VIII.B. Recommendations for Future Studies

The benefit of combining different approaches into one model was that the strength of

one model covered the weakness of another model. For instance, cold start is a common

issue for collaborative filtering models. As a reminder, cold start problem is where there

is no historical data for the user or the movie and so the model has nothing to base its

predictions off of. Although this is a limitation of the collaborative model, it is not one of

the content-based recommender models. It is not just a cold start that is addressed

through a hybrid approach. Other issues such as sparsity of data and also implicit features

are issues that are tricky to handle in regular recommender systems. That is why we

incorporated SVD as well as LightFM which uses latent factorization to incorporate implicit

features.

That said, there are always issues that can still be addressed. There are always limitations

to the current state of recommender systems that can be researched and addressed. For

instance, localization is one aspect of recommender systems that can be looked into

more. It is possible that the tastes of individuals in one particular region or state can be

drastically different than the tastes of individuals in another region. If the recommender

systems are trained using all individual’s data without considering region, the

recommendations may not be as accurate as it can be. By creating tailored

recommendation systems for specific geographies, it is possible to enhance the existing

state of recommendation systems even further.

IX. Bibliography

[1]. Harper, F. Maxwell, and Joseph A. Konstan. "The movielens datasets: History and

context." Acm transactions on interactive intelligent systems (tiis) 5, no. 4 (2015):

1-19.

[2]. Hug, Nicolas. "Surprise: A Python library for recommender systems." Journal of

Open Source Software 5, no. 52 (2020): 2174.

[3]. Kula, Maciej. "Metadata embeddings for user and item cold-start

recommendations." arXiv preprint arXiv:1507.08439 (2015).

[4]. Guan, Xin, Chang-Tsun Li, and Yu Guan. "Matrix factorization with rating

completion: An enhanced SVD model for collaborative filtering recommender

systems." IEEE access 5 (2017): 27668-27678.

[5]. Kumar, Rajeev, B. K. Verma, and Shyam Sunder Rastogi. "Social popularity based

SVD++ recommender system." International Journal of Computer Applications 87,

no. 14 (2014).

[6]. Shani, Guy, and Asela Gunawardana. "Evaluating recommendation systems." In

Recommender systems handbook, pp. 257-297. Springer, Boston, MA, 2011.

[7]. Rajaraman, Anand, and Jeffrey David Ullman. Mining of massive datasets.

Cambridge University Press, 2011.

[8]. Pochetti, Francesco. “Bridging Recommender Systems and Dimensionality

Reduction.” Francesco Pochetti, 2017, francescopochetti.com/bridging-

recommender-systems-dimensionality-reduction/.

[9]. Schröder, Gunnar, Maik Thiele, and Wolfgang Lehner. "Setting goals and choosing

metrics for recommender system evaluations." In UCERSTI2 workshop at the 5th

ACM conference on recommender systems, Chicago, USA, vol. 23, p. 53. 2011.

Web References:

[10]. https://making.lyst.com/lightfm/docs/home.html

[11]. https://stackoverflow.com/questions/49896816/how-do-i-optimize-the-

hyperparameters-of-lightfm

https://making.lyst.com/lightfm/docs/home.html
https://stackoverflow.com/questions/49896816/how-do-i-optimize-the-hyperparameters-of-lightfm
https://stackoverflow.com/questions/49896816/how-do-i-optimize-the-hyperparameters-of-lightfm

X. Appendices

X.A. Program source code with documentation

BaselineKNN.py

from surprise import Dataset
from surprise import Reader
from surprise import accuracy
from surprise.model_selection import cross_validate
from surprise.model_selection import train_test_split
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_auc_score
import pandas as pd
from collections import defaultdict
import numpy as np
from surprise import KNNBasic

df_ratings = pd.read_csv('input/ratings.csv')
df_movies = pd.read_csv('input/movies.csv')
df_ratings = df_ratings.drop(columns='timestamp')

loading the data
train_split, test_split = train_test_split(df_ratings, test_size =
0.3, random_state=42)
reader = Reader(rating_scale=(1,5))
train_build = Dataset.load_from_df(train_split, reader)
test_build = Dataset.load_from_df(test_split, reader)
trainset = train_build.build_full_trainset()
testset = test_build.build_full_trainset().build_testset()

model = KNNBasic(k=50,min_k=20)
model.fit(trainset)
predictions = model.test(testset)
accuracy.rmse(predictions, verbose=True)

metrics=[]
true_pos_array = []
est_array = []
for rating_threshold in np.arange(0,5.5,0.5):
 truePositives = 0
 trueNegatives = 0
 falseNegatives = 0
 falsePositives = 0
 accuracy =0
 precision =0

 recall =0
 f1_score = 0
 for uid,_, true_r, est, _ in predictions:
 if(true_r >= rating_threshold and est >= rating_threshold):
 truePositives = truePositives + 1
 true_pos_array.append(true_r)
 est_array.append(est)
 elif(true_r >= rating_threshold and est <= rating_threshold):
 falseNegatives = falseNegatives + 1
 elif(true_r <= rating_threshold and est >= rating_threshold):
 falsePositives = falsePositives + 1
 elif(true_r <= rating_threshold and est <= rating_threshold):
 trueNegatives = trueNegatives + 1
 if(truePositives > 0):
 accuracy = (truePositives + trueNegatives) /
(truePositives + trueNegatives + falsePositives + falseNegatives)
 precision = truePositives / (truePositives +
falsePositives)
 recall = truePositives / (truePositives + falseNegatives)
 f1_score = 2 * (precision * recall) / (precision + recall)

metrics.append([rating_threshold,truePositives,trueNegatives,falsePosi
tives,falseNegatives,accuracy,precision,recall,f1_score])
 metrics_df = pd.DataFrame(metrics)
 metrics_df.rename(columns={0:'rating_threshold',
1:'truePositives', 2: 'trueNegatives', 3: 'falsePositives',
4:'falseNegatives', 5: 'Accuracy', 6: 'Precision', 7:'Recall', 8:'F1
Score'},inplace=True)
true_bin_array =[]
for x in true_pos_array:
 if x >= rating_threshold:
 x = 1
 else:
 x = 0
 true_bin_array.append(x)
auc_score =
roc_auc_score(true_bin_array,est_array,multi_class='raise',average='ma
cro')
print('AUC Score: ',auc_score)

def get_precision_recall_at_n(predictions,topn,rating_threshold):
 all_actual_predicted_list = defaultdict(list)
 precision = dict()
 recall= dict()
 no_of_relevant_items = 0
 no_of_recommended_items_at_top_n = 0
 no_of_relevant_recommended_items_at_top_n = 0
 for uid, iid, true_r, est, _ in predictions:
 all_actual_predicted_list[uid].append((est, true_r))
 for uid, user_ratings in all_actual_predicted_list.items():
 user_ratings.sort(key=lambda x: x[0], reverse=True)

 no_of_relevant_items = sum((true_r >= rating_threshold) for
(_, true_r) in user_ratings)
 no_of_recommended_items_at_top_n = sum((est >=
rating_threshold) for (est, _) in user_ratings[:topn])
 no_of_relevant_recommended_items_at_top_n = sum(((true_r >=
rating_threshold) and (est >= rating_threshold)) for (est, true_r) in
user_ratings[:topn])

 precision[uid] = no_of_relevant_recommended_items_at_top_n /
no_of_recommended_items_at_top_n if no_of_recommended_items_at_top_n
!= 0 else 1
 recall[uid] = no_of_relevant_recommended_items_at_top_n /
no_of_relevant_items if no_of_relevant_items != 0 else 1

 return precision, recall

rating_threshold=3
precision_recall_at_n = []
all_precision = 0
all_recall = 0
for topn in range(2,20):
 precision, recall =
get_precision_recall_at_n(predictions,topn,rating_threshold)
 precision_at_n = sum(prec for prec in precision.values()) /
len(precision)
 recall_at_n = sum(rec for rec in recall.values()) / len(recall)
 precision_recall_at_n.append({'topN' : topn, 'Precision' :
precision_at_n, 'Recall': recall_at_n})
print(precision_recall_at_n)

userId = 10
Display top rated movies
def get_top_n_rated_movies_for(userId, n=10):
 r = df_ratings[df_ratings['userId'] == userId]
 r_sorted = r.sort_values('rating', ascending=False)
 top_rated_movies = r_sorted.head(n)
 movie_info =
df_movies[df_movies['movieId'].isin(top_rated_movies['movieId'])]
 return movie_info

top_rated_movies = get_top_n_rated_movies_for(userId)
print(top_rated_movies.head(20))

Display predictions

def get_top_n_recommended_movies_for(userId, n=10):
 movies = list(filter(lambda p: p[0] == userId, predictions))
 movies_sorted = sorted(movies, key=lambda p: p.est, reverse=True)
 movieIds = [p.iid for p in movies_sorted]
 return df_movies[df_movies['movieId'].isin(movieIds)][:n]

recommended_movies = get_top_n_recommended_movies_for(userId)
print(recommended_movies.head(20))

BaselineSVD++.py

import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from surprise import SVDpp
from surprise import Dataset
from surprise import Reader
from surprise import accuracy
from collections import defaultdict
from surprise.model_selection import train_test_split
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_auc_score

#reading files
df_ratings = pd.read_csv('input/ratings.csv')
df_movies = pd.read_csv('input/movies.csv')
df_ratings = df_ratings.drop(columns= 'timestamp')
print(df_movies.head(5))
print(df_ratings.head(5))
#splitting data into train and test sets
train_split, test_split = train_test_split(df_ratings, test_size =
0.25, random_state = 20)
print("Training data size:", train_split.shape)
print("Test data size:", test_split.shape)
#reader for parsing the ratings file
reader = Reader(rating_scale=(1, 5))
#building the train and test set, loading the data from dataframe
train_build = Dataset.load_from_df(train_split, reader)
test_build = Dataset.load_from_df(test_split, reader)
trainset = train_build.build_full_trainset()
testset = test_build.build_full_trainset().build_testset()
print("Test set size:", len(testset))
#model building
#takes in factors, epochs, learning rate and regularization parameter
model = SVDpp(n_factors=20,n_epochs=5,lr_all=0.09,reg_all=0.5)
model.fit(trainset)
#making predictions
predictions = model.test(testset)
#calculating rmse
accuracy.rmse(predictions, verbose = True)
#Save all the predicted ratings and convert it to a dataframe
all_recommendations_list = defaultdict(list)
all_recommendations_df = pd.DataFrame([])
for uid, iid, true_r, est, _ in predictions:
 all_recommendations_list[uid].append((iid, est))

 all_recommendations_df =
all_recommendations_df.append(pd.DataFrame({'user': uid, 'movieId':
iid, 'predicted_rating' : est}, index=[0]), ignore_index=True);
print(all_recommendations_df.head(5))
print(all_recommendations_df.shape)
#Merging with movies file to get genre, title information for
predictions
all_recommendations_df_details =
pd.merge(all_recommendations_df,df_movies, on='movieId', how='inner')
print(all_recommendations_df_details.head(5))
#List of top n recommendations list as per SVD++
def get_top_n_recommendation_list_df(all_recommendations_df_details,
n=10):
 top_n_recommendations_df =
all_recommendations_df_details.sort_values(['user','predicted_rating']
,ascending=[True, False])
 return top_n_recommendations_df
top_n_recommendations_df =
get_top_n_recommendation_list_df(all_recommendations_df_details, 10)
print(top_n_recommendations_df.head())
metrics=[]
true_positives_array = []
est_array = []
for rating_threshold in np.arange(0,5.5,0.5):
 truePositives = 0
 trueNegatives = 0
 falseNegatives = 0
 falsePositives = 0
 accuracy =0
 precision =0
 recall =0
 f1_score = 0
 for uid,_, true_r, est, _ in predictions:
 if(true_r >= rating_threshold and est >= rating_threshold):
 truePositives = truePositives + 1
 true_positives_array.append(true_r)
 est_array.append(est)
 #here
 elif(true_r >= rating_threshold and est <= rating_threshold):
 falseNegatives = falseNegatives + 1
 elif(true_r <= rating_threshold and est >= rating_threshold):
 falsePositives = falsePositives + 1
 elif(true_r <= rating_threshold and est <= rating_threshold):
 trueNegatives = trueNegatives + 1
 if(truePositives > 0):
 accuracy = (truePositives + trueNegatives) /
(truePositives + trueNegatives + falsePositives + falseNegatives)
 precision = truePositives / (truePositives +
falsePositives)
 recall = truePositives / (truePositives + falseNegatives)
 f1_score = 2 * (precision * recall) / (precision + recall)

metrics.append([rating_threshold,truePositives,trueNegatives,falsePosi
tives,falseNegatives,accuracy,precision,recall,f1_score])
 metrics_df = pd.DataFrame(metrics)
 metrics_df.rename(columns={0:'rating_threshold',
1:'truePositives', 2: 'trueNegatives', 3: 'falsePositives',
4:'falseNegatives', 5: 'Accuracy', 6: 'Precision', 7:'Recall', 8:'F1
Score'},inplace=True)
true_bin_array =[]
for x in true_positives_array:
 if x >= rating_threshold:
 x = 1
 else:
 x = 0
 true_bin_array.append(x)
auc_score =
roc_auc_score(true_bin_array,est_array,multi_class='raise',average='ma
cro')
print('AUC Score: ',auc_score)
#Calculate precision and recall at n
def get_precision_recall_at_n(predictions,topn,rating_threshold):
 all_actual_predicted_list = defaultdict(list)
 precision = dict()
 recall= dict()
 no_of_relevant_items = 0
 no_of_recommended_items_at_top_n = 0
 no_of_relevant_recommended_items_at_top_n = 0
 for uid, iid, true_r, est, _ in predictions:
 all_actual_predicted_list[uid].append((est, true_r))
 for uid, user_ratings in all_actual_predicted_list.items():
 user_ratings.sort(key=lambda x: x[0], reverse=True)
 no_of_relevant_items = sum((true_r >= rating_threshold) for
(_, true_r) in user_ratings)
 no_of_recommended_items_at_top_n = sum((est >=
rating_threshold) for (est, _) in user_ratings[:topn])
 no_of_relevant_recommended_items_at_top_n = sum(((true_r >=
rating_threshold) and (est >= rating_threshold)) for (est, true_r) in
user_ratings[:topn])
 precision[uid] = no_of_relevant_recommended_items_at_top_n /
no_of_recommended_items_at_top_n if no_of_recommended_items_at_top_n
!= 0 else 1
 recall[uid] = no_of_relevant_recommended_items_at_top_n /
no_of_relevant_items if no_of_relevant_items != 0 else 1
 return precision, recall
rating_threshold=3
precision_recall_at_n = []
for topn in range(2,20):
 precision, recall =
get_precision_recall_at_n(predictions,topn,rating_threshold)
 precision_at_n = sum(prec for prec in precision.values()) /
len(precision)

 recall_at_n = sum(rec for rec in recall.values()) / len(recall)
 precision_recall_at_n.append({'topN' : topn, 'Precision' :
precision_at_n, 'Recall': recall_at_n})
for n in range(3,9):
 print(precision_recall_at_n[n])
#get user high rated and liked movies
all_movie_df_details = pd.merge(df_ratings,df_movies, on='movieId',
how='inner')
all_movie_df_details =
all_movie_df_details.sort_values(['userId','rating'],ascending=[True,
False])
print(all_movie_df_details.loc[all_movie_df_details['userId'] ==
10].head(10)) #user 10 top 10 rated movies
#user 10 top 10 movie recommendations list
print(top_n_recommendations_df.loc[top_n_recommendations_df['user'] ==
10].head(10))

ProposedHybridSVDContent.py

import numpy as np
import pandas as pd
import seaborn as sns
from matplotlib import pyplot as plt
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import linear_kernel
from surprise import SVD
from surprise import Dataset
from surprise import Reader
from surprise.model_selection import cross_validate
from surprise.model_selection import KFold
from surprise import accuracy
from collections import defaultdict
from surprise.model_selection import train_test_split
from sklearn.model_selection import train_test_split
from surprise.model_selection import GridSearchCV
from sklearn.metrics import roc_auc_score

#Content Based model
#Reading datasets
movies = pd.read_csv("input/movies.csv")
print(movies.head(5))
links = pd.read_csv("input/links.csv")
print(links.head(5))
converting the imdbId field to be joinable later
links['imdbId2'] = links['imdbId'].map(str).apply(lambda s: "tt0" + s
if len(s) == 6 else "tt" + s)
print(links.head(5))
imdb_movies = pd.read_csv("input/IMDb movies.csv")
print(imdb_movies.head(5))

joining data sets to obtain contextual information on movies (ie.
director, actor, production_company)
movies_links = pd.merge(movies, links, how='inner', on='movieId')
print(movies_links.head(5))
movies_complete =
pd.merge(movies_links,imdb_movies,how='inner',left_on='imdbId2',right_
on='imdb_title_id')

def generate_similarity_matrix():
 mc = movies_complete
 # filling in missing data
 mc['genre'].fillna("No genre")
 mc['language'].fillna("language")
 mc['director'].fillna("director")
 mc['writer'].fillna("writer")
 mc['production_company'].fillna("production_company")
 mc['actors'].fillna("actors")
 movies_complete["tokens"] = mc['genre'] + "," + mc['director'] +
mc['writer'] + "," + mc['actors'] + "," + mc['production_company']
 v = TfidfVectorizer(token_pattern = '[a-zA-Z0-9\s]+')
 tfidf_movies_context_matrix =
v.fit_transform(movies_complete['tokens'].values.astype('U'))
 cos_sim_matrix = linear_kernel(tfidf_movies_context_matrix,
tfidf_movies_context_matrix)
 return cos_sim_matrix
cos_sim_matrix = generate_similarity_matrix()
ratings = pd.read_csv("input/ratings.csv")
def get_movies_watched_by(userID):
 user_filter = ratings['userId'] == userID
 movies_watched = ratings[user_filter]
 return movies_watched
def get_movie_recommendations_for(userID):
 # get the list of movies that this user has watched
 movies_watched = get_movies_watched_by(userID)
 df_movies_watched = pd.DataFrame()
 for index, row in movies_watched.iterrows():
 i = movies_complete[movies_complete['movieId'] ==
row['movieId']].index
 df_movies_watched =
df_movies_watched.append(movies_complete.loc[i])

 # get similar items based on those movies
 similar_movies = []
 for index, row in df_movies_watched.iterrows():
 # generate top n similar items and add to the similar_movies
list
 sim_movies = list(enumerate(cos_sim_matrix[index]))
 sim_movies_sorted = sorted(sim_movies, key=lambda
movieid_score_tuple: movieid_score_tuple[1], reverse=True)
 similar_movies = similar_movies + sim_movies_sorted[1:11]
 # order the list from highest similarity to lowest similarity

 # recommend the top 10 movies
 similar_movies = sorted(similar_movies, key=lambda
movieid_score_tuple: movieid_score_tuple[1], reverse=True)
 top_10_recommendations = similar_movies
 # convert the list of movie indexes to movie id
 results_2 = list()
 for movie_score in top_10_recommendations:
 movie_index = movie_score[0]
 movie_score = movie_score[1]
 movieId = movies_complete.iloc[movie_index]['movieId']
 movieTitle = movies_complete.iloc[movie_index]['title_x']

 genre = movies_complete.iloc[movie_index]['genre']
 language = movies_complete.iloc[movie_index]['language']
 director = movies_complete.iloc[movie_index]['director']
 writer = movies_complete.iloc[movie_index]['writer']
 production_company =
movies_complete.iloc[movie_index]['production_company']
 actors = movies_complete.iloc[movie_index]['actors']
 t = (userID, movie_index, movie_score, movieId, movieTitle,
genre, language, director, writer, production_company, actors)
 results_2.append(t)
 df_results_2 = pd.DataFrame(results_2, columns=['userID',
'movie_index', 'score', 'movieId', 'title', 'genre', 'language',
'director', 'writer', 'production_company', 'actors'])
 # need to remove duplicates by only keeping the movie with the
highest score
 df_results_2 =
df_results_2[df_results_2.groupby(['movieId'],sort=False)['score'].tra
nsform(max) == df_results_2['score']]
 return df_results_2
results = get_movie_recommendations_for(60)
print(results.head(20))

#SVD Model
#reading files
df_ratings = pd.read_csv('input/ratings.csv')
df_movies = pd.read_csv('input/movies.csv')
df_ratings = df_ratings.drop(columns= 'timestamp')
print(df_movies.head(5))
print(df_ratings.head(5))

#splitting data into train and test sets
train_split, test_split = train_test_split(df_ratings, test_size =
0.25, random_state=20)
print("Training data size:", train_split.shape)
print("Test data size:", test_split.shape)
#reader to parse the ratings
reader = Reader(rating_scale=(1, 5))
#Train and test set
train_build = Dataset.load_from_df(train_split, reader)

test_build = Dataset.load_from_df(test_split, reader)
trainset = train_build.build_full_trainset()
testset = test_build.build_full_trainset().build_testset()
print("Test set size:", len(testset))

#Gridsearch to select best parameters
number_of_factors_list = [10,20,25,30,35,40,50,100]
number_of_epochs_list = [10,20,30,40,50]
learning_rate_list = [0.9,0.09,0.009,0.1,0.01,0.001]
regularization_parameter_list = [0.9,0.09,0.009,0.1,0.01,0.001]
hyper_parameters_set = { 'n_factors': number_of_factors_list,
'n_epochs': number_of_epochs_list, 'lr_all':
learning_rate_list,'reg_all': regularization_parameter_list}
trained_model = SVD
best_model_selection =
GridSearchCV(trained_model,hyper_parameters_set,measures=['rmse'],
cv=4)
best_model_selection.fit(train_build)
print("Best hyperparameters:
",best_model_selection.best_params['rmse'], "to achieve minimum RMSE:
" ,best_model_selection.best_score['rmse'])

#Factors vs RMSE
validationset = trainset.build_testset()
training_rmse = []
testing_rmse =[]
number_of_factors_list = [10,20,25,30,35,40,50,100]
for factor in number_of_factors_list:
 model = SVD(n_factors=factor,n_epochs=50,lr_all=0.01,reg_all=0.1)
 model.fit(trainset)
 training_predictions = model.test(validationset)
 training_rmse.append(accuracy.rmse(training_predictions))
 test_predictions = model.test(testset)
 testing_rmse.append(accuracy.rmse(test_predictions))
plt.figure(0)
plt.plot(number_of_factors_list,testing_rmse, 'b+--', markersize=12,
markeredgecolor='r',label='testing')
plt.plot(number_of_factors_list,training_rmse, 'g+--', markersize=12,
markeredgecolor='r',label='training')
plt.xlabel('No of factors')
plt.ylabel('RMSE')
plt.title("RMSE vs Factors")
plt.legend()

#Epochs vs RMSE
training_rmse = []
testing_rmse =[]
number_of_epochs_list = [10,20,30,40,50]
for epoch in number_of_epochs_list:
 model = SVD(n_factors=100,n_epochs=epoch,lr_all=0.01,reg_all=0.1)
 model.fit(trainset)

 training_predictions = model.test(validationset)
 training_rmse.append(accuracy.rmse(training_predictions))
 test_predictions = model.test(testset)
 testing_rmse.append(accuracy.rmse(test_predictions))
plt.figure(1)
plt.plot(number_of_epochs_list,testing_rmse, 'b+--', markersize=12,
markeredgecolor='r',label='testing')
plt.plot(number_of_epochs_list,training_rmse, 'g+--', markersize=12,
markeredgecolor='r',label='training')
plt.xlabel('No of epochs')
plt.ylabel('RMSE')
plt.title("RMSE vs Epochs")
plt.legend()

#Effect of learning rate with respect to RMSE
training_rmse = []
testing_rmse =[]
learning_rate_list = [0,0.001,0.009,0.01,0.09,0.1]
for lr in learning_rate_list:
 model = SVD(n_factors=100,n_epochs=50,lr_all=lr,reg_all=0.1)
 model.fit(trainset)
 training_predictions = model.test(validationset)
 training_rmse.append(accuracy.rmse(training_predictions))
 test_predictions = model.test(testset)
 testing_rmse.append(accuracy.rmse(test_predictions))
plt.figure(2)
plt.plot(learning_rate_list,testing_rmse, 'b+--', markersize=12,
markeredgecolor='r',label='testing')
plt.plot(learning_rate_list,training_rmse, 'g+--', markersize=12,
markeredgecolor='r',label='training')
plt.xlabel('Learning rate')
plt.ylabel('RMSE')
plt.title("RMSE vs Learning rate")
plt.legend()

#Regularization parameter and RMSE
training_rmse = []
testing_rmse =[]
regularization_parameter_list = [0,0.001,0.009,0.01,0.09,0.1]
for reg in regularization_parameter_list:
 model = SVD(n_factors=100,n_epochs=50,lr_all=0.01,reg_all=reg)
 model.fit(trainset)
 training_predictions = model.test(validationset)
 training_rmse.append(accuracy.rmse(training_predictions))
 test_predictions = model.test(testset)
 testing_rmse.append(accuracy.rmse(test_predictions))
plt.figure(3)
plt.plot(regularization_parameter_list,testing_rmse, 'b+--',
markersize=12, markeredgecolor='r',label='testing')
plt.plot(regularization_parameter_list,training_rmse, 'g+--',
markersize=12, markeredgecolor='r',label='training')

plt.xlabel('Regularization parameter')
plt.ylabel('RMSE')
plt.title("RMSE vs Regularization")
plt.legend()

#Building model using the best parameters from gridsearch
model = SVD(n_factors=100,n_epochs=50,lr_all=0.01,reg_all=0.1)
model.fit(trainset)
predictions = model.test(testset)
accuracy.rmse(predictions, verbose = True)

#Save all the predicted ratings and convert it to a dataframe
all_recommendations_list = defaultdict(list)
all_recommendations_df = pd.DataFrame([])
for uid, iid, true_r, est, _ in predictions:
 all_recommendations_list[uid].append((iid, est))
 all_recommendations_df =
all_recommendations_df.append(pd.DataFrame({'user': uid, 'movieId':
iid, 'predicted_rating' : est}, index=[0]), ignore_index=True);
print(all_recommendations_df.head(5))
print(all_recommendations_df.shape)

#Append movie info to the predictions
all_recommendations_df_details =
pd.merge(all_recommendations_df,df_movies, on='movieId', how='inner')
print(all_recommendations_df_details)
#top n recommendations list
def get_top_n_recommendation_list_df(all_recommendations_df_details,
n=10):
 top_n_recommendations_df =
all_recommendations_df_details.sort_values(['user','predicted_rating']
,ascending=[True, False])
 return top_n_recommendations_df
top_n_recommendations_df =
get_top_n_recommendation_list_df(all_recommendations_df_details, n=10)
print(top_n_recommendations_df.head())

#Hybrid model
def hybrid_model(userID):
 content_recommendations_list =
get_movie_recommendations_for(userID) #list of movies for that user
 content_recommendations_list=
content_recommendations_list[['userID','movieId', 'title', 'genre']]
 for key, columns in content_recommendations_list.iterrows():
 #key is the index of the dataframe, columns are movieid, title
and genre
 predict = model.predict(userID, columns["movieId"])
#predicting the rating based on svd model
 content_recommendations_list.loc[key, "predicted rating"] =
predict.est #adding a column svd rating and adding prediction value

 return content_recommendations_list.sort_values("predicted
rating", ascending=False).iloc[0:11] # return only first 10 movies
based on ratings

#calculate evaluation metrics
metrics=[]
true_positives_array = []
est_array = []
for rating_threshold in np.arange(0,5.5,0.5):
 truePositives = 0
 trueNegatives = 0
 falseNegatives = 0
 falsePositives = 0
 accuracy =0
 precision =0
 recall =0
 f1_score = 0
 for uid,_, true_r, est, _ in predictions:
 if(true_r >= rating_threshold and est >= rating_threshold):
 truePositives = truePositives + 1
 true_positives_array.append(true_r)
 est_array.append(est)
 elif(true_r >= rating_threshold and est <= rating_threshold):
 falseNegatives = falseNegatives + 1
 elif(true_r <= rating_threshold and est >= rating_threshold):
 falsePositives = falsePositives + 1
 elif(true_r <= rating_threshold and est <= rating_threshold):
 trueNegatives = trueNegatives + 1
 if(truePositives > 0):
 accuracy = (truePositives + trueNegatives) /
(truePositives + trueNegatives + falsePositives + falseNegatives)
 precision = truePositives / (truePositives +
falsePositives)
 recall = truePositives / (truePositives + falseNegatives)
 f1_score = 2 * (precision * recall) / (precision + recall)

metrics.append([rating_threshold,truePositives,trueNegatives,falsePosi
tives,falseNegatives,accuracy,precision,recall,f1_score])
 metrics_df = pd.DataFrame(metrics)
 metrics_df.rename(columns={0:'rating_threshold',
1:'truePositives', 2: 'trueNegatives', 3: 'falsePositives',
4:'falseNegatives', 5: 'Accuracy', 6: 'Precision', 7:'Recall', 8:'F1
Score'},inplace=True)
true_bin_array =[]
for x in true_positives_array:
 if x >= rating_threshold:
 x = 1
 else:
 x = 0
 true_bin_array.append(x)

auc_score =
roc_auc_score(true_bin_array,est_array,multi_class='raise',average='ma
cro')
print('AUC Score: ',auc_score)

#calculate precision @ k and recall @ k
def get_precision_recall_at_n(predictions,topn,rating_threshold):
 all_actual_predicted_list = defaultdict(list)
 precision = dict()
 recall= dict()
 no_of_relevant_items = 0
 no_of_recommended_items_at_top_n = 0
 no_of_relevant_recommended_items_at_top_n = 0
 for uid, iid, true_r, est, _ in predictions:
 all_actual_predicted_list[uid].append((est, true_r))
 for uid, user_ratings in all_actual_predicted_list.items():
 user_ratings.sort(key=lambda x: x[0], reverse=True)
 no_of_relevant_items = sum((true_r >= rating_threshold) for
(_, true_r) in user_ratings)
 no_of_recommended_items_at_top_n = sum((est >=
rating_threshold) for (est, _) in user_ratings[:topn])
 no_of_relevant_recommended_items_at_top_n = sum(((true_r >=
rating_threshold) and (est >= rating_threshold)) for (est, true_r) in
user_ratings[:topn])
 precision[uid] = no_of_relevant_recommended_items_at_top_n /
no_of_recommended_items_at_top_n if no_of_recommended_items_at_top_n
!= 0 else 1
 recall[uid] = no_of_relevant_recommended_items_at_top_n /
no_of_relevant_items if no_of_relevant_items != 0 else 1
 return precision, recall
rating_threshold=3
precision_recall_at_n = []
for topn in range(2,20):
 precision, recall =
get_precision_recall_at_n(predictions,topn,rating_threshold)
 precision_at_n = sum(prec for prec in precision.values()) /
len(precision)
 recall_at_n = sum(rec for rec in recall.values()) / len(recall)
 precision_recall_at_n.append({'topN' : topn, 'Precision' :
precision_at_n, 'Recall': recall_at_n})
for n in range(3,9):
 print(precision_recall_at_n[n])

#get user liked and high rated movies
all_movie_df_details = pd.merge(df_ratings,df_movies, on='movieId',
how='inner')
all_movie_df_details =
all_movie_df_details.sort_values(['userId','rating'],ascending=[True,
False])
print(all_movie_df_details.loc[all_movie_df_details['userId'] ==
60].head(10))

#output of hybrid model which shows recommendations from user 60
print(hybrid_model(60))

ProposedLightFM.py

import numpy as np
import pandas as pd
from lightfm.datasets import fetch_movielens
from lightfm import LightFM
from lightfm.evaluation import precision_at_k
from lightfm.evaluation import recall_at_k
from lightfm.evaluation import auc_score
from lightfm.data import Dataset

from lightfm.cross_validation import random_train_test_split
import scipy.sparse as sp
from scipy.sparse import csr_matrix
from sklearn.model_selection import train_test_split
import itertools

movielens dataset with 100k movie ratings from 1k users on 1700 movi
es
data = fetch_movielens(min_rating=2.5)
print(data)

train_set = data['train']
test_set = data['test']

create hybrid model, CB+CF
model = LightFM(learning_rate=0.05,loss='warp')

#train model
model.fit(data['train'],epochs=20,num_threads=2)

Results

result=[]
known_values =[]
k = 10
userID_list = [2,10,60]
known_positives =[]
top_movies = []
def lightfm_recommender(model,data,user_ids):
 # of users and items usinf shape
 no_users,no_movies = data['train'].shape

generate recommendations for each user we input
 for user_id in user_ids:
movies already liked by user so far
 known_positives = data['item_labels'][data['train'].tocsr() [u
ser_id].indices]
movies our model predicts they will like
 scores = model.predict(user_id, np.arange(no_movies))
rank them in order of most liked to least

 top_movies = data['item_labels'][np.argsort(-scores)]
print out the results
 print("User %s" % user_id)
userID_list.append(user_id)
 print(" Known positives:")

 for x in known_positives[:k]:
 print(" %s" % x)
 known_values.append([user_id,x])

 print(" Recommended:")
 for x in top_movies[:k]:
 print(" %s" % x)
 result.append([user_id,x])
 return known_values,result

known_values, result = lightfm_recommender(model, data, userID_list)

known_values_df = pd.DataFrame(known_values)
known_values_df.rename(columns={0:'User',1:'Known Positives'},inplace=
True)
result_df = pd.DataFrame(result)
result_df.rename(columns={0:'User',1:'Top Movies Recommended'},inplace
=True)

result_df

known_values_df

Evaluation
from lightfm.evaluation import precision_at_k
train_p_at_k = precision_at_k(model, data['train'], k=5).mean()
test_p_at_k = precision_at_k(model, data['test'], k=5).mean()
print("PRECISION@K: Train precision: %.4f" % train_p_at_k)
print("PRECISION@K: Test precision: %.4f" % test_p_at_k)

train_auc = auc_score(model, train_set).mean()
test_auc = auc_score(model, test_set).mean()
print('AUC: train %.4f, test %.4f.' % (train_auc, test_auc))

train_recall = recall_at_k(model, train_set).mean()
test_recall = recall_at_k(model, test_set).mean()
print('RECALL@K: train %.4f, test %.4f.' % (train_recall, test_recall)
)

def sample_hyperparameters():
 """
 Yield possible hyperparameter choices.
 """

 while True:
 yield {
 "no_components": np.random.randint(16, 64),
 "learning_schedule": np.random.choice(["adagrad", "adadelt
a"]),
 "loss": np.random.choice(["bpr", "warp", "warp-kos"]),
 "learning_rate": np.random.exponential(0.05),

 "item_alpha": np.random.exponential(1e-8),
 "user_alpha": np.random.exponential(1e-8),
 "max_sampled": np.random.randint(5, 15),
 "num_epochs": np.random.randint(5, 50),

 }

def random_search_auc(train, test, num_samples=10, num_threads=1,k=5):

 for hyperparams in itertools.islice(sample_hyperparameters(), num_
samples):
 num_epochs = hyperparams.pop("num_epochs")
 model = LightFM(**hyperparams)
 model.fit(train, epochs=num_epochs, num_threads=num_threads)
 score = auc_score(model, test, train_interactions=train, num_t
hreads=num_threads,check_intersections=False).mean()
 hyperparams["num_epochs"] = num_epochs
 yield (score, hyperparams, model)

if __name__ == "__main__":

 (score, hyperparams, model) = max(random_search_auc(train_set, tes
t_set, num_threads=2), key=lambda x: x[0])

 print("Best AUC score {} at {}".format(score, hyperparams))

#Precision@K:

def random_search_precision_at_k(train, test, num_samples=5, num_threa
ds=2,k=5):

 for hyperparams in itertools.islice(sample_hyperparameters(), num_
samples):
 num_epochs = hyperparams.pop("num_epochs")

 model = LightFM(**hyperparams)
 model.fit(train, epochs=num_epochs, num_threads=num_threads)

 p_at_k_score = precision_at_k(model, test_interactions=test, t
rain_interactions=train, num_threads=num_threads,k=k,check_intersectio
ns=False,preserve_rows=True).mean()

 hyperparams["num_epochs"] = num_epochs

 yield (p_at_k_score, hyperparams, model)

if __name__ == "__main__":

 (p_at_k_score, hyperparams, model) = max(random_search_precision_a
t_k(train_set, test_set, num_threads=2,k=5), key=lambda x: x[0])

 print("Best Precision@k score {} at {}".format(p_at_k_score, hyper
params))

#Recall@K

def random_search_recall_at_k(train, test, num_samples=10, num_threads
=1,k=5):

 for hyperparams in itertools.islice(sample_hyperparameters(), num_
samples):
 num_epochs = hyperparams.pop("num_epochs")

 model = LightFM(**hyperparams)
 model.fit(train, epochs=num_epochs, num_threads=num_threads)

 r_at_k_score = recall_at_k(model, test, train_interactions=tra
in, num_threads=num_threads, k=k).mean()

 hyperparams["num_epochs"] = num_epochs

 yield (r_at_k_score, hyperparams, model)

if __name__ == "__main__":

 (r_at_k_score, hyperparams, model) = max(random_search_recall_at_k
(train_set, test_set, num_threads=2), key=lambda x: x[0])

 print("Best Recall@k score {} at {}".format(r_at_k_score, hyperpar
ams))

X.B. Input/Output Listing

Input:

 Movielens data set

Movies file:

Ratings file:

Links:

 IMBD data set

Movies file:

