
SystemVerilog Assertions (SVA)

Ming-Hwa Wang, Ph.D.

COEN 207 SoC (System-on-Chip) Verification

Department of Computer Engineering

Santa Clara University

Introduction

• Assertions are primarily used to validate the behavior of a design
• Piece of verification code that monitors a design implementation for

compliance with the specifications
• Directive to a verification tool that the tool should attempt to

prove/assume/count a given property using formal methods
• Capture the design intent more formally and find specification error

earlier
• Find more bugs and source of the bugs faster

• Encourage measurement of function coverage and assertion coverage
• Re-use checks throughout life-cycle, strength regression testing

Formal Method

Formal assertion-based verification flow

Benefits of Assertions

• Improves observability of the design
• Using assertions one can create unlimited number of observation

points any where in the design
• Enables internal state, datapath and error pre-condition coverage

analysis
• Improves debugging of the design

• Assertion help capture the improper functionality of the DUT at or

near the source of the problem thereby reducing the debug time
• With failure of assertion one can debug by considering only the

dependent signals or auxiliary code associated to the specific
assertion in question

• Assertion also helps to capture bugs, which do not propagate to the
output

• Improves the documentation of the Design
• Assertions capture the specification of the Design. The spec is

translated into an executable form in the form of assertions,
assumptions, constraints, restrictions. The specifications are checked
during the entire development and validation process

• Assumptions in assertions capturing the design assumptions
continuously verify whether the assumptions hold true throughout

the simulation
• Assertions always capture the specification in concise form which is

not ambiguous i.e., assertions are the testable form of requirements
• Assertions go along with the design and can also be enabled at SOC

level

• Assertion can be used to provide functional coverage
• Functional coverage is provided by cover property
• Cover property is to monitor the property evaluation for functional

coverage. It covers the properties/sequences that we have specified

• We can monitor whether a particular verification node is exercised or
not as per the specification

• Can be written for
• Low-level functionality coverage inside a block
• High-level functionality coverage at interface level

• Can use these assertions in formal analysis
• Formal analysis uses sophisticated algorithms to prove or disprove

that a design behaves as desired for all the possible operating
states. One limitation is that it is effective only in block level not at
full chip or SOC level

• Desire behavior is not expressed in a traditional test bench, but
rather as a set of assertions. Formal analysis does not require test
vectors

• With Formal analysis many bugs can be found quickly and very
easily in the Design process without the need to develop large sets
of test vectors

Where SVA can reside?

Who writes Assertions?

• White-Box Verification
• Inserted by design engineers
• Block Interfaces
• Internal signals

• Black-box Verification

• Inserted by
• IP Providers
• Verification Engineers

• External interfaces
• End-to-end properties

Testbench Assertions

Interfaces Assertions

Top level DUT Assertions

Block level DUT Assertions

Module Assertions Module Assertions

Different clock domains assertions

Different Assertion Languages

• PSL (Property Specification Language) – based on IBM Sugar
• Synopsys OVA (Open Vera Assertions) and OVL (Open Vera Library)

• Assertions in Specman
• 0-In (0–In Assertions)
• SystemC Verification (SCV)
• SVA (SystemVerilog Assertions)

Why SVA?

• SystemVerilog – a combination of Verilog, Vera, Assertion, VHDL –

merges the benefits of all these languages for design and verification
• SystemVerilog assertions are built natively within the design and

verification framework, unlike a separate verification language
• Simple hookup and understanding of assertions based design and test

bench – no special interfaces required
• Less assertion code and easy to learn

• Ability to interact with C and Verilog functions
• Avoid mismatches between simulations and formal evaluations because

of clearly defined scheduling semantics
• Assertion co-simulation overhead can be reduced by coding assertions

intelligently in SVA

SystemVerilog Assertion Example

A concise description of complex behaviour:
After request is asserted, acknowledge must come 1 to 3 cycles later
 0 1 2 3 4 5

 req

 ack

assert property(@(posedge clk) $rose(req) |-> ##[1:3] $rose(ack));

Properties and Assertions

Types of SVA

• Immediate Assertions
• Concurrent Assertions

Immediate Assertions

• Immediate assertions = instructions to a simulator
• Follows simulations event semantics
• Appears as a procedural statement, executed like a statement in a

procedural block
• Syntax: assert (expression) pass_statement [else fail_statement]
• The statement is non-temporal and treated as a condition in if statement
• The else block is optional, however it allows registering severity of

assertion failure

• Severity System tasks:
• $fatal : run time fatal, terminates simulation
• $error : run time error (default)
• $warning : run time warning, can be suppressed by command-line

option
• $info : failure carries no specific severity, can be suppressed

• All severity system tasks print the severity level, the file name and line
number, the hierarchical name or scope, simulation time, etc.

• Example:
always @ (posedge clk) begin:checkResults

assert (output == expected) okCount++;

else begin

$error(“Output is incorrect”);

errCount++;

end

end

Concurrent Assertions

• Concurrent assertions = instructions to verification tools

• Based on clock semantics. Evaluated on the clock edge
• Values of the variables used in evaluation are the sampled values
• Detects behavior over a period of time
• Ability to specify behavior over time. So these are called temporal

expressions
• Assertions occur both in procedural block and a module
• Example:

assert property (

@(posedge clk) a ##1 b |-> d ##1 e

);

• Layers of Concurrent Assertion

• Make the sequence
• Evaluate the sequence
• Define a property for sequence with pass fail
• Property asserted with a specific block (eg: Illegal sequence,

measuring coverage …)

• Boolean expression layer
• Elementary layer of Concurrent assertion
• Evaluates Boolean expression to be either TRUE or FALSE
• Occur in the following of concurrent properties

• In the Sequences used to build properties
• In top level disable iff claues

Assertion directive layer

Property specification layer

Sequence layer

Boolean expression layer

assert property (@(posedge clk) disable iff (a &&
$rose(b, posedge clk)) trigger |=> test_expr;

• restrictions on the type of variables shortreal, real and realtime
• string

• event
• chandle
• class
• associative array
• dynamic array

• Functions in expressions should be automatic
• Variable in expression bust be static design variable

• Sampling a variable in concurrent assertions
Simulation
 Ticks |||
Clock ticks 1 2 3 4 5 6 7 8

 Req

• The value of signal req is low at clocks 1. At clock tick 2, the
value is sampled as high and remains high until clock tick 4. The
sampled value req at clock tick 4 is low and remains low until

clock tick 6
• Notice that, at clock tick 5, the simulation value transitions to

high. However, the sampled value is low
• Sequence layer: build on top of Boolean expression layer, and

describe sequence made of series of events and other sequences
• Linear sequence: absolute timing relation is known
• Nonlinear sequence

• multiple events trigger a sequence and not time dependant
• multiple sequences interact with and control one another

• Sequence block
• Define one or more sequences
• Syntax:

 sequence identifier (formal_argument_list);

 variable declarations
 sequence_spec
 endsequence

• Example:
 sequence seq1 sequence seq2 sequence seq3
 ~reset##5 req; req##2 ack; seq1##2 ack
 Endsequence endsequence endsequence

• Usage: sequence can be instantiated in any of the following
blocks
• A module
• An interface block
• A program block

• A clocking block
• A package
• A compilation unit scope

• ## delay operator: used to join expression consisting of events.

• Usage:
• ## integral_number
• ## identifier
• ## (constant_expression)
• ## [cycle_delay_const_range_expression]

• The operator ## can be used multiple times within the same
chain. E.g., a ##1 b ##2 c ##3 d

• You can indefinitely increase the length of a chain of events
using ## and 1'b1. The example below extends the previous
chain of events by 50 clocks. E.g., a ##1 b ##2 c ##3 d
##50 1'b1

• Sequence overlap indicates b starts on the same clock when
a ends: a ##0 b

• Sequence concatenation means b starts one clock after a
ends: a ##1 b

• You can use an integer variable in place of the delay. E.g., a
##delay b

• The following means b completes 2 clock ticks after a
completes (regardless of when b starts): a ##2 b.ended

• You can specify a range of absolute delays too. E.g., a

##[1:4] b. You can also use a range of variable delays. E.g.,
a ##[delay1:delay2] b

• The symbol $ in a delay range indicates that a signal or
event will 'eventually' occur. E.g., a ##[delay1:$] b

• Sequence and clock
• Implied clock

 sequence seq1

 ~reset##5 req;
 endsequence

• Using clock inside a sequence
 sequence Sequence3;
 @(posedge clk_1) // clock name is clk_1
 s1 ##2 s2; // two sequences

 endsequence
• Sequence operations

Category Operators Associativity

repetition [*] [=] [->] -

cycle delay ## left

match throughout, within,
intersect, and , or

right for throughout,
left for others

• Repetition operators

• There are three types of repetition operators.
• Consecutive Repetition Operator [*]
• Non-consecutive Repetition Operator [=]
• Goto Repetition Operator [->]

• Consecutive repetition operator
• Indicates that the sequence repeats itself a specified

number of times. E.g., s1 ##2 s2 [*4] ##5 s3 is
same as s1 ##2 (s2 ##1 s2 ##1 s2 ##1 s2) ##5

s3 or, or simply s1 ##2 s2 ##1 s2 ##1 s2 ##1 s2
##5 s3

• Empty Sequence [*0]: a repetition of 0 times
indicates that the resultant is empty
• Usage rules

• Neither (e ##0 s) nor (s ##0 e) matches
any sequence.

• (e ##n s) is equivalent to (##(n-1) s), if n >
0

• (s ##n e) is equivalent to (s ##(n-1) `true),
if n > 0

• Repetition with a Range
• Range can be specified with repetition operator.

E.g., s1 [*2:3] is equivalent to s1 ##1 s1 (two
times of s1) or s1 ##1 s1 ##1 s1 (three times
of s1)

• A range repetition is applicable to a chain of
sequences (or events) as well. E.g., (s1 ##5 s2)
[*2:3] is equivalent to (s1 ##5 s2) ##1 (s1
##5 s2) (two times of (s1 #5 s2)) or (s1 ##5

s2) ##1 (s1 ##5 s2) ##1 (s1 ##5 s2) (three
times of (s1 #5 s2))

• An upper bound ‘$’ in a range indicates the
sequence indicates specified lower bound. E.g.,
• s1[*2:$]
• s0 ##3 s1[*2:$] ##2 s2

• Non-Consecutive exact repetition operator of Boolean

expression, extends beyond true value of operand to last
true value
• b [=3]: The Boolean expression b has been true

thrice, but not necessarily on successive clocks and
there may be additional clock cycles after the last
true b before the sequence completes.

• b [=3:5]: Here, b has been true 3, 4 or 5 times,
once again not necessarily on consecutive clocks,
and with possible additional clocks afterwards when
b is not true.

• a ##2 b [=3] ##4 c: The Boolean expression b has
been true thrice, but not necessarily on successive
clocks. The first occurrence of b happens after two
clocks cycles of a. The last one occurs at least four
clock cycles before c.

• Goto Repetition Operator
• Goto Repetition operator of Boolean expression, end

at true value of expression

• b [->3]: The Boolean expression b has been true
thrice, but not necessarily on successive clocks

• b [->3:5]: Here, b has been true 3, 4 or 5 times,
once again not necessarily on consecutive clocks

• a ##2 b [->3] ##4 c: The Boolean expression b has
been true thrice, but not necessarily on successive
clocks. The first occurrence of b happens after two
clocks cycles of a. The last one occurs four clock
cycles before c

• Value change functions: SVA sample value functions detect
events on signals/expressions and can be used within

assertions

Function Meaning

$rose (expression)
e.g. : (a ##1 b) ##1
$rose(c)

true, if the least significant bit
of the expression changed to 1;

false, otherwise

$fell (expression)
e.g. : (a ##1 b) ##1
$fell(c)

true, if the least significant bit
of the expression changed to 0;
false, otherwise

$stable (expression)
e.g. : (a ##1 b) ##1
$stable(c)

true, if the value of the
expression did not change;
false, otherwise

$past (expression,
number_of_ticks)
e.g. : a == $past(c, 5)

returns the sampled value of
the expression that was present
number_of_ticks prior to the

time of evaluation of $past.

• Value change expression example: value change
expression e1 is defined as $rose(req) and value change
expression e2 is defined as $fell(ack):

Simulation
 Ticks |||

Clock ticks 1 2 3 4 5 6 7 8

 req

 ack

 e1

 e2

• Boolean and: and two Booleans
 clk 1 2 3 4 5 6 7 8 9 10 11 12 13 14

 e1

 e2

 e1 and e2

• Sequence and: and two sequences – and expects both the

events to match but end time can be different
 clk 1 2 3 4 5 6 7 8 9 10 11 12 13 14

 e1

 e2

 e3

 e4

 e5

 e1 ##[1:5] e2

e3 ##2 e4 ##2 e5

(e1 ##[1:5] e2) and
(e3 ##2 e4 ##2 e5)

• Intersect construct: intersecting two sequences – intersect
expects both the events to match but end time must be
same

 clk 1 2 3 4 5 6 7 8 9 10 11 12 13 14

 e1

 e2

 e3

 e4

 e5

 e1 ##[1:5] e2

e3 ##2 e4 ##2 e5

(e1 ##[1:5] e2) intersect

(e3 ##2 e4 ##2 e5)
• Sequence ended: the ended method returns a Boolean that

is true in the cycle at which the associated sequence has
achieves a match, regardless of when the sequence started.
E.g., s1 ##1 s2.ended

• Sequence “or”: the Sequence s1 and s2 has multiple

matches – when s1 matches and each of the samples on
which s2 matches. If s1 matches, “or” sequence also
matches, regardless of whether s2 matches and vice versa.
E.g., s1 or s2

• Boolean or: or two Booleans

s1

s2

s2

s1

 clk 1 2 3 4 5 6 7 8 9 10 11 12 13 14

 e1

 e2

 e1 and e2

• Sequence or: or of two sequences with time range. When
first_match will be asserted in this sequence?

 clk 1 2 3 4 5 6 7 8 9 10 11 12 13 14

 e1

 e2

 e3

 e4

 e5

 e1 ##[1:5] e2

e3 ##2 e4 ##2 e5

(e1 ##[1:5] e2) or
(e3 ##2 e4 ##2 e5)

• Throughout construct example
sequence burst_rule1;
 @(posedge mclk)

 $fell(burst_mode) ##0
 (!burst_mode) throughout (##2 ((trdy==0)&&(irdy==0)) [*7]);
endsequence

 mclk 1 2 3 4 5 6 7 8 9 10 11 12 13 14

 burst_mode

 irdy

 trdy

 (trdy==0)&& 1 2 3 4 5 6 7
 (irdy==0)

 Burst_rule1

 mclk 1 2 3 4 5 6 7 8 9 10 11 12 13 14

 burst_mode

 irdy

 trdy

 (trdy==0)&& 1 2 3 4 5 6 7

 (irdy==0)

 Burst_rule1

• Local variables
• Sequences Can have local variable

• New copy of local variable is created and no hierarchical
access to these local variables are allowed

• Assigned using a comma separated list along with other
expression

• Eg:
sequence s1(int test);

int i;

i = test;
(data_valid, (i=tag_in)) |-> ##7 (tag_out==i);

endsequence
• Cannot be accessed outside the sequence where it is

instantiated

• Local variable can be passed only as an entire actual
argument

• System functions

Function Meaning

$onehot(expression) true, if only one of the bits in the
expression is high

$onehot0(expression) true, if at most one of the bit in
the expression is high

$isunknown(expression) true, if any bit of the expression is
X or Z

$countones(expression) returns the number of 1s in a bit
vector expression

• Property layer
• Built on the foundation of Sequences, Boolean expressions
• Property block

property identifier (formal_arg_list);
variable declaration

property_spec
endproperty

• Property declaration can occur in
• A module
• An interface
• A program
• A clocking block

• A package
• A compilation unit

• Property declaration does not affect a simulation behavior until
the property is designated as following
• An assumed or anticipated behavior: By associating the

property using an assume keyword. The verification
environment assumes that the behavior occurs

• A checker: By associating the property using an assert
keyword. The verification environment checks if the behavior
occurs

• A coverage specification: By associating the property using a
cover keyword. The verification environment uses the
statement for measuring coverage

• Types of Properties
• Property Type 1: A Sequence

• A property expression may be a simple sequence
expression as shown below

property sequence_example;
s1; // s1 is a sequence defined elsewhere

endproperty

• A sequence as a property expression is valid if the
sequence is not an empty match (i.e., it contains a
specific non-empty expression to match).

• Property Type 2: Another Property

• An instance of a named property can be used as a valid
property expression. For instance, the property
sequence_example defined above is itself can be a
property expression

property property_example;
Sequence_example

endproperty
• A property may call itself resulting in a recursive

property
• Property Type 3: Property Type Inverse

• A property expression may be an inverse of another

property expression. The inversion is done by using the
not operator

property inversion_example;
not Sequence_example

endproperty
• Property Type 4: Property Type Disjunction

• A disjunction property is true if either of its constituent
property expressions is true. The disjunction operator or
is used to describe a disjunction operator

property disjunction_example;
sequence_example or inversion_example;

endproperty
• Property Type 5: Property Type Conjunction

• A conjunction is equivalent of a logical and operation,
and very aptly, is expressed by an and operator

property conjunction_example;
sequence_example and inversion_example

endproperty
• Property Type 6: An ‘if..else’

• An 'if...else' property expression is a conditional

statement that describes two possible behaviors based
on the value of an expression

property ifelse_example;
if (expr == 2’b10)

inversion_example;
else sequence_example

endproperty
• Property Type 7: An Implication

• An implication property describes a behavior that occurs
when a preceding behavior takes place

• The implication operators '|->' and '|=>' are used for
describing such a property

property conjunction_example;

s0 |-> sequence_example
endproperty

• Implication construct
• Two Types

• ->

• =>
• Usage:

Res = A (Antecedent) -> B (Consequent)
• Note:

• Antecedent seq_expr can have multiple success
• If there is no match of the antecedent seq_expr,

implication succeeds vacuously by returning true.
• Truth table for Res is:

A B Res

0 0 Vacuous success

0 1 Vacuous success

1 0 False

1 1 True

• Example
Property data_end;
 @(posedge mclk)
 Data_phase |->

 ((irdy==0)&&($fell(trdy) || $fell(stop)));
endproperty

 mclk 1 2 3 4 5 6 7 8 9 10 11 12 13 14

 data_phase

 irdy

 trdy (high)

 stop

 data_end

• Implication construct

Sequence Operator Property Operator Associativity

[*], [=], [->] -

left

throughout right

within left

intersect left

 not -

and and left

or or left

 if..else right

 |->, |=> right

• Concurrent Assertion using sequence
 sequence s1;
 @(posedge clk) a ##1 b ##[1:2] c;
 endsequence;

 My_Assertion : assert property (@(posedge clk) s1);
• Concurrent Assertion using property

 property p1;
 @(posedge clk) s1 ##1 s1 ##1 s1;
 endproperty
 Top_Assertion : assert property (p1) pass_stmt;

else fail_stmt;

• Also have “cover” construct. Can be used for functional
coverage.
 cover property (p1);

• Property expression qualifiers
• Clocking event

• The clocking event describes when a property expression

should take place. An example of this is shown below.
property clocking_example;

@(posedge clk) Sequence_example
endproperty

• Disable iff
• A 'disable iff' command is similar to a reset statement -

the property expression is valid only if the reset situation

is lifted. Here is an example of this command
property disable_iff_example;

Disable iff (reset_expr) Sequence_example
endproperty

• Recursive properties
• Eg:

property recursive_always;

Sig_x and (1’b1 |=> recursive_always);
endproperty

• Restrictions for Recursive Properties
• A recursive property can not use a not operator.
• The operator disable iff can not be used in a recursive

property.

• A recursive property can call itself only after a positive
time delay (to avoid an infinite loop).

• Assertion layer
• Adds sense to the property described
• Key words that define a sense for a assertion

• assert: The keyword assert indicates that a property acts
a checker. The verification environment should check if

the behavior occurs.
• assume: The assume keyword indicates that the

property behavior is anticipated or assumed and should
be treated so by the verification tool.

• cover: If a property is associated with the keyword
cover, it indicates that the property evaluation will be
monitored for coverage.

• Concurrent Can be specified inside the following construct

• an always block
• an initial block
• a module
• a program
• an interface

• When instantiated outside the scope of a procedural block
(initial or always), a property behaves as if it is within an

always block.
assert property (p1);

• outside the scope of a procedural block is equivalent to:
always

assert property (p1);
• Assert statement

• Property associated with a assert statement is treated as checker
property top_prop;
 seq0 |-> prop0
endproperty
assert to_prop:
assert property (top_prop) begin

int pass count;

$display (“pass: top_prop”);
pass_count = pass_count +1’b1;

end
• Assume statement

• A property associated with an assume statement implies that the
property holds during verification

• For a formal or dynamic simulation environment, the statement is

simply assumed to be true and rest of the statements that need to
be verified are constrained accordingly

Assume_property_reset_seq0: assume property (reset_seq0);
property reset_seq0;
 @(posedge clk) reset |-> not seq0;
end

• Cover statement
• A cover statement measures the coverage of the various

components
cover_property_top_prop:
cover property (top_prop)
$display ("top_prop is a hit");
property top_prop;

 seq0 |-> prop0;
endproperty

• Expect statement
• An expect statement is very similar to an assert statement, but it

must occur within a procedural block (including initial or always

blocks, tasks and functions), and is used to block the execution until
the property succeeds.

task mytask;
...

if (expr1)
expect (my_property)
pass_block();

else // associated with the 'expect',
 // not with the 'if'

fail_block();
...

endtask

Binding properties to scopes or instances
• To facilitate verification separate from design, it is possible to specify

properties and bind them to specific modules or instances.
• Uses:

• It allows verification engineers to verify with minimum changes to
the design code/files.

• It allows a convenient mechanism to attach VIP to a module or
instance.

• No semantic changes to the assertions are introduces due to this
feature. It is equivalent to writing properties external to a module,
using hierarchical path name.

• Example of binding two modules.
module cpu (a, b, c)
 < RTL Code >
endmodule
module cpu_props (a, b, c)
 < Assertion Properties >
endmodule

• bind cpu cpu_props cpu_rules_1(a, b, c);
• cpu and cpu_props are the module name.
• cpu_rules_1 is cpu_props instance name.
• Ports (a, b, c) gets bound to the signals (a, b, c) of the

module cpu.
• every instance of cpu gets the properties.

