
SystemVerilog

Ming-Hwa Wang, Ph.D.

COEN 207 SoC (System-on-Chip) Verification

Department of Computer Engineering

Santa Clara University

Introduction

SystemVerilog is a standard (IEEE std 1800-2005) unified hardware design,
specification, and verification language, which provides a set of extensions to
the IEEE 1364 Verilog HDL:
• design specification method for both abstract and detailed specifications
• embedded assertions language and application programming interface

(API) for coverage and assertions
• testbench language based on manual and automatic methodologies
• direct programming interface (DPI)
Purpose: provide a standard which improves productivity, readability, and
reusability of Verilog-based code, extends for higher level of abstraction for
system modeling and verification, provides extensive support for directed
and constrained-random testbench development, coverage-driven

verification, and formal assertion-based verification

Extensions to Verilog

• extended data types
• C data types: int, typedef, struct, union, enum
• other data types: bounded queues, logic (0, 1, X, Z) and bit (0, 1),

tagged unions
• dynamic data types: string, class, dynamic queues, dynamic arrays,

associated arrays including automatic memory management
• dynamic casting and bit-stream casting
• automatic/static specification on per-variable-instance basis

• extended operators
• wild equality and inequality

• built-in methods to extend the language
• operator overloading
• streaming operators
• set membership

• extended procedural statements
• pattern matching on selection statements
• loop statements

• C-like jump statements: return, break, continue
• final blocks that execute at the end of simulation (inverse of initial)
• extended event control and sequence events

• extended process control
• extensions to always blocks to include synthesis consistent

simulation semantics

• extensions to fork … join to model pipelines
• fine-gram process control

• extended tasks and functions
• C-like void functions
• pass by reference
• default arguments

• argument binding by name
• optional arguments
• import/export function for DPI

• classes: object-oriented mechanism (abstraction, encapsulation, safe
pointers)

• automatic testbench support with random constraints
• interprocess communication synchronization

• semaphores
• mailboxes
• event extension, event variables, and event sequencing

• clarification and extension of the scheduling semantics
• cycle-based functionality: clocking blocks and cycle-based attributes

• cycle-based signal drives and samples

• synchronous samples
• race-free program context

• assertion mechanism
• property and sequence declarations
• assertions and coverage statements with action blocks

• extended hierarchy support
• packages for declaration encapsulation with import for controlled

access
• compilation-unit scope nested modules and extern modules for

separation compilation support
• extension of port declarations to support interfaces, events, and

variables
• $root to provide unambiguous access using hierarchical references

• interfaces to encapsulate communication and facilitate communication-

oriented design
• functional coverage
• DPI for clean, efficient interoperation with other languages (C provided)
• assertion API
• coverage API
• data read API

• Verilog procedure interface (VPI) extension for SystemVerilog constructs
• concurrent assertion formal semantics

Extended Literal Values

• integer literals and logic literals
• unsized literal with a preceding apostrophe (’), e.g.,

’0, ’1, ’X, ’x, ’Z, ’z // sets all bits to this value

• real literals: fixed-point format or exponent format

• time literals: s, ms, us, ns, ps, fs, step
• string literals enclosed in quotes: \v for vertical tab, \f for form feed,

\a for bell, \x02 for hex number

• array literals: replicate operator ({{}}), index/type keys and default
values, e.g.,

 int n[1:2][1:3] = ‘{‘{0,1,2}, ‘{3{4}}};

 int m[1,2][1,6] = '{2{'{3{4,5}}}};

 // same as '{'{4,5,4,5,4,5},'{4,5,4,5,4,5}}
 typedef int triple [1:3]; $mydisplay(triple'{0,1,2});

 triple b = '{1:1, default:0}; // indexes 2 and 3 assigned 0

• structure literals, e.g.,
typedef struct {int a; shortreal b;} ab;

ab c = '{0, 0.0}; /* same as c = '{a:0, b:0.0}; c =

'{default:0}; or c = ab'{int:0, shortreal:0.0}; */

ab abarr[1:0] = '{'{1, 1.0}, '{2, 2.0}};

typedef struct {int a,b[4];} ab_t;

int a,b,c;

ab_t v1[1:0] [2:0] = '{2{'{3{a,'{2{b,c}}}}}};

// expands to '{'{3{'{a,{2{b,c}}}}}, '{3{{a,'{2{b,c}}}}}}

/* expands to

'{'{'{a,'{2{b,c}}},'{a,'{2{b,c}}},'{a,'{2{b,c}}}},

'{'{a,'{2{b,c}}},'{a,'{2{b,c}}},'{a,'{2{b,c}}} } } */

/* expands to

'{'{'{a,'{b,c,b,c}},'{a,'{b,c,b,c}},'{a,'{b,c,b,c}}},

'{'{a,'{b,c,b,c}},'{a,'{b,c,b,c}},'{a,'{b,c,b,c}}}} */

Data Types

A data type is a set of values and a set of operations that can be performed
on those values. Data types can be used to declare data objects or to define
user-defined data types that are constructed from other data types.
• integer types

• 2-state - can simulate faster and take less memory: shortint (16-bit
signed), int (32-bit signed), longint (64-bit signed), byte (8-bit
signed or ASCII character), bit (unsigned with user-defined vector
size)

• 4-state - can have unknown (‘x) and high-impedance (‘z) values:
logic (unsigned with user-defined vector size), reg (unsigned with

user-defined vector size), integer (32-bit signed), time (64-bit
unsigned)

• integral types - the data types that can represent a single basic integer
data type: packed array, packed struct, packed union, enum, time.
A simple bit vector type is the data types that can directly represent a
one-dimensional packed array of bits.

• real types: real (64-bit signed), shortreal (32-bit signed)

• void data type - for function returns nothing or represent nonexistent
data

• chandle data type - for storing pointers passed using DPI (default null)
• only allow the following operation with another chandle variable or

null or Boolean values: equality (==), inequality (!=), case equality
(===), case inequality (!==)

• only allow assignment from another chandle or null

• chandles can be inserted into associative arrays, can be used within
a class, can be passed as arguments to functions or tasks, and can
be returned from functions

• chandles shall not be assigned to variables of any other type, shall

not be used as follows: as ports, in sensitivity lists or event
expressions, in continuous assignments, in untagged unions, in
packed types

• string: variable length array of bytes indexed from 0
• string operators: ==, !=, <, <=, >, >=, {str1, str2, …, strN),

{multiplier{str}}, str[index], string.method(…)
• str.method(…): len(), putc(int index, byte c), getc(int index),

toupper(), tolower(), compare(string s), icompare(string s),
substr(int i, int j), atoi(), atohex(), atooct(), atobin(), atoreal(),
itoa(integer i), hextoa(integer i), atoreal(), octtoa(integer i),
bintoa(integer i), realtoa(real r)

• event data type: event variables can be explicitly triggered and

waited for
• syntax: event <var_name> [= (<initial_value> | null)];

• user-defined types: typedef (forward definition and actual definition)
• enumeration data types with strong type checking

• methods: first(), last(), next(int unsigned i=1), prev(int unsigned
i=1), num(), name(int unsigned i)

• structures and unions
• packed and unpacked, signed and unsigned, 2-state and 4-state
• a tagged union saves a value and a tag (or a member name) for

strong type access checking
• class is declared using the class … endclass keywords

• class properties
• methods

• casting: a data type can be changed by using a cast (‘) operation
• static casting

• <type> ‘ (<expression>) or <type> ‘ { { <literal>, …,
<literal> } }

• <size> ‘ (<expression>)
• signed ‘ (<expression>)

• $shortrealtobits, $bitstoshortreal, $bits, $itor, $rtoi, $bitstoreal,
$realtobits, $signed, $unsigned

• dynamic casting: $cast
• bit-stream casting

• for converting between different aggregate types
• example

uses bit-stream casting to model a control packet transfer over a

data stream:
typedef struct {

shortint address;
reg [3:0] code;
byte command [2];

} Control;

typedef bit Bits [36:1];

Control p;

Bits stream[$];

p = ... // initialize control packet

// append packet to unpacked queue of bits

stream = {stream, Bits'(p)}

Control q;

// convert stream back to a Control packet

q = Control'(stream[0]);

stream = stream[1:$]; // remove packet from stream

uses bit-stream casting to model a data packet transfer over a byte
stream:
typedef struct {

byte length;
shortint address;
byte payload[];
byte chksum;

} Packet;

function Packet genPkt();
Packet p;

void'(randomize(p.address, p.length, p.payload)

with { p.length > 1 && p.payload.size == p.length; }
);

p.chksum = p.payload.xor();

return p;
endfunction

The byte stream is modeled using a queue, and a bit-stream cast is

used to send the packet over the stream.
typedef byte channel_type[$];
channel_type channel;

channel = {channel, channel_type'(genPkt())};

And the code to receive the packet:

Packet p;

int size;

size = channel[0] + 4;

// convert stream to Packet

p = Packet'(channel[0 : size - 1]);

// remove packet data from stream

channel = channel[size, $];

Arrays

• in Verilog, all data types can be declared as arrays
• a dimension declared before the object name is referred to as the vector

width dimension, and the dimensions declared after the object name are
referred to as the array dimensions

• SystemVerilog uses the term packed array to refer to the dimensions
declared before the object name, and the term unpacked array is used
to refer to the dimensions declared after the object name; a packed

array is guaranteed to be represented as a contiguous set of bits, and an
unpacked array may or may not be so represented

• multi-dimensional arrays

• uses part-select to refer to a selection of one or more contiguous bits of
a single dimension packed array, use slice to refer to a selection of one
or more contiguous elements of an array

• array querying functions: $left, $right, $low, $high, $increment, $size,

$dimensions, and $unpacked_dimensions
• dynamic arrays: any dimension of an unpacked array whose size can be

set or changed at run time
• new [expression] [(expression)]
• size()
• delete()

• array assignment between fixed-size arrays and dynamic arrays

• arrays as arguments: pass by value
• associative arrays

• indexing operator: wildcard index type *, string index, class index,
integer or int index, signed packed array index, unsigned packed
array index, packed struct index, user-defined type index

• methods: num(), delete([input index]), exists(input index),

first(ref index), last(ref index), next(ref index), prev(ref index)
• associative array assignment
• associative arrays are passed as arguments
• associative array literals use the ‘ {index:value} syntax, index can

be default
• queues with position 0 represents the first element, and $ represent the

last

• queues are declared using the same syntax as unpacked arrays, but
specifying $ as the array size

• empty queue { }
• right bound [$:N], where N+1 is the maximum size of the queue
• operators: indexing, concatenation, slicing, equality
• methods: size(), insert(input int index, input type item),

delete(int index), pop_front(), pop_back(), push_front(input type

item), push_back(input type item),
• array manipulation methods

• syntax: expr.array_method { attribute_instance } [(arguments)]
[with (expr)]

• array locator methods: find(), find_index(), find_first(),
find_first_index(), find_last(), find_last_index(), min(), max(),

unique(0, unique_index()
• array ordering methods: reverse(), sort(), rsort(), shuffle()
• array reduction methods: sum(), product(), and(), or(), xor()
• iterator index querying: index()

Data Declarations

• data have to be declared before they are used, except implicit nets

• forms of data: literals, parameters, constants (genvars parameters,
localparams, specparams), variables (static or dynamic), nets (reg, wire,
logic), attributes

• constants

• 3 constructs for defining elaboration-time constants: the
parameter, localparam and specparam; the default value of a
parameter of an instantiated module can be overridden in each
instance of the module using one of the following:

• implicit in-line parameter redefinition (e.g., foo #(value, value)
u1 (...);)

• explicit in-line parameter redefinition (e.g., foo #(.name(value),
.name(value)) u1 (...);)

• defparam statements, using hierarchical path names to redefine
each parameter

• value parameters: a module, interface, program, or class can have

parameters, which are set during elaboration and are constant
during simulation

• $ as a parameter value to represent unbounded range specification
• $isunbounded(const_expr)

• type parameters: parameter type
• parameter port lists: the parameter keyword can be omitted, and a

parameter can be depend on earlier parameter
• const constants are set during simulation

• variables declared with var have default type of logic

type default

4-state integral ‘X

2-state integral ‘0

real, shortreal 0.0

enumeration base type default initial value

string “” (empty string)

event new event

class null

chandle (opaque handle) null

• nets: trireg, wire, reg
• a net can be written by continuous assignments, by primitive output,

or through module port
• assign, force, release

• scope and lifetime: automatic and static
• global and static, local and static, local and automatic

• signal aliasing: the members of an alias list are signals whose bits share
the same physical nets, aliasing is performed at elaboration time and
can’t be undone

• type compatibility: 5 levels

• matching type: typedef, anonymous enum, struct, or union
• equivalent type
• assignment compatible: have implicit casting rules
• cast compatible: have explicit casting rules
• nonequivalent or type incompatible

• type operator

Classes

• class properties and methods

• constructor new()
• static class properties shared by all instances of the class using static
• static class method with automatic variable lifetime: static task foo();

… end task

• nonstatic class method with static variable lifetime: task static foo(); …
end task

• shallow copy (putting an object after new) v.s. deep copy (custom code
is typically needed)

• this and super
• it is always legal to assign a subclass variable to a variable of a class

higher in the inheritance tree, but it is never legal to directly assign a

superclass variable to a variable of one of its subclasses; it is legal to
assign a superclass handle to a subclass variable if the superclass handle
refers to an object of the given subclass, and use $cast() to check
whether the assignment is legal

• unqualified (public), local (private), and protected
• const: read-only

• global constants with initial values (optionally with static), instance
constants without

• abstract class using virtual
• polymorphism
• class scope resolution operator ::
• the extern qualifier for out-of-block declarations
• parameterized classes

• the combination of a generic class and the actual parameter values
is called a specialization (or variant)

• typedef class: for cross-referencing
• memory management: automatic garbage collection

Operators and Expressions

• assignment_operator ::= = | += | -= | *= | /= | %= | &= | |= | ^=

| <<= | >>= | <<<= | >>>=
• conditional_expression ::= cond_predicate ? { attribute_instance }

expression : expression
• unary_operator ::= + | - | ! | ~ | & | ~& | | | ~| | ^ | ~^ | ^~
• binary_operator ::= + | - | * | / | % | == | != | === | !== | ==? |

!=? | && | || | ** | < | <= | > | >= | & | | | ^ | ^~ | ~^ | >> | <<

| >>> | <<<
• inc_or_dec_operator ::= ++ | --
• unary_module_path_operator ::= ! | ~ | & | ~& | | | ~| | ^ | ~^ | ^~
• binary_module_path_operator ::= == | != | && | || | & | | | ^ | ^~ |

~^
• built-in package: std::
• concatenation using braces ({ }) or replication operator (multiple

concatenation)
• assignment patterns for assigning struct fields and array elements using

(‘{ }) either by positions, by type:value, or by member:value or by
default:value
• array assignment pattern, structure assignment pattern,

• tagged union expression and member access: union tagged { … }
• aggregate expressions
• operator overloading: bind op function type func_name (formals)

• match formal types exactly or the actual types are implicitly cast to

formal types
• the operators that can be overloaded are the arithmetic operators,

the relational operators, and assignment
• streaming operators (pack/unpack)

• >> causes data to be streamed in left-to-right order
• << causes data to be streamed in right-to-left order
• streaming dynamically sized data using with [expr[+|-]:expr]

• conditional operator
• set membership: expr inside { open_range_list }

Scheduling Semantics

• evaluation event and simulation time
• time wheel or time-ordered set of linked lists

• a time slot is divided into a set of ordered regions as table below;
provide predictable interaction between the design and testbench
code (including PLI callbacks)

from previous time slot

region semantics note

preponed The #1step sampling delay
provides the ability to sample data
immediately before entering the
current time slot

IEEE1364

pre-active allows PLI application routines
(cbAfterDelay, cbNextSimTime,
cbAtStartOfSimTime) to read and
write values and create events
before events in the Active region
are evaluated

IEEE1364

active holds current events being
evaluated

IEEE1364
iterative

inactive holds the events to be evaluated
after all the active events are

processed

IEEE1364
iterative

pre-NBA allows PLI application routines
(cbNBASynch, cbReadWriteSynch)
to read and write values and
create events before the events in
the NBA region are evaluated

IEEE1364
iterative

NBA A nonblocking assignment creates
an event in this region

IEEE1364
iterative

post-NBA allows PLI application routines
(cbReadWriteSynch) to read and

IEEE1364
iterative

write values and create events
after the events in the NBA region
are evaluated

observed for the evaluation of the property
expressions when they are
triggered

iterative

post-observed allows PLI application routines

(currently no PLI callback yet) to
read values after properties are
evaluated

iterative

reactive property pass/fail code shall be
scheduled here of the current time
slot

iterative

re-inactive a #0 control delay specified in a
program block schedules the
process for resumption in this
region

iterative

pre-postponed allows PLI application routines
(cbAtEndOfSimTime) to read and
write values and create events
after processing all other regions
except the Postponed region

IEEE1364
iterative

postponed cbReadOnlySynch

No new value changes are allowed
to happen in the time slot

IEEE1364

 to next time slot

• the SystemVerilog simulation reference algorithm
execute_simulation {

T = 0;

initialize the values of all nets and variables;

schedule all initialization events into time 0 slot;

while (some time slot is nonempty) {

move to the next future nonempty time slot and set T;

execute_time_slot (T);

}

}

execute_time_slot {

execute_region (preponed);

execute_region (pre-active);

while (any region in [active...pre-postponed] is

nonempty) {

while (any region in [active...post-observed] is

nonempty) {

execute_region (active);

R = first nonempty region in [active...post-

observed];

if (R is nonempty) move events in R to the active

region;

}

while (any region in [reactive...re-inactive] is

nonempty) {

execute_region (reactive);

R = first nonempty region in [reactive...re-

inactive];

if (R is nonempty)

move events in R to the reactive region;

}

if (all regions in [active … re-inactive] are empty)

execute_region (pre-postponed);

}

execute_region (postponed);

}

execute_region {

while (region is nonempty) {

E = any event from region;

remove E from the region;

if (E is an update event) {

update the modified object;

evaluate processes sensitive to the object and

possibly schedulefurther events for execution;

} else { /* E is an evaluation event */

evaluate the process associated with the event and

possibly schedule further events for execution;

}

}

}

• the PLI callback control points
• 2 kinds of PLI callbacks: those are executed immediately when some

specific activity occurs and those that are explicitly registered as a
one-shot evaluation event

• Callbacks and their event region (in the table above)

Procedural Statements and Control Flow

• procedural statements: initial, final, always, always_comb,
always_latch, always_ff, task, function

• control flow
• selection, loops, jumps

• task and function calls
• sequential and parallel blocks
• timing control

• blocking (=) and nonblocking (<=) assignments
• selection statements: if, else if, else, case, casez, casex, default,

endcase, unique (for mutual exclusive and can be executed in
parallel), priority (ordered evaluation), inside (for set membership),

matches (using &&& in if statements), ?:
• loop statements: forever, repeat, while, for, do while, foreach
• jump statements: return, break, continue, disable
• named blocks and statement labels: begin end, fork join, join_any,

join_none
• event control: @, #, iff, posedge, negedge

• sequence, triggered
• level-sensitive sequence control: wait

sequence abc;

@(posedge clk) a ##1 b ##1 c;

endsequence

sequence de;

@(negedge clk) d ##[2:5] e;

endsequence

program check;

initial begin

wait(abc.triggered || de.triggered);

if(abc.triggered)

$display("abc succeeded");

if(de.triggered)

$display("de succeeded");

end

endprogram

Processes

• New always blocks – design intent is understood - IEEE1800 does not
specify which constructs are synthesizable and which are not, EDA
vendors implement differently and portability will be an issue

• always_comb for modeling combinational logic behavior

• inferred/implicit sensitivity list (within the block or within any
function called within the block), automatically executes once at time
zero, the variables written on the LHS of assignment shall not be
written to by another process

• always_latch for modeling level triggered latch logic behavior
• always_ff for modeling edge triggered synthesizable sequential logic

behavior
always_ff @(posedge clock iff reset == 0 or posedge reset)

begin

r1 <= reset ? 0 : r2 + 1;

...

end

• fork … join for creating concurrent processes

control option description

join the parent process blocks until all the processes
spawned by this fork complete

join_any the parent process blocks until any one of the
processes spawned by this fork complete

join_none the parent process continues to execute
concurrently with all the processes spawned by this
fork, and the spawned processes do not start
executing until the parent thread executes a

blocking statement

Assertions

• assertions specify behaviors of the system, and are primarily used to
• validate the behavior of a design

• provide functional coverage and generate input stimulus for
validation.

• immediate assertions follow simulation event semantics and are
executed like a procedure statements

• the immediate assertion statement is a test of an expression
performed when the statement is executed in the procedure code;
the expression is non-temporal and is interpreted the same way as
an expression in the condition of a procedural if statement

• syntax: assert (expression) [pass_statement] [else
fail_statement]

• if an assertion fails and no else clause is specified, the tool shall, by

default, call $error, unless a tool specific option, such as a
command-line option, is enabled to suppress the failure

• there are 4 severity levels: $fatal, $error, $warning, and $info; all
the severity system tasks shall print a tool-specific message
indicating the severity of the failure and specific information about
the specific failure, which shall include the following information:

• the file name and line number of the assertion statement
• the hierarchical name of the assertion, if it is labeled, or the

scope of the assertion if it is not labeled
• a concurrent assertion is based on clock semantics and is evaluated only

at the occurrence of a clock tick; the values of variables used in the
evaluation are the sampled values, thus a predictable result can be
obtained from the evaluation, regardless of the simulator’s internal

mechanism of ordering events and evaluating events
• syntax: assert property (expression) [pass_statement] [else

fail_statement]

