
Stimulating Introductory Engineering Courses with Java

Ronald Danielson
Sally Wood

School of Engineering
Santa Clara University

Santa Clara, California 95053

Abstract - The traditional combination of text, lectures, and
laboratories that constitutes the learning environment for
most introductory engineering courses has inherent
restrictions that limit student success. Texts are static;
attempts to allow students to reproduce a dynamic lecture
experience outside of class (e.g., videotape) are ineffective
and time consuming; even laboratories allow students to
explore the impact on behavior of only a few sets of inputs.
Supplemental materials such as simulations and animations,
that are dynamic and allow the student to observe and
evaluate the behavior of systems under different conditions,
help students to truly understand concepts and develop a
sound basis for more advanced studies. The capabilities of
current technologies, such as Java and the World Wide Web,
make it attractive to develop such materials. This paper
discusses our experiences to date in creating Java–based
supplemental courseware for lower division engineering
courses, describes the courses and supplemental project
involved, and suggests some approaches to structuring a
collection of such materials.

Introduction

The traditional combination of text, lectures, and laboratories
that constitutes the learning environment for most
introductory engineering courses has inherent restrictions
that limit student success. Texts are static, making it very
difficult to instill in students an appreciation for the changes
that occur in devices and systems over time, and they
provide only a single path through material with many levels
of interconnections. Lectures are dynamic and offer the
potential to explore time–varying behavior, but lecture time
is scarce and usually strictly choreographed, and students
can't reproduce the experience outside of class. Even
laboratories allow students to explore only a few sets of
inputs and evaluate their impact on behavior. This traditional
combination is sometimes successful for students who are
fluent in mathematics and comfortable with abstract thinking.
However, it has often failed for students with a poor
education in mathematics (a type of student becoming more
common in engineering school classrooms) and, by
reputation, discourages many qualified students from
entering engineering programs.

Supplemental materials such as interactive simulations
and animations, that are dynamic and allow the student to

observe and evaluate the behavior of systems under different
conditions, help students to truly understand concepts and
develop a sound basis for more advanced studies. For
example, the transition from transient to steady state
response of mechanical and electrical systems is not obvious
from mathematical representations. However, it is much
more clear when the time response of differential equation
solutions is observed or physical models are simulated [3].
Multiple media can offer a variety of visualization aids to
better match the different cognitive styles of the students,
and the interactive component requires students to control
their exploration of new material in ways that the
predominantly passive reading of text and reference books
cannot. Evidence suggests this hypermedia approach is
particularly relevant for beginning students [2].

Students in engineering courses may especially benefit
from dynamic materials. The topics are complex, layered,
and interdependent. Students are often so inundated with
facts and details that they may fail to understand the broader
context of their education, and thus fail to develop the ability
to absorb new data and observations in context, a skill that is
needed during their professional careers.

Current technologies make it attractive to develop
interactive courseware, and we are in the midst of a project
to do so for several introductory engineering courses. This
paper discusses our experience with this process to date,
details the courses and topics involved, and offers some
preliminary thoughts on structuring a collection of
courseware modules.

Courseware Development Trends

Advances in technology have altered the focus of courseware
development, away from user interface issues of the
mechanics of presenting material and interacting with a
student and towards content and presentation strategies. Prior
to the development of windows–based operating systems, the
major effort of any educational software development project
was the creation of an effective user interface. When
standard user interfaces such as SunView and Motif became
widely available, courseware development efforts could
focus more on pedagogical content rather than details of the
user interface. The main problems that limited the
effectiveness of courseware of this type were associated with
platform dependence. Offering courseware on only a single

platform limited distribution and reduced the pool of
potential users. Meeting specific requirements of multiple
hardware or operating systems siphoned time from
development activities and reduced both quality and the
scope of coverage.

Many current courseware development efforts, including
those discussed here, exploit the advantages of recent
technology. Modern workstations and software systems offer
many more options for module design, particularly the
possibility of combining additional media (audio, video, and
animations) to support and reinforce learning. The World
Wide Web offers a standard interface and relatively easy
delivery of multiple media, to enrich the presentation and to
allow students to choose a combination of media that fits
best with their preferred learning styles. Java provides
platform independence, which allows implementation of
dynamic simulations without having to support multiple
versions, and offers hope of reaching an audience broad
enough to offset development costs. Since students can
easily access modules stored on a remote server, problems of
distributing software and updates are minimized. HTML
provides a means for an instructor to quickly organize
course–specific sequences of courseware modules selected
from libraries developed by many different organizations
(provided the modules are designed to facilitate such reuse).

This still leaves many issues to be addressed before
courseware development can be considered a “solved
problem,” including determining appropriate combinations
of media to describe and illuminate dynamic behavior,
providing mechanisms to allow instructors to guide students
to suitable supplemental materials, and developing ways to
allow quickly combining individual modules to produce
coherent sequences of enrichment materials.

Our Approach

Previous efforts [3] have resulted in the development of two
Motif–based tutorial collections for undergraduate electrical
and computer engineering courses. One is focused on
introductory material for digital systems and digital signal
processing, and the other is focused on the mathematical
concepts common to most fields of engineering. Although
they cover different topics, there is a common style and a
similar selection of interaction activities. In both cases the
user requires no training, and the user interface is a close as
possible to “self evident.” A typical module allows the
student to control the parameters, initial conditions, and
several driving inputs of a mathematical differential equation
using sliders. The mathematical solution steps and a graphic
display of the results appear on the screen. Text is available
to explain the operation of the tutorial and guide the user
through a sequence of examples which explain basic
concepts.

Our current efforts are guided by the philosophy of
providing a series of interactive modules that allow students
to explore fundamental concepts by manipulating variable
parameters in a controlled environment and evaluating the
resulting behavior. We think in terms of different forms of
interaction that a module may provide about a topic.

 Lectures provide information about a topic or about
using the module itself, and primarily display
passive text or hypertext.

 Demonstrations are dynamic components
explaining the behavior of some aspect of the topic
that a student may step through but can't change.

 Examples are dynamic components that direct a
student to set initial conditions and then describe
the resulting behavior and the reasons for it.

 Free interactions are dynamic components that
provide a student full control to explore the
underlying concept.

Any of these may employ a variety of media to provide the
desired experience, and they are often combined (e.g., an
example followed by free interaction) to achieve a
pedagogical objective.

Our primary goal is not to produce self–standing tutorial
systems that would deliver an entire course via the World
Wide Web. Instead, we are creating materials that
supplement the capabilities of traditional texts and lectures
and are applicable in a wide variety of situations: to enliven
lectures, to provide virtual objects that form the basis for
scheduled labs, to be accessible during office hours to clarify
concepts, and to be used outside of formal learning
environments by students to help them master topics in a
particular course.

All our modules use HTML for text presentation,
usually providing brief overviews of a topic with links to
more in–depth explanatory materials. Currently, most of the
non-textual information is graphics or animations, although
audio is sometimes used for particular topics. Java applets
control the animations, sometimes using Java Beans
components. We are developing applet libraries and HTML
templates to make it easier for other faculty to develop
similar materials on topics of their choice.

Courses and Topics

We have been developing Java–based courseware to address
some of the most problematic topics in three lower-division
engineering courses: an introductory course on fundamental
concepts for electrical engineering majors, an introductory
Java programming class, and a course covering fundamental
concepts of digital technologies for non–engineering majors.

Introductory Electrical Engineering

There are two primary goals of the introductory electrical
engineering course. The first is that it should present a
coherent introduction to the field of electrical engineering,
with hands on laboratories appropriate to the limited
experience of incoming freshman students. The development
of subfields is presented in the context of enabling
technologies that have provided the foundation for
innovation. The second objective is the introduction of
fundamental concepts that will be used in later courses so
that students will have “the big picture” in mind as they
study more focused individual areas in great detail. As
systems become increasingly complex, the ability to
understand them at several different levels of integration
becomes essential. Breaking a system into functional blocks
partitions the problem so that each block can be considered
separately.

The topics covered in the course include the basic
electrical quantities of charge and voltage, and their
relationship to electrical power and energy; transducers and
component behavior; sinusoidal waveforms and time
constants; communication signals, bandwidth, multiplexing,
switching and routing; digital circuits for communication and
computing; microelectronics; control systems; and power
generation. The current enabling technologies of wireless
communication and increasingly high levels of integration in
microelectronic circuits are the basis for future projections.

This course is presented as a mixture of lecture, group
laboratory experience using physical experiments, Java
simulations and animations to prepare for laboratories and
extend them later, interactive tutorials to help communicate
concepts and relationships, and MATLAB assignments for
computation, graphing, and system modeling. Extensive use
of auditory feedback is used in both the physical experiments
and the MATLAB simulations. A more complete description
of this course with some specific examples may be found in
[4]. The course has been offered several times and most of
the components of the course and the experiments have been
tested. New web based tutorials are being developed
extending the existing set, and the Java simulations are in
progress.

Introductory Programming

The objectives of the introductory programming course are
to teach students a particular programming language,
familiarize them with fundamental concepts associated with
programming, and give them practice in problem solving and
design in the context of program development. Most
beginning students struggle with the syntax of the particular
programming language used, but their real conceptual
difficulties occur with topics such as control flow,
subprogram invocation (particularly for recursive
subprograms), parameter linkage, and dynamic memory
allocation. Object–oriented languages add encapsulation,
protection, and inheritance to that list. A language like Java

also adds issues of window APIs and multithreading. All of
these topics are candidates for courseware development.

We have implemented a series of modules for Java, the
language for the introductory course beginning in 1998–99.
For example, Figure 1 shows a simple module for an if
statement, displaying program text and flowchart. Steps
through the flowchart are synchronized with a highlight of
the corresponding line of the source program segment.
Students can control the rate of the animation using a slider,
and can enter values for the variables in the conditional
expression and watch the effect on behavior.

This is the one area where we are creating a full tutorial
on a complex topic [1], primarily as a test of some of our
ideas on canonical module structures and composition
methods, but also as an aid for students who completed an
earlier version of this course in C++ and want to develop
Java skills. The coverage has been expanded to include
topics such as awt (abstract windowing toolkit), exception
handling, multithreading, and advanced object concepts.
Explanatory text describes each language feature, program
fragments that explicate the topic are shown, and graphics
and animations help the student understand concepts. Figure
2 presents an example from the module on multithreaded
programming in Java.

Digital Technologies

“Understanding Digital Technologies” is a service course
offered by the computer engineering department to the
broader campus population. It is one of a dozen courses
campus–wide (the introductory electrical engineering course
described above is another) that satisfy a university core
curriculum requirement in Technology. The course is
typically taken by students in the humanities, social sciences,
and business, and provides them an overview of the major
technical areas related to digital computers: semiconductor
devices, computer architecture, software development and
systems, and computer networks. The principal objectives
for the course are an intuitive understanding of the workings
of digital computer technology, an ability to analyze new
technologies and place them into context, and an
appreciation of the impact of these technologies on society.

Topic areas that students have had difficulty
understanding in the past include the behavior of a pn
junction, logic circuits, instruction and data flow in computer
architectures (particularly pipelined and superscalar
machines), cache and paged memory operation, and network
protocols and routing. We are developing two sets of
courseware modules, one for network concepts (circuit vs.
packet switching, the operation of a protocol stack, and the
idea of routing between different networks) and another for
introductory logic design (logic functions, building circuits,
and timing diagrams). Both sets of materials employ similar
combinations of textual explanations enlivened by
animations.

This course allows us to test the effectiveness of our
courseware in supporting “outreach” efforts to provide
technical education for non–technical students. We also
expect that many of the modules developed to support this
course will have wide applicability for other courses both
inside and outside the engineering school.

Long Term Objectives

Effective courseware must be relatively easy to create, so
developers may concentrate on content and pedagogy, and
must provide an effective learning experience for a wide
variety of students. An earlier paper [5] discussed issues
related to development tools and some thoughts on adapting
both the level of material presented and the media chosen to
reflect a student’s preferences and past performance. We are
also concerned about how best to organize a collection of
courseware modules and how to facilitate combining a series
of modules from a library to produce a set of supplemental
courseware for a particular class.

Ideally, the collection structure should reflect a
cognitive model of the subject. This provides suggestions for
what additional modules should be developed and makes it
much easier for faculty familiar with the subject to select
appropriate modules from the collection. But the same
concept often underlies multiple engineering subject areas
(for example, the principle of locality of reference in
computer engineering) and engineering curricula reflect this.
A student will see the same topic at different levels of
complexity several times in her undergraduate career. So the
relationship between subjects and topics is an acyclic graph
rather than a tree. We would like the inheritance hierarchy of
our Java courseware to mirror this structure, but Java allows
only single inheritance.

Similarly, the courseware modules that cover various
topics should provide some consistency in presentation
format, so that course–specific assemblies of modules offer
familiar interfaces. At the same time, we don't want to
unduly constrain module developers from creatively
designing unique interactions that are well suited to a
particular topic.

We are deliberately exploring different implementation
styles in the first sets of courseware that we are developing,
to gain experience with the unique aspects of Java and the
World Wide Web. But it will be essential to define a topic
structure and implementation guidelines for developers as
the courseware collection grows. Our preliminary thoughts
are to create a library of general classes (logic functions,
signals, program fragments) that can be extended to create
specific instances appropriate for each topic. Similarity of
interaction can be provided by defining a set of Java
interfaces, so that modules that implement a particular
interface will offer uniformity of interaction. For example,
different interfaces may apply to modules that offer different

combinations of interaction experiences (lecture,
demonstration, example, and free interaction) or different
combinations of media. Modules developed under this
structure are similar to templates, in that the interface
provides the outline of what must be implemented and
inheritance may well fill in much of the needed code. This
should result in more efficient courseware development.

Summary

Current computing and communication technologies, such as
Java and the World Wide Web, offer great potential for
development of courseware. Engineering courses cover
complex, layered and interdependent topics, and can
overwhelm students in a rush of fact and detail. Because of
this, students in introductory engineering courses may
especially benefit from interactive courseware that provides
simulations and animations that allow them to explore new
concepts more fully. Such courseware modules are being
developed to support three introductory engineering classes.
Experience to date indicates they can improve the
educational experience in several ways, but there are still
significant issues to be addressed in developing courseware
modules. Exploiting the inheritance and interface capabilities
of the Java language to create module templates may be one
approach toward more efficient module development
techniques, and may increase the ease with which consistent
courseware sequences can be composed.

Acknowledgments

We are grateful to Hewlett–Packard and 3Com for donations
of computer and networking hardware and software.

References

[1] Bhimaraju, G. “A Web-Based Java Tutorial About
Java,” MS Thesis, Computer Engineering Department, Santa
Clara University, June 1998.

[2] Najjar, L. “Multimedia Information and Learning,”
Journal of Educational Multimedia and Hypermedia, 5(2),
1996, pp. 129–150.

[3] Wood, S., “A New Approach to Interactive Tutorial
Software for Engineering Education,” IEEE Transactions on
Education, 39(3), 1996, pp. 399–408.

[4] Wood, S., “A Concept Oriented Freshman Introductory
Course Utilizing Multimedia Presentations and Group
Laboratory Experience,” Proceedings of the 1998 Frontiers
in Education Conference, IEEE Press, 1998, to appear.

[5] Wood, S. and R. Danielson, “Web–Based Enrichment
Courseware for Introductory Engineering Students,”
Proceedings of the International Conference on Computers

and Advanced Technology in Education, International
Association of Science and Technology for Development,
1998, pp. 121 - 125.

Figure 1. Control Flow for if Statement

Figure 2. Fragment from Java Multithreading Tutorial

