Advance Reservation of Lightpaths in Optical-Network-Based Grids

Silvia Figueira, Neena Kaushik, Sumit Naiksatam, Stephen Chiappari, and Nirdosh Bhatnagar

> Santa Clara University Santa Clara, California

DWDM-RAM

- Optical-network grid service architecture
 - Enable the deployment of dynamicallyprovisioned optical networks in grids
 - Support data-intensive grid applications through advanced optical network
 - Provide dedicated lightpaths as a service

The Network Service

NRS – Network Resource Scheduler
 Knows the topology of the network
 Supports on-demand and advance reservation

Schedules multi-wavelength lightpaths

Our Goal

- Advance-reservation scheduling of multi-wavelength lightpaths
- Use simulation to assess the efficiency of different strategies
- Main problem
 - Lack of information on what the traffic on data-intensive grids will be like
 - Solution: FONTS

FONTS

- Flexible Optical Network Traffic Simulator
 - Generates traces of advance-reservation multiple-wavelength lightpath requests
 - Incorporates stochastic models
 - Is scalable and independent of the network interconnection

FONTS – Operation Modes

- Request Arrivals
 - Poisson
- Advance Reservations
 - Poisson, Uniform
- Source Node and Destination Node
 - Constant, Uniform, Arbitrary Probabilities
- Number of Wavelengths
 - Constant, Uniform, Heavy-Tailed
- Data Size
 - Constant, Uniform, Heavy-Tailed, Arbitrary Probabilities

FONTS

Challenge

- Advance reservation requests are a function of
 - The time at which they arrive
 - The time in the future for which the
 - reservation is requested

Generating Advance Reservation Requests

Scheduling Lightpaths

Most used basic approaches

- Wavelength Concentrating
 - Goes through all the routes in a fixed order and for each route tries all the wavelengths in a fixed order

Wavelength Balancing

- Goes through all the wavelengths in a fixed order and for each wavelength tries all the routes in a fixed order
- Optimizations are usually based on the ordering of routes and wavelengths

Scheduling Lightpaths

Request: 4 wavelengths from 1 to 3

Scheduling Lightpaths

Our goal

- Compare balancing and concentrating in different scenarios
- I dentify special conditions, which may favor one or the other
- Our implementation
 Select routes according to the length
 Disjoint-edge shortest-path first
 Select wavelengths in order

Request Traffic

Time slots = 60min

Request inter-arrival time = 10min

Number	Experiment	Reserv. Inter- Arrival Time	Number of wavelengths
1,5,9	High, medium, and low traffic Constant wavelength requests	5, 15, 30min	Constant: 1
2,6,10	High, medium, and low traffic Heavy-tailed wavelength requests	5, 15, 30min	Zipf's Exp = 3, cap = 4
3,7,11	High, medium, and low traffic Uniform wavelength requests	5, 15, 30min	Uniform: [1-4]
4,8,12	High, medium, and low traffic Constant wavelength requests	5, 15, 30min	Constant: 4

4-Node Topologies Studied

These topologies cover the most used 4-node basic blocks used to form optical networks.

Partial Mesh: Uniform Requests

Wavelength-balancing and concentrating perform comparably

Partial Mesh: Fixed 2-Hop Requests

4-node Ring: Uniform Requests

Wavelength-balancing and concentrating perform comparably

No Traffic on One Link: Uniform Requests

Wavelength-balancing performs consistently better than concentrating

Current Status

Scheduling Simulator

- Simulator has been extended to accept any topology
 - Extensive analysis of simulation results on different kinds of traffic and topologies
 Hybrid algorithm, which combines balancing
 - and concentrating

Current Status

FONTS Currently generates traces for On-demand requests Advance reservations Periodic reservations Available on line: http://students.engr.scu.edu/~snaiksat/fonts

ustomize Links 🗋 Free Hotmail 📑 Windows Media 📑 Windows

• 🗇 •

FONTS

A Flexible Optical Network Traffic Simulator

request type:	advance r	reservation 💌	
resv start time model:	uniform	*	
inter arrival time for requests:	10	min	
source model:	uniform	*	
destination model:	uniform	*	
total switching nodes:	2		
number of wavelengths model:	constant	*	
num of wavelengths:	1		
file size model:	constant	×	
file size:	1	ТВ	
reservation duration model:	variable		
average bandwidth:	1000	Mbps	
resv period:	7	days	
resv slot size:	60	min	
simulation time interval			
start time:	10/29/200	14 00:00:00	
end time:	11/05/200	14 00:00:00	
		Submit	
	Advanced	d Options	
Reservation Times:			
number of time interval:	s: 1 💌		
	1	TART END INTER-ARRIV	AL
1) 8	11 🔽 5 min	
		Submit	

✓ C,

Edit View Go Bookmarks Tools Help

F

🏠 🔡 http://pcl2.engr.scu.edu/~ttrieu/working.dir/tragen.orig/htmls/grapher.html

ustomize Links 🗋 Free Hotmail 🗋 Windows Media 🗋 Windows

wnload Trace: String Format Numeric format

: Advance Reservation										
lation starts at Fri Oct 29 00:00:00 200	4									
lation ends at Thu Nov 4 22:59:59 2004	•									
rvation window starts at Thu Nov 4 23:00	•00 2004									
rvation window ends at Thu Nov 11 22:59:										
l slots available for reservation = 168										
l number of switching nodes = 2										
age bandwidth per link = 1000.000000 Mbp	s									
length = 60 mins										
est arrivals follow Poisson distribution val Parameter = 10.00 mins	, (poisso	nLambdaV	alFo	orRed	Arriv	7al	= 0.	. 1000(00)	Inter
		nLambdaV	alFo	orRed	Arriv	7al	= 0.	. 1000())	Inter
val Parameter = 10.00 mins	tion		alFo	orRed	ĮÅrri∖	7al	= 0.	. 1000(00)	Inter
val Parameter = 10.00 mins ce node choice is using uniform distribu	tion tribution		alFo	orRed	4Arr i v	7al	= 0.	. 1000(00)	Inter
val Parameter = 10.00 mins ce node choice is using uniform distribu ination node choice is using uniform dis	tion tribution		alFo	orRed	¶Årri∖	7al	= 0.	. 1000(00)	Inter
val Parameter = 10.00 mins ce node choice is using uniform distribu ination node choice is using uniform dis er of wavelengths (lambdas) are constant	tion tribution = 1		alFo	orRed	4 Arriv	7al	= 0.	. 1000(00)	Inter
val Parameter = 10.00 mins ce node choice is using uniform distribu ination node choice is using uniform dis er of wavelengths (lambdas) are constant size is constant = 1.00 TB	tion tribution = 1 ibution.				S/1					

Lighpaths requested with date and time as x-values

✓ G.

✓ G.

ustomize Links 🗋 Free Hotmail 🗋 Windows Media 🗋 Windows

1-1-1					
lation starts at Fri Oct 29 00):00:00 2004				
alation ends at Thu Nov 4 22	:59:59 2004				
rvation window starts at Thu M	lov 4 23:00:00 2004				
rvation window ends at Thu N					
il slots available for reservat					
il number of switching nodes =					
age bandwidth per link = 1000.					
: length = 60 mins	.000000 mps				
			Demonstra - 10 00 mine		
		eqArrival = 0.100000) Inter Arrival	Parameter - 10.00 mins		
ce node choice is using unifor					
ination node choice is using u					
er of wavelengths (lambdas) ar	ce constant = 1				
: size is constant = 1.00 TB					
rvation start times follow uni					
		e size of the data to transfer and	· · · · · · · · · · · · · · · · · · ·	2452000 2459 250 200 200	100000
f# ReqArrivalTime	ResvStart	ResvEnd	SourceNode	DestNode	Lan
) Fri Oct 29 00:21:00 2004	Wed Nov 10 05:00:00 2004	Wed Nov 10 07:14:00 2004	2	1	
. Fri Oct 29 00:23:00 2004	Fri Nov 5 18:00:00 2004	Fri Nov 5 20:14:00 2004	1	2	
: Fri Oct 29 00:34:00 2004	Sun Nov 7 10:00:00 2004	Sun Nov 7 12:14:00 2004	1	2	
Fri Oct 29 00:37:00 2004	Mon Nov 8 12:00:00 2004	Mon Nov 8 14:14:00 2004	2	1	
Fri Oct 29 00:44:00 2004	Mon Nov 8 21:00:00 2004	Mon Nov 8 23:14:00 2004	1	2	
5 Fri Oct 29 00:56:00 2004	Sat Nov 6 09:00:00 2004	Sat Nov 6 11:14:00 2004	2	1	
5 Fri Oct 29 01:00:00 2004	Thu Nov 11 16:00:00 2004	Thu Nov 11 18:14:00 2004	2	1	
Fri Oct 29 01:36:00 2004	Wed Nov 10 18:00:00 2004	Wed Nov 10 20:14:00 2004	2	1	
} Fri Oct 29 01:52:00 2004	Sat Nov 6 01:00:00 2004	Sat Nov 6 03:14:00 2004	2	1	
) Fri Oct 29 01:57:00 2004	Sun Nov 7 18:00:00 2004	Sun Nov 7 20:14:00 2004	2	1	
) Fri Oct 29 03:15:00 2004	Wed Nov 10 20:00:00 2004	Wed Nov 10 22:14:00 2004	2	1	
. Fri Oct 29 03:18:00 2004	Mon Nov 8 06:00:00 2004	Mon Nov 8 08:14:00 2004	1	2	
Fri Oct 29 03:46:00 2004	Wed Nov 10 21:00:00 2004	Wed Nov 10 23:14:00 2004	ī	2	
Fri Oct 29 03:59:00 2004	Wed Nov 10 08:00:00 2004	Wed Nov 10 10:14:00 2004	ī	2	
Fri Oct 29 04:02:00 2004	Fri Nov 5 18:00:00 2004	Fri Nov 5 20:14:00 2004	ĩ	2	
5 Fri Oct 29 04:15:00 2004	Sun Nov 7 11:00:00 2004	Sun Nov 7 13:14:00 2004	1	2	
Fri Oct 29 04:28:00 2004	Thu Nov 11 02:00:00 2004	Thu Nov 11 04:14:00 2004	2	1	
' Fri Oct 29 04:28:00 2004	Thu Nov 11 19:00:00 2004	Thu Nov 11 21:14:00 2004	1	2	
Fri Oct 29 04:25:00 2004	Thu Nov 11 19:00:00 2004 Thu Nov 11 01:00:00 2004	Thu Nov 11 21:14:00 2004 Thu Nov 11 03:14:00 2004	2	1	
) Fri Oct 29 04:35:00 2004	Tue Nov 9 14:00:00 2004	Tue Nov 9 16:14:00 2004	2	1	
		Wed Nov 10 20:14:00 2004	2	1	
) Fri Oct 29 04:41:00 2004	Wed Nov 10 18:00:00 2004				
. Fri Oct 29 04:41:00 2004	Fri Nov 5 11:00:00 2004	Fri Nov 5 13:14:00 2004	1	2	
: Fri Oct 29 05:00:00 2004	Thu Nov 11 10:00:00 2004	Thu Nov 11 12:14:00 2004	1	2	
Fri Oct 29 05:20:00 2004	Fri Nov 5 21:00:00 2004	Fri Nov 5 23:14:00 2004	2	1	
Fri Oct 29 05:29:00 2004	Sun Nov 7 15:00:00 2004	Sun Nov 7 17:14:00 2004	2	1	
Fri Oct 29 06:22:00 2004	Fri Nov 5 16:00:00 2004	Fri Nov 5 18:14:00 2004	2	1	
5 Fri Oct 29 07:00:00 2004	Sat Nov 6 04:00:00 2004	Sat Nov 6 06:14:00 2004	2	1	
' Fri Oct 29 07:01:00 2004	Mon Nov 8 20:00:00 2004	Mon Nov 8 22:14:00 2004	1	2	
} Fri Oct 29 07:10:00 2004	Tue Nov 9 19:00:00 2004	Tue Nov 9 21:14:00 2004	1	2	
) Fri Oct 29 07:19:00 2004	Tue Nov 9 18:00:00 2004	Tue Nov 9 20:14:00 2004	2	1	
) Fri Oct 29 07:26:00 2004	Fri Nov 5 12:00:00 2004	Fri Nov 5 14:14:00 2004	1	2	
. Fri Oct 29 07:53:00 2004	Tue Nov 9 23:00:00 2004	Wed Nov 10 01:14:00 2004	2	1	
Fri Oct 29 08:06:00 2004	Thu Nov 11 03:00:00 2004	Thu Nov 11 05:14:00 2004	2	1	
Fri Oct 29 08:06:00 2004	Tue Nov 9 17:00:00 2004	Tue Nov 9 19:14:00 2004	1	2	

Conclusion

FONTS is an important tool

- Enables experimenting with different kinds of traffic, while real traces are not available.
- Lightpath scheduling
 - Specific characteristics of the traffic and topology definitely affect the behavior of scheduling strategies.