
1

1

Operating System

Lecture 12:
Input/Output

2

Today

• I/O Layering
• I/O Devices
• Device Drivers
• Device Controllers
• I/O Software

3

I/O Layering

• I/O Layers
– User processes
– Device-independent software
– Device drivers
– Device Controllers
– Devices (HW)

I/O
request

I/O
reply

4

I/O Devices

• A computer system is composed of
components
– CPU, memory, I/O devices
– Communication is over system bus

• can be more than one

5

Device Controllers

• An I/O device is made up of
– mechanical components (if any)
– electronic components

• adapter or controller

• OS interacts with the controller
using registers

• Registers accessed via memory
(memory-mapped) or I/O instructions

6

Device Drivers

• Encapsulates device-dependent code
• Generally, must implement a standard

interface
• Code contains device-specific

register for reads/writes

2

7

Device-Independent OS Software

• Kernel I/O subsystem
• Functionality that is general and

independent of any specific I/O
device

8

User-Level Software

• User-level buffering
– e.g., stdio

• Spooling daemons
– printer
– network

9

I/O Layering

• I/O Layers
– User processes
– Device-independent software
– Device drivers
– Device Controllers
– Devices (HW)

I/O
request

I/O
reply

10

I/O Devices

• Block device
– accesses information in addressable

fixed size blocks
– example

• disk

11

I/O Devices

• Character device
– accesses information in terms of

streams of characters
– examples

• network, terminals, printers, mice

12

I/O Devices

• Other
– memory-mapped
– examples

• graphics, video

3

13

I/O Devices

• Characteristics of I/O devices
– character-stream or block
– sequential or random-access
– synchronous or asynchronous
– sharable or dedicated
– speed of operation
– read-write, read only, or write only

14

Device Controllers

• Interrupts
• Direct Memory Access (DMA)

15

Interrupts

• When an I/O device has finished the
work
– it causes an interrupt
– by asserting a signal on a bus line that is

has been assigned to
– this signal is detected by the interrupt

controller, which decides what to do

16

Interrupts

• The interrupt controller
– processes the interrupt immediately (if

no other interrupts are pending)
– to handle the interrupt, the controller

• puts a number on the address lines
• specifying which device wants attention
• and asserts a signal that interrupts the CPU

17

Interrupts

• The interrupt signal causes the CPU
to stop what it is doing
– the number on the address lines is used

as an index into a table called interrupt
vector to bring...

– … a new program counter, that gives the
appropriate interrupt service procedure
(interrupt handler)

18

Interrupts

• The interrupt service procedure
– handles the interrupt
– acknowledges the interrupt by writing a

certain value to one of the interrupt
controller’s I/O ports

– the I/O device is now free to generate a
new interrupt

4

19

Direct Memory Access (DMA)

• Programmed I/O
– CPU moves data word-by-word between

device and memory
– if device is slow, can be inefficient

20

Direct Memory Access (DMA)

• DMA
– CPU sets up transfer of data between

device and memory
– CPU can do other work while transfer

occurs
– interrupt occurs when DMA transfer

completes

21

Example: DMA from Disk

• Read from disk
– first transfer to disk’s controller buffer
– Then DMA to memory

22

Kernel I/O Subsystem

• Concepts
– Device independence
– Uniform naming
– Synchronous and Asynchronous

• blocking (S)
• interrupt-driven (A)

– Shared and dedicated

23

Kernel I/O Subsystem

• Supervises
– The management of the name space for

files and devices
– Access control to files and devices
– Operation control

• e.g., a modem cannot seek
– File system space allocation
– Device allocation

24

Kernel I/O Subsystem

• Also
– Buffering, caching, spooling, and device

reservation
– I/O scheduling
– Device status monitoring, error handling,

and failure recovery
– Device driver configuration and

initialization

5

25

Disks

• Disk Interleaving
• Disk Scheduling

26

Disks

• Performance
– Seek Time
– Rotational latency

• Improve: access time and bandwidth
• Bandwidth = number of bytes

transferred divided by total time
between 1st and last request

27

Disk Interleaving

• A sector is read and it must be
transferred to memory

• Disk head may pass beginning of next
sector by the time transfer is done

• To improve performance, interleave
sectors
– single interleaving
– double interleaving

28

Disk Scheduling

• I/O request
– input or output?
– disk address
– memory address for transfer
– number of bytes

29

Disk Scheduling

• If device driver and controller
available
– serve immediately

• else
– request is placed in a queue

30

Disk Scheduling

• Scheduling means choosing from the
pending I/O requests, which is going
to be the next

6

31

Scheduling Algorithms

• FCFS (First Come First Served)
– fair but not necessarily the fastest

service
– example:

• 98-183-37-122-14-124-65-67
• head starts at 53, will move 640 cylinders
• problem: big swing! 122 -> 14 -> 124

32

Scheduling Algorithms

• SSTF (Shortest Seek Time First)
– can cause starvation
– knowing the future would be better
– not optimum
– example:

• 98-183-37-122-14-124-65-67
• head starts at 53, will move 236 cylinders

33

Scheduling Algorithms

• SCAN
– elevator algorithm
– moves all the way back and forth
– example:

• 98-183-37-122-14-124-65-67
• head starts at 53, going downwards
• head will move 236

34

Scheduling Algorithms

• C-SCAN (Circular SCAN)
– elevator algorithm
– moves all the way back and forth
– serves in one direction only
– example:

• 98-183-37-122-14-124-65-67
• head starts at 53 going upwards
• head will move 183 cylinders

35

Scheduling Algorithms

• LOOK
– elevator algorithm
– moves back and forth
– serves in both directions
– example for LOOK:

• 98-183-37-122-14-124-65-67
• head starts at 53 going upwards

36

Scheduling Algorithms

• C-LOOK
– elevator algorithm
– moves back and forth
– Serves in one direction only
– example for C-LOOK:

• 98-183-37-122-14-124-65-67
• head starts at 53 going upwards
• head will move 153 cylinders

7

37

Scheduling Algorithms

• Optimal will vary according to
sequence of requests, but costs to
determine optimal does not
compensate for not using either
SSTF or (C-)SCAN or (C-)LOOK

38

Scheduling Algorithms

• File system organization will influence
the requests for disk service
– reading a contiguous file: requests are

close together
– reading a linked or indexed file: requests

may be scattered

39

Disk Scheduling

• Disk scheduling in modern systems
can be implemented by the controller

• This is good for performance because
disk has control over seek and
rotational speed

40

Disk Scheduling

• However, it is interesting for the OS
to have control because of
– priorities

• demand paging over application I/O
• writes over reads

– I/O ordering
• updating FS tables before starting writing
a new file

41

Performance

• Put directory info in the middle of
the disk

• Cache directories and index blocks
• Best algorithm depends on FS

implementation
• Good defaults

– SSTF or (C-)LOOK or (C-)SCAN

