Performance Analysis of Parallel Strategies for Localized

N-body Solvers

Silvia M. Figueira * Scott B. Baden T

Abstract

Although there exist several approaches to rapidly solving the N-body problem,
and a diversity of implementation strategies, the performance tradeoffs of the various
strategies with respect to problem-specific data distributions is poorly understood on a
parallel computer. We present a synthetic workload model and a simulator that enables
us to evaluate the performance tradeoffs encountered in implementing particle methods
on MIMD computers. These results can be used to evaluate designs early on in the
implementation process.

1 Introduction

We present a comparative performance analysis of various strategies for implementing
localized N-body solvers on MIMD distributed memory parallel computers. In localized
N-body solvers, particle interactions beyond a certain cutoff radius are either ignored or
computed separately. Often the short range interactions predominate. We will consider
only local interactions, i.e., each particle interacts over a small neighborhood only. Our
results apply to single-level particle methods in which the particle density variation is not
too great; thus we exclude hierarchical methods [3, 5].

A synthetic workload model was developed that characterizes an N-body system in
terms of its properties. We built a simulator on the Intel Paragon that takes the workload
parameters as inputs, builds the corresponding synthetic workload, and models the cost
of evolving the particles over a sequence of timesteps. The simulator implements three
strategies for the calculation of the forces: link-cell; link-cell with per-particle lists of
neighbors; and link-cell with per-cell lists of neighbors. The effects caused by the parameters
on the performance of the strategies and the costs associated with different kinds of N-body
systems using different implementation strategies are presented.

Section 2 presents the synthetic workload model, and section 3 describes the implemen-
tation strategies implemented by the simulator. Section 4 presents computational results,
and section 5 discusses these results.

2 Synthetic Workload Model

We have developed a synthetic workload model that characterizes an N-body system in
terms of various properties, including: number of particles; average particle density p;

*Graduate student, Dept. of Computer Science and Engineering, U.C. San Diego, USA. Electronic mail
address: silvia@cs.ucsd.edu, supported by a grant from CAPES (Federal Agency for Graduate Education,
Brazil). Computer time on the San Diego Supercomputing Center’s Intel Paragon was provided by a UCSD
Division of Engineering Block Grant.

T Assistant Professor, Dept. of Computer Science and Engineering, U.C. San Diego, USA. Electronic mail
address: baden@cs.ucsd.edu, supported by ONR contract N00014-93-1-0152.

1

2 FIGUEIRA AND BADEN

distribution (uniform or Gaussian); maximum displacement of the particles in one timestep
Aprax; cutoff radius ¢; computational cost, in FLOPS, of an interaction between two
particles ®; and the amount of memory required per particle n. For Gaussian distributions,
there is an additional parameter characterizing the density of the distribution. Using this
model we may construct synthetic particle workloads that are representative of real world
distributions with characteristics requiring different implementation strategies.

We built a simulator on the Intel Paragon that takes the aforementioned workload
parameters as inputs, builds the corresponding synthetic workload, and models the cost
of evolving the particles over a sequence of timesteps. At each timestep, the simulator
transmits all required off-processor dependence data, and simulates the computation of
local direct interactions with an idle loop. The time evolution of the particles is simulated
using a random walk, determined by Aps4y.

3 Implementation Strategies

The force computation is organized around the procedure for enumerating interactions.
Fundamentally, two approaches have been taken: the link-cell method (also called “chaining
mesh” [6]), and the Verlet Neighbor List method [12]. The link-cell method uses a mesh to
organize the computation. Each box of the mesh contains a list with the particles found
in its corresponding subregion of the domain, and the interacting neighbors lie in neighbor
boxes, avoiding a costly O(N?) search for neighbors. After the new positions of the particles
are computed at the end of each timestep, any particle that has moved to a new box is
repatriated to its proper owner.

A problem with the link-cell method is that traversal of the mesh can be expensive.
The Verlet Neighbor List method can avoid the difficulty, by creating a neighbor list for
each particle. The neighbor list is periodically reconstructed, but less frequently than every
timestep, in order to reduce the cost. This implies that we must expand the neighbor list
out to a second extended cutoff ¢, to include particles that may move to within ¢ before
the list is next reconstructed.

When calculating the forces, only particles within ¢ are considered. The remaining
particles are ignored, though a distance computation is required to identify them. If the
cost of computing an interaction is large (i.e. 100 flops) as compared with the distance check
(3k flops in k dimensions), then the cost of skipping over spurious neighbors may not be
noticed, in other cases the overhead may be significant. The choice of the extended cutoff ¢,
and of the list reconstruction rate T depend on Aj;4x, and must be adjusted to minimize
the cost of reconstructing the lists and of handling spurious interactions, subject to the
constraint that no particle initially outside ¢; can move inside ¢ between list reconstruction
phases.

A disadvantage of the Verlet Neighbor List method is that an O(N?) search is required
to construct the neighbor lists. We may employ a link-cell mesh to accelerate the search
to an O(N) sort and O(N) search, which we call the “link-cell with per-particle lists of
neighbors” approach. This approach avoids the repatriation of particles at every timestep,
as required by the link-cell method; the particles need to be repatriated only when lists are
reconstructed.

A major issue in implementing particle methods is to avoid excessive spurious
interactions. For the link-cell method we must choose an appropriate mesh spacing; for
the hybrid (link-cell with Verlet lists) method we want to keep ¢, small. As ¢, increases so
does the amount of off-processor dependence data transmitted between processors, which

seconds

PERFORMANCE ANALYSIS OF LOCALIZED N-BODY SOLVERS 3

20.0

80.0

G——© max disp = 0.02
=& max disp = 0.01

&—© cutoff = 0.2 = < - - <> max disp = 0.005

&= B cutoff = 0.5

seconds

, , , , 2.0 4.0 6.0 8.0 10.0 12.0
0.20 0.30 0.40 0.50 0.60 timesteps before list reconstruction
mesh spacing

Fic. 2. Man displ t
Fia. 1. Cutoff radius affecting the azimum displacement of

. o the particles affecting the optimum list
optimum mesh spacing in strategy 1.

reconstruction rate in strategy 2.

incurs both a time penalty and a space penalty, to store the off-processor data.

The size of the lists depend on the p and ¢: distributions with a low p or small ¢ require
shorter lists than distributions with high p or large ¢, because the number of neighbors is
smaller. In the latter case we may need to conserve space by using a single neighbor list for
each bin, such that all particles in a bin share the same list. We refer to this as the “link-cell
with per-cell lists of neighbors” approach. This approach increases the cost of computing
interactions, since the number of spurious neighbors increases. Whether the space-time
tradeoff offered by this strategy is useful depends on the circumstances, but generally finer
grained, per-particle lists will be faster.

In this paper we will consider three implementation strategies for the calculation of
the forces: (1) link-cell; (2) link-cell with per-particle lists of neighbors; and (3) link-
cell with per-cell lists of neighbors. To parallelize these computations, we employ spatial
decomposition to partition the link-cell mesh into contiguous simply-connected regions.
As compared with methods that partition on the basis of particles or interactions, spatial
decomposition strategies avoid global communication, achieving better scalability [10].

Strategies 1 and 2 have been used to calculate the non-bonded forces in Molecular
Dynamics systems, like EulerGROMOS [4], and have been discussed by Tamayo, Mesirov
and Boghosian [11], and by Plimpton and Heffelfinger [10]. Strategy 1 has also been
employed in vortex dynamics calculations [2].

4 Results

Our simulator was written in C+4 (gcc compiler version 2.5.7) and runs under LPARX
(version 1.1) [7]. It has been used in experiments simulating three dimensional N-body
systems on 16 processors of the Intel Paragon running the operating system Paragon OSF/1
R1.2. The peak bandwidth of the Paragon is around 70 MB/sec, and the average message
startup cost is 100 microseconds [9].

We explore the effect that workload variations have on the performance of the different
implementation strategies. We varied ¢ and Apray. All simulations were conducted with
5000 particles and run for 50 timesteps, unless otherwise specified. The maximum number
of flops per interaction was 19 and the number of bytes of storage per particle was 72.
Dynamic recursive bisection was used for load balancing [1].

seconds

4 FIGUEIRA AND BADEN

16.0 T T T T 30000.0
G—© strategy 2
@£ strategy 3
14.0
25000.0 —
<& BN 0
/ w
12.0 | // 4 =
&= L
= S-------- < & 20000.0 4
=) -6 =
o
10.0 | — QE)
N 1S3
i)
m,
N 15000.0 BT 4
8.0 | Y. o—ostrategy 1 - =Ea
e [£ strategy 2 i e
= < - - strategy 3 e =
or
6.0 L L L - 10000.0 L L L L
2.0 4.0 6.0 8.0 10.0 12.0 2.0 4.0 6.0 8.0 10.0 12.0
timesteps before list reconstruction timesteps before list reconstruction
Fia. 3. Ezecution time of strate- Fic. 4. Memory required (in total
gies 1, 2 and 3. The short displacement number of neighbors in a timestep) for
of the particles favors strategies 2 and 3. the lists, in strategies 2 and 3.

Our main result is that no one implementation strategy excels under all conditions, and
that there exist conditions under which each strategy is preferred to the others.

Our first observation is that performance is sensitive to the mesh spacing as shown in
figure 1. The mesh spacing must be adjusted to minimize the cost of traversing the mesh
and of treating spurious neighbors: if the mesh is too fine, mesh traversal is expensive, if
too coarse, the number of spurious neighbor particles is large. The optimum mesh spacing
is affected by ¢ (¢, for list strategies). This can be seen by noting the minima on the curves
in figure 1, which presents data for two different distributions each with a different cutoff
radius. The distributions in this figure have particles uniformly distributed in a domain of
size 4x4x4, and a large Aprax (0.02).

For non-uniform systems, the average number of particles in each box of the mesh
varies. In this case, a non-uniform mesh, i.e., a mesh with different sizes of boxes, might
help improve the performance. We have not tried that though.

The performance of strategies 2 and 3 is influenced by the list reconstruction rate .
If 7 is high, the lists are rebuilt expensively many times. If low, then ¢, is large, and the
traversal of both the mesh and the lists is expensive. The optimum value of 7 is related
to Aprax and p. Short displacements and low densities favor low 7, because few extra
neighbors need to be added to the lists; large displacements and high densities favor high
7. Figure 2 shows the effect of 7 on the performance of strategy 2, and the effect of Ayrax
on the optimum value of 7. It presents the simulation of three distributions, each with a
different Aps4x. The particles were generated uniformly in a 4x4x4 domain, and ¢ = 0.2.

We next make a direct comparison of the three different strategies, using two different
distributions. The first distribution has short displacements (Aj;ax = 0.002), and the
second one has large displacements (Aprax = 0.02). Both distributions are dense (5000
particles, generated according to a Gaussian distribution with mean 0.0 and variance 1.0,
in a domain of size 3x3x3) and have ¢ = 0.2.

Figures 3 and 4 show respectively the time and space performance of each strategy
with the short displacement distribution. Both strategy 2 and 3 are faster than strategy
1; Aprax is small, so is ¢, and hence the neighbor lists are not too long either. Strategy
2 and 3 have very similar running times—the former is a little faster, owing to the shorter
lists—but strategy 3 requires less storage and hence it can accommodate larger workloads.

seconds

PERFORMANCE ANALYSIS OF LOCALIZED N-BODY SOLVERS 5

100.0

50.0
G—© strategy 1
[£ strategy 2
- © strategy 1 <--—< strategy 3
&£ strategy 2
< - -~ strategy 3 2 N
% 9200 N -3
40.0 |- e AN oo
-
0 e
S/) g —&
- S 800 - 4
30.0 i 8
. _ / 3
- i =
K B
= = 0
< - =.
0.
= 70.0 - o B
20.0 o S
60.0, . . .
10.0 \))) 2.0 4.0 6.0 8.0 10.0
2.0 4.0 6.0 8.0 10.0 12.0 timesteps before list reconstruction

timesteps before list reconstruction

Fia. 5. Ezecution time of strate- Fi. 6. Ezeculion time of strate-

gies 1, 2 and 3. The large displacement gies 1, 2 and 3 i o simulation of

of the particles favors stralegy 1. smoothed particle hydrodynamics in 3

dimensions.

However, 7 was fairly high owing to the high density of the distribution.

Figure 5 shows the time performance of each strategy with the large displacement
distribution. The three strategies achieved similar time performance when the lists were
reconstructed frequently— every 4 timesteps. Lists do not enhance the performance of the
link-cell strategy in this example, because the large displacements force a large ¢, which
increases the size of the lists and the cost of handling them. Since strategy 1 does not
require storage for lists, it is preferred in this case.

5 Conclusion

Experiments have shown that, in general, there is no strategy that is the best in all
circumstances. In fact, each strategy can perform better than the others depending on
the properties of the distribution.

Aprax is the critical factor when selecting an implementation strategy. Short
displacements generally favor list strategies over the link-cell method, but list strategies
perform poorly when simulating large displacement distributions, in which case the link-
cell method may be more appropriate. Experiments have also shown the importance of
choosing the optimum mesh size and neighbor list reconstruction rate.

Another important factor is the number of processors: increasing the number of
processors may benefit the link-cell strategy more than the list strategies, because the
gain is more significant in the calculation of forces and traversal of the mesh, which is
more expensive for the link-cell strategy. This should be taken into consideration when
selecting a strategy because, for some systems, the list strategies may be the best choice
with few processors, but the link-cell strategy may be more appropriate if a larger number
of processors is used.

An important issue when employing a list strategy is storage. If the list reconstruction
rate is low, the lists are long and more storage is required. Sometimes the speedup obtained
by lowering the list reconstruction rate is not worth while, because a high storage overhead
is incurred. This happens when the p is low and Ap;ax is small. When running times are
comparable, the link-cell strategy is preferred to neighbor lists. We introduced a coarse-
grain Verlet list, that relies on a link-cell mesh to maintain a single neighbor list for all

6 FIGUEIRA AND BADEN

particles in a given mesh box. While this approach is generally slower than the traditional
(fine-grain) Verlet list, it offers reduced storage overheads.

To validate our model, we have compared the performance of the strategies in a
computation of smoothed particle hydrodynamics in 3 dimensions [8, 7] on the Intel
Paragon. The computation was written in mixture of C++ and Fortran 77 and ran under
LPARX. The initial data consists of 12190 particles distributed in a disk with a hole in
the center and declining density; they are assigned a circular velocity. The domain is a
box of size approximatedly 5x5x1, Aprax is large (0.021), and ¢ = 0.2. Figure 6 shows
the execution times for each strategy. In this case, the use of lists does not enhance the
performance of the link-cell strategy, because of the large displacements. As predicted by
our model, the link-cell method 1 is preferred in this case.

Our results show that many factors and choices affect the performance of the strategies.
Our simulator proved to be useful in tuning various simulation parameters, and more
importantly can be used to select an appropriate implementation strategy early on in the
code development process.

References

[1] S. Baden, Programming Abstractions for Dynamically Partitioning and Coordinating Localized
Scientific Calculations Running on Multiprocessors, STAM J. on Sci. and Stat. Comput., 12
(1991), pp. 145-157.

[2] S. Baden, Very Large Vortex Calculations in Two Dimensions, Proceedings of the UCLA
Workshop on Vortex Methods, May, 1987.

[3] J. Barnes and P. Hut, A Hierarchical O(NlogN) Force Caleulation Algorithm, Nature, 324
(1986), pp. 446-449.

[4] T. Clark, R. Hanxleden, J. McCammon and L. Scott, Parallelizing Molecular Dynamics
using Spatial Decomposition, Proceedings of the 1994 Scalable High Performance Computing
Conference, May, 1994, pp. 95-102.

[6] L. Greengard and V. Rokhlin, A Fast Algorithm for Particle Simulations, Journal of
Computational Physics, 73 (1987), pp. 325-348.

[6] R. Hockney and J. Eastwood, Computer Simulation using Particles, McGraw-Hill Inc., 1981.

[7] S. Kohn and S. Baden, A Robust Parallel Programming Model for Dynamic Non-Uniform
Scientific Computations, Proceedings of the 1994 Scalable High Performance Computing
Conference, May, 1994, pp. 509-517.

[8] J. Monaghan, Smoothed Particle Hydrodynamics, Annual Review of Astronomy and Astro-
physics, 30 (1992), pp. 543-574.

[9] P. Pierce and G. Regnier The Paragon Implementation of the NX Message Passing Interface,
Proceedings of the 1994 Scalable High Performance Computing Conference, May, 1994,
pp- 184-190.

[10] S. Plimpton and G. Heffelfinger, Scalable Parallel Molecular Dynamics on MIMD Supercomput-
ers, Proceedings of the 1994 Scalable High Performance Computing Conference, April, 1992,
pp- 246-251.

[11] P. Tamayo, J. Mesirov and B. Boghosian, Parallel Approach to Shori Range Molecular
Dynamics Simulations, Proceedings of Supercomputing 91, November, 1991, pp. 462-470.

[12] L. Verlet, Computer “Experiments” on Classical Fluids, Physical Review, 159 (1967), pp. 98—
103.

