
PDCN’04

1

CS_LITE: A LIGHTWEIGHT COMPUTATIONAL STEERING SYSTEM

Silvia M. Figueira
Department of Computer Engineering

Santa Clara University
Santa Clara, CA 95053-0566

sfigueira@scu.edu

Sonia Bui
Department of Computer Science

Naval Postgraduate School
Monterey, CA 93943-5118

sbui@nps.navy.mil

Abstract
Computational steering environments (CSEs) allow users
to interact with applications executing in batch mode.
Interaction with an application includes viewing
intermediate results of computations and changing the
values of program variables during program execution.
Currently, most CSEs available are too application-
specific and too complicated for the user to learn and use.
In this paper, we show that computational steering can be
done in a simpler, user-friendlier way. Through the use of
a C library, CS_Lite provides users with an easy way of
incorporating computational steering in their programs.
Users need only to add CS_Lite function calls to their
existing programs. In addition, a web-based graphical user
interface simplifies the steering process and allows for
more portability of CS_Lite through a JavaScript 1.2 (or
higher) enabled browser. With CS_Lite, users will be able
to steer primitive C data types: integers, floating point
numbers, and character strings. For more complex data
types, a file-transfer utility is provided. CS_Lite also
recovers from server failure through the use of redundant
servers.

Keywords
Computational Monitoring and Steering, Clusters of
Workstations.

1 Introduction
Large-scale scientific computations, such as climate
modeling and molecular dynamics simulation, are
generally written as parallel programs, in which many
computers work together to solve a particular problem.
Traditionally, these parallel programs are batch-oriented.
The results from running a parallel program are not
available to the user until after the program has finished
executing, which could potentially take many hours, days,
or even weeks. Typically, users can only see the results
and discover a scientific revelation, or a flaw in the
program, after the end of the execution.

Computational steering environments (CSEs) were
developed to solve this problem of non-interaction
between users and executing programs. CSEs allow users
to see intermediate results while the program is executing,
instead of waiting until the end of the batch process. This
displaying of results beforehand is called monitoring. In
addition, CSEs also perform steering, which enables users
to respond to the program current status (obtained from
monitoring) and change the values of program variables
without stopping program execution. The new values of
the altered program variables are then used for the
remainder of the program execution. The monitoring and
steering functionality of CSEs have greatly helped
scientists follow their programs’ execution and gain
insights into their research [8].

A large number of CSEs have been developed for
scientific research in a variety of fields [2, 8, 11, 4, 12, 9,
10, 1]. However, most of them are very application-
specific. A particular CSE may be well suited for doing
simulations of wake-vortices but may be otherwise poorly
suited for other types of scientific computations. A reason
for this tight coupling between a CSE and a specific
application is that the scientists working on the application
are the same people who write the CSE for that
application. Consequently, the CSE is optimized for the
needs of that certain application and may not even work
for other types of applications, e.g. [1]. This is a problem
that these application-specific CSEs face, the inability to
be used for diverse types of scientific computations [11].

In addition, many CSEs are extremely complex to
learn and to use. It is often the case that the people who
know how to use the CSE are the people who wrote it
themselves. New users of CSEs face a steep learning curve
[8]. Again, if the CSE is tailored for an application that is
different than the application that the user is working on,
then learning the semantics and peculiarities of that CSE
are even more daunting for the user. Unfriendly,
complicated user interfaces of some CSEs also do not help
people trying to work with the CSEs. 

Another reason why CSEs are difficult to use is that
the monitoring and steering mechanisms are not intuitive



PDCN’04

2

for the user. A majority of CSEs require complex program
annotation (the adding of pieces of code to the program) in
order to provide the program monitoring and steering
functionality. One of the earliest computational steering
systems, Falcon [4], suffered this problem of overly
complicated monitoring and steering mechanisms. Some
of the scientists using these CSEs have little formal
education in computer science, so the task of program
annotation may be long, complicated, and prone to error.
Non-intuitive monitoring and steering methods are a huge
problem plaguing CSEs.

This paper describes a simpler, more general, and
easier to use computational steering environment (CSE).
We call it CS_Lite because it is a lightweight
computational steering system, a CSE without the added
complexity. CS_Lite is a functional and useful tool, which
can be used in clusters and Grid environments. CS_Lite
could be easily incorporated into MPI libraries, such as
MPICH [6] or LAM/MPI [5], to extend their capabilities.

The following components are part of CS_Lite:

1.Steering and monitoring mechanisms:
These mechanisms describe the means in which the user
program is to be monitored and steered. In other words,
how a variable’s value could be observed or altered dur-
ing program execution.

2.Web-based interface:
The graphical user interface or GUI consists of a web-
browser that is widely available and familiar to any user.
This interface helps providing a friendly environment for
monitoring and steering.

This paper is organized as follows. Section 2 provides
an overview of the system. Sections 3, 4, and 5 discuss the
monitoring and steering mechanisms provided. Section 6
presents the graphical user interface. Section 7 concludes
with a summary and a discussion about future work.

2 System Overview
CS_Lite has a client-server architecture, similar to the
POSSE computational steering system [8]. CS_Lite uses
two servers: one to handle monitoring and another to
handle steering. The client is the user’s program. In the
case of a parallel program, there are multiple clients, each
representing a node in the cluster in which the program is
executing. In the monitoring process, each client, when
they have information to send, checks the connection to
the monitoring server and sends the data. For steering
activities, the client makes a connection to the steering
server and waits for the server to supply it with the new
value for the variable being altered. The user inputs the
new data for each parameter through a GUI. The user
input is then read by the steering server, which sends the
new value back to the client that requested the value for a
parameter. 

The clients executing the program communicate
synchronously with the steering server and vice versa. We

decided to make the network communication synchronous
to ensure that the messages passed between clients and
servers (the output results from the program and the new
program variable’s values) actually reach the intended
receiver. Synchronicity also ensures the data integrity of
the steered variable’s values. For example, a client
requesting a value for a variable will not get an outdated
value from the steering server. 

All the communication in the CS_Lite application is
one-to-one: one server receives one message from one
client at time. During monitoring, the monitoring server
receives monitoring data one at a time, one for each
cs_send call from a node. In the steering process, the
steering server handles one request for a new value of a
parameter at a time - reading the request, sending it to the
GUI, receiving the user’s input, and sending the new
parameter value back to the client. In the case of parallel
programs, CS_Lite broadcasts are not needed because the
new parameter value can be propagated among the nodes,
e.g., using MPI [7] collective operations, after one of the
nodes receives the new value from the server.

The actual passing of information between the nodes
was implemented using both TCP and UDP. For
monitoring, which is the sending of output data from the
clients to the monitoring server, we use UDP. For steering,
which is the requesting for data from the client to the
steering server and the sending of the new data from the
steering server back to the client, we use TCP. 

The reason why we use UDP for monitoring is
because UDP is much faster for sending data. Even though
UDP is unreliable, the occasional loss of output data is not
detrimental for the user because the user can always add
additional monitoring outputs through subsequent cs_send
calls to the code. Also, all data that does arrive is written
to a data log, so that the user can refer to previous data and
interpolate the values for missing data. Data loss does not
interfere with the flow of the program, so the user program
continues executing even if a monitoring data packet has
been lost. 

However, CS_Lite adds a little more reliability in the
UDP data transfer because it actually contacts the TCP
steering server to see if the server is up before sending the
message. We assume that the user will run the monitoring
and steering servers on the same machine. If the machine
is down, then it is most likely that both servers are down.

In addition, UDP allows for better scalability than
TCP. If TCP was used, the connections between the server
and client nodes would have to remain open for the
duration of the program execution, which may become a
problem if the number of nodes increases. 

For steering, we use TCP, despite the scalability
problems, because unlike monitoring, it is crucial that the
client node receives the new steering parameter from the
server. The user’s program may be very dependent on
receiving the new value of the parameter. TCP, being



PDCN’04

3

reliable, ensures that the new value has been sent and
received by the client node. Therefore, each time the client
needs a value for a variable from the server, the client
initiates a TCP connection and requests data from the
server. The TCP connection is then closed after the client
receives the data from the server.

The structure of the UDP packets used in the
monitoring messages between the client and servers is as
follows: 4 bytes for the node id (0 ≤ �id < N, where N is
the number of nodes), 4 bytes for the message number of
the packet (unique for each node or client), and 1,016
bytes for the monitoring data message (the value of the
parameter). The structure of the TCP packets used by the
client during the steering process is as follows: 4 bytes for
the node id, 4 bytes for the message number (again, unique
for each node/client), 1 byte for the data type of the
steering parameter (integer, float, or string), and 1,015
bytes for the message the user may want to add to identify
the name of the parameter.

The functions were written in C, since C is still the
most used language in parallel and distributed computing.
The GUI, or graphical user interface, is web-based so that
the user can use CS_Lite from any machine. The various
windows for monitoring and steering can be easily created
using HTML. The interaction between these webpages
and the CS_Lite monitoring and steering servers is
achieved through CGI [3]. The CGI programs, one for
monitoring and one for steering, are also written in C.
Type checking of user input from the webpage is done
through JavaScript. JavaScript can also update the
webpages automatically by calling the CGI program after
an elapsed time.

The design of CS_Lite was greatly influenced by that
of POSSE [8], Portable Object-oriented Scientific Steering
Environment. POSSE is a general use CSE, with a client/
server architecture, POSIX threads, and remote steering on
a GUI. CS_Lite differs in that it does not provide a
visualization component that POSSE provides, and
CS_Lite was written in C instead of C++. But POSSE is
still more complicated to use than CS_Lite in that POSSE
requires users to write their own servers to do the
monitoring and steering. CS_Lite provides the monitoring
and steering servers for the users. Also, POSSE does not
automatically provide recovery of server failures and its
GUI, although cross-platform, is not as portable as a web-
based GUI. The graphics utilities for the POSSE GUI need
to be installed on each machine using it. Not all machines
have supporting graphics libraries, but almost all machines
have web browsers. The most common web browsers can
even be downloaded for free off the Internet.

The idea of web-based remote steering came from
another CSE, DISCOVER (Distributed Interactive
Steering and Collaborative Visualization Environment)
[9]. But, in all other aspects, DISCOVER is very different
from CS_Lite. DISCOVER is Java-based and meant for
use in distributed systems. The web interface allows for

geographically distributed scientists and researchers to
collaborate on programs that use DISCOVER. The web
interface may also be applicable in a smaller context
where the machines are all on the same LAN. 

3 Monitoring and Steering Mechanisms
A major component of CS_Lite is a channel of
communication between the steering computer (the
machine where the user will be monitoring and steering
the program) and the cluster of workstations (which
communicate with one another through MPI), which are
executing the batch program. Note that the steering
computer may reside outside of the cluster, so using MPI
alone to communicate with the machines in the cluster is
not sufficient. The steering computer and the cluster of
workstations are connected by anything, from a LAN to a
WAN link. Communications between the steering machine
and the nodes of the cluster need to go through regular
sockets.

As in MPI, the user must add CS_Lite setup functions
to the program before any monitoring or steering can be
done. This process is called program annotation. While
other CSEs use complicated ways of annotating programs,
CS_Lite will only require the user to make some function
calls. Two CS_Lite functions handle the server setup:
add_server and set_udp_port. The first function adds a
host name and TCP port number to a linked list of steering
servers, with which the client program will be
communicating for steering. The second function indicates
the UDP port for the monitoring server. It is required that
the TCP and UDP host names are the same, only the port
numbers are different. These functions should be called
once for each possible machine to be used as a server, and
more than one should be specified for fault tolerance.

When the user wants to run the CS_Lite program, the
user must first run both the CS_Lite monitoring and
steering servers on the user-specified host with the user-
specified port number. Then the user runs the client
program containing the monitoring and steering functions
that communicate with these servers at the given host
names and port numbers.

Because there is a list of servers, recovery from the
failure of a host is possible. The user needs only to have
provided several servers and port numbers (calling the two
setup functions more than once). When the server goes
down, the client program will try to connect to the next
server on the list. The condition for the server to be
considered unavailable is an elapsed time span, currently
30 seconds, after the client tries to contact the server. The
Unix function alarm allows the client program to start
connecting to another server after the set time of the alarm
has passed.

The shutdown function, cs_shutdown shuts down the
monitoring and steering servers by sending each a special
packet that indicates that the client program has finished



PDCN’04

4

executing all monitoring and steering functions. Leaving
the servers running continuously is potentially dangerous,
because a malicious intruder could discover the open port
and try to overflow the buffer, which could lead to other
damaging results. This function attempts to prevent
unauthorized clients from communicating with the servers
by shutting them down as soon as they are no longer
needed.

To monitor and steer, two other function calls are
required. To monitor the value of a variable at a particular
point in the program, users just have to add a call to
cs_send_x to the program. Similarly, to change the value
of a variable in the executing program, users need to write
in their program the following instruction: variable =
cs_receive_x().

These setup, shutdown, monitoring, and steering
functions were written in C and incorporated into a library
that users need to include with their program. This is
similar to using MPI [7] library functions in parallel
programs. The use of simple function calls to provide
monitoring and steering abilities for programs is more
intuitive for a user to use and understand. This stands in
stark contrast to the complicated and confusing
mechanisms that users of other CSEs must employ to
make programs ready to be monitored and steered.

The other major component of CS_Lite is the
graphical user interface. After annotating the program
code to include monitoring and steering functionality, the
user is ready to execute the program. As the program is
executing, the CS_Lite monitoring and steering functions
will be called. To monitor or steer the program variables,
the user needs to open a web browser to the monitoring or
steering page. The monitoring webpage will display the
values of the variables being monitored. As more values
are sent to be monitored, the webpage is updated to reflect
the additional monitoring data. The steering webpage will
display, for each cs_receive_x call, the request for a new
value of a particular parameter and provide a text box for
the user to input the new information. The user enters the
information in the text box on the webpage and the
information is sent back to the executing program. Within
the executing program, the value of the variable is set to
the new value specified by the user. The GUI is explained
in more detail in Section 6.

4 Monitoring Functionality 
The function cs_send_x sends an output from the client to
the monitoring server. Note that x stands for the data type
of the variable, either int (integer), flt (float), or str
(character string). Adding new cs_send functions for
different data types is straightforward. All the data type
specific cs_send_x functions call the same generic
function that puts the monitoring data packets together and
sends them to the monitoring server.

All the low-level details of sockets are abstracted

away from the user. All users need to do to incorporate
monitoring into their program is to add simple function
calls to the CS_Lite library. Each of these monitoring
functions takes just two parameters, one for the node id of
the client, and the actual data to be sent to the server. This
interface is very intuitive and simple to use.

Figure 1 shows a piece of a program annotated for
monitoring. This code will cause all the values in matrix
(within x and y) to be shown by the monitoring server.

Figure 1: Monitoring.

The monitoring server is implemented using POSIX
threads. Two threads are needed, a reader thread and a
writer thread. The writer thread receives the monitoring
data from the clients and writes the received data in a
special buffer (a linked-list). The writer thread handles one
cs_send_x call at a time. The reader thread reads the
contents of the buffer and writes the contents to a special
monitoring log. This log will later be used by the GUI.

Threads are needed since the client program may be
executing on more than one node, and several of these
nodes may need to communicate with the monitoring
server at the same time. If the server was not multi-
threaded, messages from the clients may be lost because
the server is busy opening and writing to the monitoring
log file. 

Since the reader and writer threads share the same
buffer, the buffer needs to be protected. A POSIX-
provided mutex was used to protect the monitoring data
buffer. To prevent busy waiting (the reader thread
constantly polling the status of the buffer), we used
POSIX condition variables to signal when a thread has
finished using the mutex. 

The use of POSIX threads, mutex semaphores, and
condition variables allows more flexibility in the machines
that can execute the program. In fact, Unix, Linux, or any
machine that uses POSIX threads can be used.

The GUI displays the monitoring results in a friendly
format for the user. The monitoring GUI uses a web
browser to display the contents of the monitoring data log
file. The user simply needs to open the browser to the
monitoring webpage, click the button, and the log is
displayed on the page. The page also refreshes
automatically every 20 seconds to show subsequent
updates of the monitoring log (the result of subsequent
cs_send_x function calls).

5 Steering Functionality
For steering programs, CS_Lite provides the functions

for (i = 0; i < x; i++)
for (j = 0; j < y, j++)

cs_send_int (matrix[i][j], myid);



PDCN’04

5

cs_receive_x, which sends requests for new values for
variables from the client program to the steering server.
The x stands for int, flt or str meaning that integers, floats,
and strings can be steered, i.e., the values altered by the
user. The steering server will send back to the client the
new value for the variable, entered through a GUI.

The function cs_receive_x has three parameters: the
node id, the name of variable (in a string), and the current
value of the variable. This information is sent to the
steering server, which outputs it before reading the new
value input by the user.

Figure 2 shows a piece of a program annotated for
steering. This code requests a value for x and a value for y,
which are used to determine the values of the matrix to be
used in the calc function. These values are requested from
the steering server, which obtains them from the user.

Figure 2: Steering.

Currently, more complex data types cannot be steered
(or monitored) directly by CS_Lite functions. Since
complex data types, such as matrices, are usually stored in
a file, CS_Lite does provide a bare-bones file transfer
utility, cs_receive_file that sends files from the steering
server to the client program. But the user needs to add the
necessary file input/output code needed to handle the file.
One reason why CS_Lite does not directly handle data
from files is because the format of the file varies
depending on the user’s preferences or particular
application. By providing the minimum file transfer utility,
CS_Lite gives the user more flexibility for handling
different types of files (and data types). When received,
the file is stored as a local file in the same directory where
the client program is stored. The name of the file is
provided by the user and is passed as a parameter to the
cs_receive_file function. Note that, a program may receive
different sets of data into different files. Note also that the
format of the file is defined by the user.

Figure 3 shows a piece of a program annotated for
receiving data through a file. This code requests a value
for x and a value for y, which are used to determine the
dimensions of the matrix into which the data should be
read. Then, the code requests the file, which will be stored
in “file.dat”. After the file is received, the file is opened,
and the data is read into the matrix, row by row. All these
values are requested from the steering server, which
obtains them from the user.

Like the monitoring server, the steering server uses
two POSIX threads. One thread is similar to the

x = cs_receive_int (x, “x”, myid);
y = cs_receive_int (y, “y”, myid);
for (i = 0; i < x; i++)

for (j = 0; j < y, j++)
matrix[i][j] = calc (i, j);

monitoring writer thread, in that it receives client requests
and writes them to a linked-list buffer. The other thread
reads the request from the buffer and writes it to a special
request/response file that the GUI will use. Thread
synchronization/communication is also achieved through
POSIX condition variables and mutex semaphores.

Figure 3: Obtaining data through a file.

The steering GUI is also web-based like the
monitoring GUI. To steer the parameters, the user opens
the web browser to the steering page and clicks the button
to start the GUI application. The GUI reads requests from
the request/response file. If a request is in the file, the GUI
prints it to the browser and provides a text box where the
user can input the new data value. The GUI checks for the
correct data type of the user input. If the data is of the
correct type, the GUI writes the response back to the
request/response file. The steering server reads the user’s
response from this file and sends it back to the requesting
client. 

6 Graphical User Interface
The GUI is a web browser, which most users are familiar
with. Because the steering GUI and the monitoring GUI
are both web-based, remote steering and monitoring of
program variables is possible. The user can start the client
program on one machine, the steering and monitoring
servers on another machine, and monitor and steer the
program from yet another machine. All that is needed is a
web browser and an Internet connection.

To monitor program variables, the user needs only to
open the browser to the CS_Lite monitoring webpage and
click the button to view the monitoring data log. The CGI
monitoring program is called when the button is clicked.
The CGI program then reads the monitoring data log,
which is displayed in the browser and automatically
updated every 20 seconds using JavaScript.

To steer program variables, the user opens the
browser to the steering webpage and clicks a button that
starts the CGI steering program. The CGI program reads

x = cs_receive_int (x, “x”, myid);
y = cs_receive_int (y, “y”, myid);
cs_receive_file (“file.dat”, myid);

fp = fopen (“file.dat”, “r”);

for (i = 0; i < x; i++)
{

if (fread (matrix[i], sizeof (int), y, fp) <= 0)
{

printf (“error reading data from file\n”);
exit (1);

}
}



PDCN’04

6

the request file for a new request and displays the next
request to the browser. Information about the node that
requested it, the data type of the variable and the name of
the variable are displayed, along with a text box. The user
enters the new value of the variable into the text box and
clicks the submit button. On the submit, JavaScript checks
for the correct data type of the user input. If it does not
match the request, an alert box indicates that the user
entered the wrong data type. Otherwise, the correct data is
submitted to the CGI program, which writes the new value
of the variable that the user entered back into a response
file. JavaScript then redirects the user back to the steering
page. If no new requests are pending, JavaScript waits
every 5 seconds to call the CGI steering program to read
the request file for new requests. 

7 Conclusion
In summary, the CS_Lite computational steering
environment is much simpler and easier to use than the
CSEs available. Users need only to add function calls to
their programs to allow monitoring and steering of
parameters. A user may run the monitoring and steering
servers on a machine and the program annotated with
CS_Lite code on another machine. The user, on another
machine that may be separate from the machines running
the servers and the user’s program, both sees the
monitored results coming from the nodes and enters the
values of steering parameters to the nodes that requested
them through a web browser. Because CS_Lite is easy to
use, it makes it easier for programmers to monitor their
programs and maybe improve the development process.

It is important to mention that CS-Lite can be easily
extended by adding new functions to deal with other types,
such as characters or doubles.

There are some improvements that can be made to
CS_Lite. The most significant improvement would be
including security into the system. Currently, all
communications between the servers and the client
program are unprotected and not encrypted. Incorporating
an encryption scheme or using secure sockets would
provide better security. In addition, the use of CGI scripts
in the web-based GUI carries security risks, and ensuring
that the CGI scripts are secure would be another
improvement.

Another area of improvement would be to have a
version of CS_Lite that is Linux compatible. Because
most parallel computing clusters use the Linux operating
system, a useful tool for parallel programs like CS_Lite
should be available for Linux machines. Since CS_Lite
was developed using standard Unix features, the transition
to Linux should be a simple process.

CS-Lite is available for any user interested in
monitoring/steering parallel and distributed applications.
The library can be downloaded from the web: http://
www.cse.scu.edu/~sfigueira/projects/projects.html.

References
[1] D. M. Beazley and P. S. Lomdah, “Lightweight

Computational Steering of Very Large Scale
Molecular Dynamics Simulations,” in the electronic
proceedings of Supercomputing’96, November 1996.

[2] G. Eisenhauer and K. Schwan, “An Object-Based
Infrastructure for Program Monitoring and Steering,”
2nd SIGMETRICS Symposium on Parallel and
Distributed Tools, August 1998.

[3] M. Felton, “CGI: Internet programming with C++ and
C,” Prentice Hall, 1997.

[4] W. Gu, G. Eisenhauer, E. Kraemer, K. Schwan, J.
Stasko, J. Vetter, and N. Mallavarupu, “Falcon: On-
line Monitoring and Steering of Large-Scale Parallel
Programs,” Proceedings of the Fifth Symposium on the
Frontiers of Massively Parallel Computation, pages
433-429, February 1995.

[5] LAM/MPI Parallel Computing, http://www.lam-
mpi.org/, June 2003.

[6] MPICH-A Portable Implementation of MPI, http://
www-unix.mcs.anl.gov/mpi/mpich/.

[7] Message-Passing Interface Forum, “MPI: A Message-
Passing Interface Standard,” International Journal of
Supercomputing Applications, 8(3/4), 1994.

[8] A. Modi, L. N. Long, and P. E. Plassmann, “Real-Time
Visualization of Wake-Vortex Simulations using
Computational Steering and Beowulf Clusters,” in
Proceeding of the Fifth International Conference on
Vector and Parallel Processing Systems and
Applications (VECPAR), pages 787-800, June 2002. 

[9] R. Muralidhar, S. Kaur, and M. Parashar, “An
Architecture for Web-based Interaction and Steering
of Adaptive Parallel/Distributed Applications,” in
Proceeding of the 6th International Euro-Par
Conference, pages 1332-1339, August 2002.

[10] S. G. Parker, M. Miller, C. D. Hansen, and C. R.
Johnson, “An Integrated Problem Solving
Environment: The SCIRun Computational Steering
System,” in IEEE Proceedings of the Thirty-First
Hawaii International Conference on System Sciences,
7: 147-156, 1998.

[11] B. Reitinger, “On-line Program and Data Visualization
of Parallel Systems in a Monitoring and Steering
Environment,” Dipl.-Ing. Thesis, Johannes Kepler
University, Linz, Austria, Department for Graphics
and Parallel Processing, http://www.gup.uni-
linz.ac.at/thesis/diploma/bernhard_reitinger/main/
main.html, January 2001. 

[12] R. van Liere and J. J. van Wijk, “CSE: A Modular
Architecture for Computational Steering,” in M.
Goebel, J. David, P. Slavik, and J. J. van Wijk, editors,
Virtual Environments and Scientific Visualization '96,
pages 257-266. Springer-Verlag Wien, 1996.


