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Abstract

The scheme of advance reservations in dynamically pro-
visioned optical networks is novel, and there are no grid-
based applications designed to utilize this scheme. We for-
mally define and analyze this scheme and present a con-
strained mathematical model for advance reservations. We
also introduce FONTS - the Flexible Optical Network Traf-
fic Simulator, a tool for simulating advance reservation, on-
demand, and periodic data transfer requests. FONTS is
based on a stochastic model and incorporates a variety of
variables, which have been identified to accurately model
advance reservation requests. FONTS validates the mathe-
matical model and also helps to analyze complex scenarios
beyond the scope of this paper.

1. Introduction

Lambda-Grids are virtual aggregations of geographically
distributed computational elements tightly coupled with
dynamic lambda circuits which provide dedicated multi-
gigabit communication channels [18]. They support so-
phisticated e-science applications, which require a high per-
formance computing environment including guaranteed and
sustained high bandwidth [3]. One way to ensure bandwidth
guarantees is to offer the service of reserved end-to-end
(e2e) dedicated data channels. This has been recognized
by the grid community. Older definitions of advance reser-
vation have been updated to incorporate network bandwidth
along with computational and storage elements [1].

More specifically, the Grid High Performance Network-
ing draft on Network Services [2] proposes an independent
Network Advance Reservation Service in its service defin-
itions. This service would allow the user to negotiate and
claim specific network resources for a requested period.
Interestingly, lightpaths [6], which are the communication
channels in wavelength division multiplexing (WDM) opti-
cal networks, can be reserved in advance. Specialized sig-
naling protocol abstractions like UCLP [6], GridJIT [19]

and ODIN [14], and multi-domain policy-based mecha-
nisms for access control like the Bandwidth on Demand
service [12], have been devised to dynamically set up appli-
cation controlled e2e lightpaths. In fact, e2e lightpath man-
agement has already been put into practice in the CA*net4
national research network [6], the National Lambda Rail
[15], and has been proposed for SURFnet 6 [16].

Reservation of lightpaths has been discussed [10], but its
wide scale utilization has not yet been attempted. Conse-
quently, there is a pressing need to not only provide a tool
which can be used to study the interplay of advance reser-
vations with other strategies used for network resource opti-
mization, but also to define the advance reservation scheme
itself in the context of dynamically provisioned optical net-
works. The pattern of user requests in an advance reser-
vation scheme is significantly different from the pattern in
an on-demand network environment. Advance reservation
requests are not only a function of the time at which they
arrive but also of the time in the future for which the reser-
vations are requested. Our goal is to model these requests
for systems that support advance reservations.

Recently, the work in reservations has focused on reser-
vation protocols [8], and simulation analysis has been per-
formed in the context of packet switched networks [17].
However, the basis for analysis is different for e2e light-
paths, which is essentially a connection-oriented setup. The
mathematical analysis of advance reservations presented in
[7] is close to this context, and we have chosen to extend
and adapt it to the optical domain. Though not specific to
traffic modeling, both the discussion on the relevance of ad-
vance reservations to routing and wavelength assignment in
[23] and the general concepts on advance reservations in
[21] are useful. It should also be noted that the reservation
scheme presented here is targeted at bulk data transfer and
complements resource management strategies in evolving
technologies such as optical burst switching.

In [20], Vazhkudai et al. use log data from past trans-
fers to predict future transfer times. Such log data collected
from experimental testbeds is difficult to obtain, and the
authors have no control over the data collection frequency,
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which limits the scope of a comprehensive analysis.
This paper presents an advance reservation model and

FONTS, the Flexible Optical Network Traffic Simulator,
which can be used to generate traces of a range of user
request patterns. Instead of having to rely on log data,
one may use FONTS to generate traces for various scenar-
ios. Multiple traces can be combined, with possibly dif-
ferent reservation modes, thus making the trace generation
process extremely versatile, and adaptable to most traffic
conditions.

The paper is organized as follows: Section 2 provides
a mathematical analysis of advance reservations, Section 3
introduces FONTS, Section 4 dwells on experiments per-
formed with FONTS, and Section 5 concludes.

2. Analytical Model

A mathematical model for the advance reservation
scheme, which extends the analysis provided in [7], is pro-
posed to facilitate the understanding of the different vari-
ables at play. It provides us with two useful metrics,Rejec-
tion ProbabilityandReservation Probability. The rejection
probability is a measure of the capacity that the underly-
ing network can handle. The reservation probability is a
measure of the utilization of the network based on the pat-
tern of user requests and can be used to define the appro-
priate number of network resources, which would keep the
rejection probability down to an acceptable level. While the
advance reservation scheme is not constrained to fixed net-
work topologies, it is much easier to construct a tractable
model for a single link connecting two network nodes. Ta-
ble 1 defines the variables used in this model. The model is
based on the following assumptions:
1. A reservation interval is a time slot of any duration and

is an integral multiple of minutes.
2. Reservation requests arrive in a fixed time window

called the Request Arrival Window.
3. Reservations target time slots in a fixed time window

called the Reservation Window.
4. The request arrival window and the reservation arrival

window may overlap but the reservation window cannot
start before the request arrival window. To simplify the
discussion, without loss of generality, we present only
the non-overlapping case.

5. Each request targets reservation for only one time slot.
This is another simplifying assumption. While it is pos-
sible that the time required to transfer the data in a par-
ticular request is more than the duration of one slot, this
case complicates the analysis significantly. Therefore
we assume that such requests can be split into two or
more requests.

6. Reservation requests targeted at time slots within the
reservation window are considered as reservation can-

didates, while those falling outside are discarded.
7. The entire time line (the request arrivals window and the

reservations window) is divided into time slots of equal
duration.

8. Reservation requests arrive in a stationary Poisson
stream at rateλ, such that theNm are independent and
identically distributed (i.i.d.) random variables.

9. A request targets a slot based on an Advance Reserva-
tion distribution which is a sequence of discrete i.i.d.
random variables independent of the request arrival dis-
tribution.

10. The number of requests,Hs
m, are i.i.d. random vari-

ables, with meanλas−m. Thus,Hs =
∑L

m=1 Hs
m =∑L

m=1 λas−m. This setup is illustrated in Figure 1.
11. A reservation request is accepted if there are enough

wavelengths in the time slot to accommodate the re-
quest. Otherwise, it is rejected and lost. In the prelim-
inary discussion, only a single wavelength is assumed
available per time slot. Later, we relax this assumption
and extend the model to multiple wavelengths.

It is clear from the above assumptions that, when analyz-
ing the behavior of reservations, the effects of at least two
independent distributions need to be considered, request ar-
rivals and reservation start times. Note that this differs from
the commonly used metric of blocking probability based on
theErlang-B formula, which takes into consideration only
the effects of the request arrivals distribution and subse-

Table 1. Variables in the Reservation Model.

L Request arrivals window size in integral multiples of one slot.

W Reservation window size in integral multiples of one slot.

K L + W -1, last time slot that can be reserved in advance.

ai Probability that an arrival at timet wants to reserve a time slot

during[dte+ i, dte+ i + 1), where0 ≤ i ≤ K − 1.

Nm Number of reservation request arrivals in the slot[m −
1, m), m = L− i, where1 ≤ m ≤ L and0 ≤ i ≤ K − 1.

λ Avg. number of reservation request arrivals per slot, such that

E(Nm) = λ, whereE is the expectation operator.

P s
rej Rejection Probability for a time slots, defined as the ratio of

total number of reservation requests rejected to the total num-

ber of requests for the time slot[dse, dse + 1), and is calcu-

lated when reservation requests are made until timeL, where

L ≤ s ≤ K.

P s
res Reservation Probability for a time slots, defined as the proba-

bility of getting one or more reservation requests for the time

slot [dse, dse+1), and is calculated when reservation requests

are made until timeL, whereL ≤ s ≤ K.

Hs
m Number of requests arriving in time slot[m − 1, m), which

target a reservation for the time slot[dse, dse+ 1).

Hs Number of requests by timeL which target a reservation for

the time slot[dse, dse+ 1); note thatHs =
∑L

m=1
Hs

m.

Y Number of wavelengths available for use on each link.
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Figure 1. Calculating the number of requests targeting a reservation time slot.

quently leads to an analysis of the immediate reservation
case. Also, the strategy adopted to accept a request among
several competitors (call admission control) is not relevant
to this model. The analysis provided here should serve as
input to such an admission control policy, thus enabling op-
timal decisions.

2.1. Rejection Probability

In the case of a single wavelength, the rejection proba-
bility can be written asP s

rej = 1− 1/Hs. So,

P s
rej = 1− 1∑L

m=1 Hs
m

= 1− 1∑L
m=1 λas−m

. (1)

Eq. (1) is valid for
∑L

m=1 λas−m ≥ 1. However, if the
advance reservation distribution is assumed to be a uniform
distribution, such thatai = 1/K, for eachi, then the ex-
pression for rejection probability can be simplified, and

P s
rej = 1− 1∑L

m=1 λ/K

= 1− 1
(λL/K)

= 1− L + W − 1
λL

. (2)

2.2. Reservation Probability

The generating function for the random variableHs can

be written asEzHs

= Ez
∑L

m=1
Hs

m . SinceHs
m are i.i.d.

variables, for fixeds, EzHs

=
∏L

m=1 EzHs
m and

EzHs
m = E[E[zHs

m | Nm]]

= E[
Nm∑
j=0

(
Nm

j

)
aj

s−m(1− as−m)Nm−j zj ]

= E(1− as−m + zas−m)Nm .

If qn = P (Nm = n), then
EzNm =

∑∞
n=0(1− as−m + zas−m)nqn, and hence

EzHs

=
L∏

m=1

∞∑
n=0

(1− as−m + zas−m)nqn. (3)

Since the arrivals are assumed to be Poisson with the ar-
rival parameterλ, we haveqn = exp(−λ)(λn/n!), and

EzHs

=
L∏

m=1

∞∑
n=0

exp(−λ)λn

n!
(1− as−m + zas−m)n

=
L∏

m=1

exp(−λas−m(1− z))

= exp(−λ(1− z)
L∑

m=1

as−m). (4)

The reservation probability,P s
res, of at least one reserva-

tion request, can be obtained by subtracting the first coeffi-
cient of (4), in its expansion in powers ofz, from 1. So,

P s
res = 1− exp(−λ

L∑
m=1

as−m). (5)

If the advance reservation distribution is assumed to be
an uniform distribution,ai = 1/K, which can be used in
(4) to obtain

EzHs

= exp(−λ(1− z)La) = exp(−λ(1− z)
L

K
). (6)

Using (6), (5) can be rewritten as

P s
res = 1− exp(−λ

L

K
). (7)

It can be seen that, in the case of uniform distribution
for advance reservation, the reservation probability in (7)
is independent of anys terms, and is a constant for all the
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Figure 2. Surface plot for number of slots in
the reservation window for varying values of
reservation probability and request arrivals.

time slots. This desired characteristic ensures that the re-
sources are optimally utilized, which may not always be the
case. Depending on the nature of the applications request-
ing advance reservations, certain periods of the day may
be requested more than others (for instance, data backup
operations are often done after midnight). In this case,
the advance reservation distribution is going to be non-
uniform and bursty. In general, the reservation probabil-
ity depends on the distribution of the advance reservations.
With a bursty distribution (or a non-stationary Poisson ar-
rival process), the reservation probability has a large vari-
ance over different time slots. This leads to a fragmented
utilization with alternating peak and empty usage intervals.

To calculate W , we rewrite Eq. (7) asL =
(K/λ) ln[1/(1 − P s

res)]. Putting X = (1/λ) ln[1/(1 −
P s

res)] and rewritingK asL + W − 1 yields L = (L +
W − 1)X, and

W =
L(1−X)

X
+ 1. (8)

SinceW > 0 andL > 0, (1−X)/X > 0. Therefore (7)
and (8) are valid for0 < X < 1. Figure 2 shows a surface
plot for the value ofW when plotted againstλ, for differ-
ent values of desired reservation probabilities. The surface
indicates the upper bound on the values ofW , such that
values below the surface are all legal. If we have a reason-
able estimate of the expected number of request arrivals per
time slot, then we may use (8) to calculate the reservation
window size for a desired level of utilization.

2.3. Multiple wavelengths

Using (7) and (2), we can expressP s
rej in terms ofP s

res:

P s
rej = 1− 1

ln(1/(1− P s
res))

. (9)
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Figure 3. Plot of reservation probability vs re-
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To reduce the rejection probability for higher values of
reservation probability, it is necessary to provision more
wavelengths. IfY wavelengths are available, thenP s

rej =
1 − Y/(

∑L
m=1 λas−m), which, in the case of uniform dis-

tribution can be written as

P s
rej = 1− (Y K/λL). (10)

To obtain the reservation probability forY wavelengths,
the first Y terms in the expansion of (4) have to be sub-
tracted from1 to obtain

P s
res = 1−

Y−1∑
i=0

(λ
∑L

m=1 as−m)i

i!
exp(−λ

L∑
m=1

as−m).

In the case of uniform distribution for advance reserva-
tions,

P s
res = 1−

Y−1∑
i=0

(λL/K)i

i!
exp(−λL/K). (11)

Using (10) and (11), the relation between the rejection
and the reservation probability in the case of uniform distri-
bution for advance reservations can be written as

P s
rej = 1− Y/ ln{[

Y−1∑
i=0

(λL/K)i

i!
]/(1− P s

res)}. (12)

Figure 3 shows the relationship defined in (12). As the
number of available wavelengths increases, the rejection
probability drops more rapidly as the reservation probabil-
ity decreases. If the utilization (reservation probability) is
known, then an appropriate value ofY can be picked to
achieve an acceptable level of rejection probability.

The discussion above suggests that the reservation prob-
ability can be used as a pre-provisioning metric to plan the
network capacity, and that the rejection probability can be
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used as a post-provisioning metric to track the throughput
of the network in terms of data transfer requests accepted.

As noted earlier, a bursty advance reservation distribu-
tion leads to non-uniform utilization. In such a case, a deci-
sion has to be made on the number of wavelengths that need
to be provisioned. Choosing a number to satisfy the up-
per bound on the reservation probability will yield a lower
rejection probability, but also a decreased utilization. Con-
versely, choosing a number to satisfy the lower bound on the
reservation probability will yield a higher rejection proba-
bility but possibly an increased utilization. Thus, without
accurate knowledge of either request arrival distribution and
or advance reservation distribution, it is difficult to analyti-
cally predict this sweet spot for the number of wavelengths.
Hence, for more practical considerations, performing sim-
ulations seems to be a more promising alternative. Never-
theless, the analysis of the rejection probability still turns
out to be useful in specific cases, providing a precise lower
bound. This is discussed in detail in section 4.

3. FONTS

In the previous section, a mathematical model for an-
alyzing advance reservation requests was presented. This
model is helpful for preliminary analysis, but is limited by
the constraints imposed. Extending the model to relax any
of the constraints and making it general enough to cover
every possible traffic scenario has proved to be difficult. To
obtain a more precise analysis in a generic setup, simulation
is a natural choice. While many optical network simulators
are available, none of them is equipped to handle advance
reservation requests. More importantly, there are hardly any
applications designed to reserve lightpaths in optical net-
works. Hence no information about the pattern of lightpath
utilization is available. FONTS was born out of this need
for synthetic traces.

FONTS can be operated to generate traces in one of three
reservation modes: advance, on-demand (immediate) and
periodic. The advance reservation mode is discussed in sec-
tion 3.1. The on-demand mode generates requests for im-
mediate reservations and is useful in the study of the ef-
fect of coexistence of on-demand and advance reservation
modes. The periodic mode generates advance reservation
requests and attributes a periodic cycle to each of them.
The periodic mode is specifically designed to target cer-
tain use cases in the grid computing environment, such as
the periodically scheduled movement of data within a hier-
archy of storage levels as in the High-Energy Physics Ap-
plications [5]. Both the on-demand and periodic modes are
highly configurable, and a detailed description can be found
at [11].

Each FONTS trace consists of a sequence of requests for
the reservation of lightpath(s) to transfer a specified amount

of data between two nodes at a desired time. A reservation
request, discussed below, is a combination of instantaneous
values of the variables, based on the stochastic process cho-
sen to model that variable. Section 4 explains how FONTS
helps in providing a more generic analysis of advance reser-
vations where the mathematical model falls short.

3.1. Advance Reservation Requests

The following variables have been identified to accu-
rately model an advance reservation request:

Request arrival time: This is the time at which an ad-
vance reservation request arrives in the system. FONTS
employs a Poisson distribution to model the number of re-
quests arriving in every time interval.

Source and Destination Nodes: The node selection fol-
lows a constant, uniform, or non-uniform (known probabili-
ties) distribution. In order to reach the destination node, the
lightpath may have to be established through intermediate
nodes. In the non-uniform model, probabilities can be as-
signed to nodes. This is particularly useful in the case where
the topology and behavior of a network are known. For
example, in power-law networks, certain nodes that han-
dle heavy volumes of traffic are identified as super nodes.
Most of the traffic passes through these nodes. These nodes
can then be assigned significantly higher probabilities than
the others. Consequently, when user requests are simulated,
more requests will originate and terminate at these nodes.

Amount of data to transfer: The data size follows a con-
stant, uniform, heavy-tailed, or non-uniform (known prob-
abilities) distribution. If most of the data sizes are small
and a few are large (similar to the Internet traffic), then a
heavy-tailed (Pareto) distribution can be used. If the fre-
quently occurring data sizes and their probability of occur-
rences are known for a system, then the known-probabilities
model can be used.

Number of lightpaths requested: This variable follows a
constant, uniform or heavy-tailed (Generalized Zipf’s) dis-
tribution. The simplest mode of data transfer is to stream a
file over a single dedicated channel. It may be also possible
to stripe data sets into multiple streams. In such cases, the
user may request multiple lightpaths simultaneously.

Time at which data transfer is initiated: This variable
corresponds to the start time of the advance reservation time
slot, which is requested by the user. The reservation start
times can be modeled using a uniform or a Poisson distrib-
ution. The uniform distribution provides the simulated be-
havior of the uniform distribution discussed in the analytical
model before. When using the uniform distribution model,
the advance reservation start times are calculated accord-
ing to the request arrival time. When the explicit modeling
of advance reservation start times is required, the Poisson
model can be used. Another argument for using the Pois-
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Figure 4. Generating advance reservation
start times with Uniform distribution.

son model is that one can represent the traffic pattern in the
future as the current pattern translated by time. Since the
request arrivals follow a Poisson distribution, the number
of advance reservation requests for future time slots can be
modeled as Poisson. FONTS also supports multiple inter-
arrivals time rates to model the heterogeneity in traffic at
different times of the day.

Number of time slots: The available advance reservation
window is divided into discrete time slots. Each advance
reservation is aligned with the beginning of one slot. The
user can then request one or more time slots depending both
on the length of the time slot and on the size of the data that
needs to be transferred.

3.2. Simulating Advance Reservation Requests

Figure 4 illustrates the simulation of advance reserva-
tion requests according to a uniform distribution. Every
user request has an equal probability of selecting any time
slot for reservation in the advance reservation window. To
achieve this, the total time on the entire time line (request ar-
rival window + advance reservation window) is calculated.
Request arrivals are generated using a Poisson distribution
with the specified arrival rate. For each request, a time is se-
lected at random from the total time calculated before and
added to the current request arrival time. If the resultant
reservation time falls outside the advance reservation win-
dow, the request is discarded. Otherwise, the reservation
time is aligned with the start of the time slot in which it oc-
curs (step 1). This is regarded as the reservation start time
and attributed to the request being processed (step 2).

Figure 5 shows how advance reservation requests are
generated with a Poisson distribution. A reservation start
time is selected to follow a Poisson distribution with the
specified inter-arrival rate. As before, this reservation time
is aligned with the start of the time slot in which it occurs.
A pool of such advance reservation start times is generated
until the end of the advance reservation window is reached.
Then each advance reservation start time is attributed to a

Figure 5. Generating advance reservation
start times with Poisson distribution.

user request. User requests are also assumed to follow an
exponential distribution for the inter-arrival time. As each
user request is generated, an advance reservation start time
is randomly selected from the pool of start times generated
in step 1. This process continues until all the start times are
exhausted from the pool, at which point the generation of
advance reservation request ends (step 2).

4. Simulation experiments using FONTS

To illustrate the power and flexibility of FONTS, we
show how the rejection probability changes according to the
traffic distribution in a 4-node network and how FONTS can
help to analyze that effect. Interesting results are also ob-
served with respect to the interplay of file size distribution
and reservation probability. They are presented in a future
publication due to the space constraints here.

This section extends the analysis of the rejection proba-
bility from section 2.3 by relaxing the two-node constraint
imposed in the mathematical model. A fully interconnected
4-node network is considered here, but this analysis can be
extended to any arbitrary topology (a fully interconnected
network has the same number of paths between all the pairs
of nodes which simplifies the analysis). The nodes are la-
beled 1, 2, 3 and 4, and the objective of the experiment is
to find the rejection probability for the requests between a
given pair of nodes, say 1 and 2. It is assumed that there is
one wavelength available on each link. There are multiple
paths between nodes 1 and 2. The availability of a particular
path (in a time slot) depends not only on the request traffic
between nodes 1 and 2, but also on the traffic between other
combinations of source-destination pairs. For example, the
path 1-3-2 can be used to reach from node 1 to 2, but if
a previous request has already used the link from node 3
to 2, then the path 1-3-2 can no longer be used. As such,
it will be interesting to obtain the rejection probability be-
tween nodes 1 and 2, with varying traffic loads between the
other nodes. This requires traces of requests such that the
traffic load between nodes 1 and 2 remains constant, and
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the contribution of traffic load between the other pairs is
progressively increased. These types of experiments can be
effectively modeled using traces generated by FONTS. For
example, we can choose five different test cases in which
the traffic load between nodes 1 and 2 is respectively 100%,
80%, 60%, 40% and 20% of the traffic load between nodes
in all other pairs.

Assume 20 reservation-request arrivals per 5-min time
slot for data transfer between nodes 1 and 2. If the 80%
case is considered, these 20 requests per 5 min need to be
exactly 80% of all requests entering the network. Therefore,
there are 25 reservation-request arrivals per 5 min, and 20
requests out of these are for transferring data between nodes
1 and 2. This can be achieved by generating two traces and
then combining the two. The first trace is generated such
that it has a uniform distribution of all source-destination
node pairs. There are 6 possible source-destination pairs in
a 4 node network (ignoring the order of nodes in a pair).
Out of these, the 1-2 node pair is the one under investiga-
tion. So the request arrival rate between the other 5 pairs
of nodes is25 − 20 = 5 requests per 5 min or 1 request
per 5 min for each pair. However, this trace is generated
with uniform distribution of source and destination nodes,
and some of the requests are going to be for the 1-2 node
pair. The effective request arrival rate for the 4 node trace
is calculated as5 + 1 = 6 requests per 5 min. The second
trace is generated exclusively for the 1-2 node pair. Since
1 request per 5 min of traffic load of the 1-2 node pair has
already been generated in the 4 node trace, the effective ar-
rival rate for this 2 node trace is20 − 1 = 19 requests per
5 min. The result of combining the two traces is that we
obtain an average arrival rate of 25 requests per 5 min with
approximately 20 requests per 5 min for the 1-2 node pair.

Given this scheme of generating traces of traffic, we use
(10) to find a lower bound on the rejection probability. In
the case of ann-node fully interconnected network, there
aren−1 shortest edge disjoint paths between any two pairs
of nodes. If only one wavelength is available per link, at
most a maximum ofn− 1 reservation requests can be satis-
fied between any two nodes for any time slot. With respect
to (10), thesen − 1 paths can be treated asY wavelengths
in a two node network. Using this data, the value ofP s

rej

in (10) can be calculated. For then-node network, if all the
traffic is only between one pair of nodes (say 1-2) then the
observed rejection probability will be the same asP s

rej in
(10), calculated by makingY = n − 1. As the traffic be-
tween the other pairs of nodes increases, some of the paths
between the 1-2 node pair are going to get used up for the
requests between the other pairs of nodes. Hence a smaller
number of requests for the 1-2 node pair will be satisfied
and, subsequently, the rejection probability will increase.

Figure 6 shows a plot of the number of nodes versus the
rejection probability. The curve generated from (10) gives
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Figure 6. Analytical rejection probability as
the lower bound.

the lower bound, and the remaining five curves were ob-
tained with simulation. Simulations were performed for
fully interconnected networks ranging from 3 to 9 nodes (no
wavelength converters involved), and traces were generated
for varying traffic loads as described above. These traces
were then fed to a custom-built First Come First Serve
(FCFS) optical network scheduling simulator. The FCFS
simulator uses the First-Fit algorithm for wavelength as-
signment and Shortest-Path-First algorithm for routing [22].
Note that if we extend the simulation beyond 9 nodes, the
graph will follow the observed trend.

As expected, the curve with 100% of the traffic between
just one pair of nodes approaches the lower bound set by
the curve obtained analytically. As the percentage of traffic
between these two nodes reduces in comparison to the over-
all network traffic, the rejection probability increases. The
analytically calculated lower bound serves as a tight lower
bound on the rejection probability. Therefore, if it is known
in advance that the traffic between a particular pair of nodes
dominates, the rejection probability can be directly approx-
imated from (10). In cases where the number of nodes in
the network is very large and the traffic between the pair
of nodes under consideration amounts to a small fraction of
the total network traffic, the discrepancy between the ob-
served rejection probability and the lower bound is large.
This method of approximation should not be used in such
cases.

5. Conclusion

The analysis, experiments, and results presented in this
paper are aimed at complementing the ongoing wave of re-
search in creating service oriented communication stacks
for Lambda-Grids [4]. This paper explores the semantics
of advance reservation requests and incorporates them in a
user model. The metrics presented and the bounding con-
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ditions derived help to assess and to quantify the impact of
usage patterns on lightpath provisioning. We have outlined
a framework for future research in the advance reservation
paradigm. Toward this end, we have introduced FONTS,
an effective tool for generating advance reservation request
traffic.

Traces generated by FONTS not only help to overcome
the paucity of information on lightpath utilization in the real
world, but also help in the comprehensive validation of re-
source provisioning strategies by simulating complex sce-
narios created by the play of multiple variables in the reser-
vation system. FONTS recognizes the switching nodes in
an optical network but is independent of their interconnec-
tion. Hence it is scalable and can also be used to model
network traffic in existing networks. It has been used in the
DWDM-RAM project to ascertain network blocking proba-
bility results [13]. It is also being used by the authors in val-
idating the effects of novel scheduling algorithms for light-
path provisioning [9]. In this paper we use FONTS to study
the effect of traffic distribution on the rejection probability,
while the effect on utilization is currently being studied. In
keeping with the philosophy of exposing services through
web portals, a web interface to FONTS has been developed.
Traces can be configured, generated, evaluated, and down-
loaded via this interface [11].
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