
1

HPDC’96

Copyright 1996 IEEE. Published in the Proceedings of the High Performance
Distributed Computing Conference, August 6-9, 1996, Syracuse, NY. Personal use
of this material is permitted. However, permission to reprint/republish this material
for advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted component of
this work in other works, must be obtained from the IEEE. Contact: Manager,
Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331
/ Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966.

Abstract
Fast networks have made it possible to coordinate
distributed heterogeneous CPU, memory, and storage
resources to provide a powerful platform for executing
high-performance applications. However, the performance
of these applications on such systems is highly dependent
on the allocation and efficient coordination of application
tasks. A key component for a performance-efficient
allocation strategy is a predictive model which provides a
realistic estimate of application performance under
varying resource loads. In this paper, we present a model
for predicting the effects of contention on application
behavior in heterogeneous systems. In particular, our
model calculates the slowdown imposed on
communication and computation for non-dedicated two-
machine heterogeneous platforms. We describe the model
for the Sun/CM2 and Sun/Paragon coupled heterogeneous
systems. We present experiments on production systems
with emulated contention which show the predicted
communication and computation costs to be within 15%
on average of actual costs.

1. Introduction
In the last decade, distributed heterogeneous systems have
emerged as a powerful platform for executing high-
performance applications. Current experience shows that
many high-performance distributed applications are
composed of a few coarse-grained tasks and execute on a
heterogeneous platform formed by two machines
[9][13][14][16]. These machines can be MIMD MPPs,
workstations, SIMD MPPs, vector computers, etc. For
many of these applications, both heterogeneity and
parallelism in the code are exploited. For example, in a
molecular structure application, an MPP is used for the
parallel part of the code whereas a vector computer is used
to perform the serial portion [14].

For such appl ica t ions , the development of a
performance-efficient allocation of tasks to machines is
dependent upon a realistic prediction of application

behavior under changing system load. In particular,
additional applications executing on the system can
dramatically affect the availability and capability of
resources and must be factored into predictions of
computation and communication costs for a given
application. If an effective predictive model can be
developed for coupled non-dedicated heterogeneous
systems, heterogeneous application tasks can be allocated
in a way that promotes application performance on the
system.

To illustrate, consider an application with two tasks A
and B mapped to a heterogeneous network with two
machines M1 and M2. Tables 1 and 2 contain the times to
execute each task of the application on each machine of
the platform in dedicated mode, as well as the times to
transfer data between the machines (including data
conversion) in dedicated mode when the tasks do not
execute on the same machine. In this dedicated
environment, both tasks should be assigned to machine
M1, and the application would execute in 16 time units.

However, if M1 is time-shared and there are other
applications competing for its CPU, the times in M1’s
column of Table 1 will change. Table 3 shows the case
when the other applications are CPU-bound and slow
tasks A and B on M1 by a factor of 3. In this setting, task
A should be assigned to machine M2, whereas task B
should be assigned to machine M1. Since communication

M1 M2

A 12 18

B 4 30

Table 1: Dedicated Execution Times

M1 → M2 M2 → M1

A → B 7 8

Table 2: Dedicated Communication Times

Modeling the Effects of Contention on the
Performance of Heterogeneous Applications

Silvia M. Figueira* and Francine Berman**
Computer Science and Engineering Department

University of California, San Diego
{silvia,berman}@cs.ucsd.edu

* Supported by a scholarship from CAPES and UFRJ (Brazil).
** Supported in part by NSF contract number ASC-9301788.

2

HPDC’96

is required, the application would execute in 38 time units,
10 units less than if both tasks were executed on machine
M1.

In another setting, the extra applications on M1 could
be computing and also transferring data to M2. Tables 3
and 4 show the case where both the computation on M1
and the communication between M1 and M2 are slowed
by a factor of 3. In this case both tasks should be assigned
to machine M1 even though task A executes faster on M2.
This is because the gain obtained by executing task A on
machine M2 will be outweighed by the slowed-down
communication between the machines.

This simple example illustrates that contention
dramatically affects application performance and must be
fac to red in to es t ima tes o f communica t ion and
computation times for efficient allocation. Note that
contention effects occur in different ways: In time-shared
environments, computation is slowed down by contention
for the CPU whereas, in space-shared systems, contention
for the network slows down communication. In addition,
contention effects depend on workload behavior because
different applications utilize different types of resources
and the need for these resources varies during the
application execution. Therefore, a model to predict
contention effects on application performance should
reflect both system characteristics and workload behavior.

 Despi te the fact that content ion effects may
dramatically affect the performance of applications, and
consequently influence the mapping of tasks to machines,
there has been little discussion on how to predict these
effects. Machine workload has been used to parameterize
the allocation of tasks to workstations in a network,
however many allocation strategies do not consider load
character is t ics in the measurement of workload
([2][3][5][6][19], etc.). Load characteristics have been
included in performance prediction models for networks
of workstations (e.g., [10][20]), however such models
assume that each workstation is shared by at most one
compute-intensive task and one local task which alternates
idle with compute-intensive cycles.

M1 M2

A 36 18

B 12 30

Table 3: Non-dedicated Execution Times

M1 → M2 M2 → M1

A → B 21 24

Table 4: Non-dedicated Communication Times

We believe that considering the load on the machines in
a network of workstations is important, but may not be
enough. In particular, both load characteristics (CPU-
versus I/O-bound) and contention on the network should
be considered. In heterogeneous systems the problem is
even more complex because contention effects must be
considered differently on each machine, depending on the
architecture and on the local scheduling policy.

In this paper, we develop a contention model for
application performance on two-machine heterogeneous
platforms based on workload behavior and system
characteristics. In order to produce realistic predictions,
our contention model utilizes application-dependent
workload characteristics that reflect the actual load on the
system at run-time. These parameters must be detailed
enough to allow good accuracy, but since they are
determined at run time they should be easy to obtain or
calculate. Our model provides a slowdown factor which
is used to predict computation and communication costs.
Generalization of these results to more than two machines
is straightforward.

This paper is organized as follows: Section 2 discusses
our approach. In Section 3, we present the models and
experiments for the Sun/CM2 and the Sun/Paragon
platforms. Section 4 concludes with a summary and future
work.

2. Approach
In the following section, we develop predictive models for
the Sun/CM2 and the Sun/Paragon heterogeneous
platforms. We identify causes for contention for each
component (machines and network link) of each platform.
The causes and manifestations of contention will vary
depending on the local schedulers used by each machine,
communication mechanisms employed on the link, and
behavior of competing applications. We parameterize such
influences as system-dependent (information determined
statically by a system test suite) or application-dependent
(based on information provided by the user). These
parameters are synthesized into formulas which calculate
the s lowdown factor and can be used to predict
computation and communication costs.

Note that viewing the Sun/CM2 and other Host/MPP
systems as a coupled heterogeneous network expands the
way in which such systems can be programmed. The host
or front-end is a machine in its own right which can be
shared by a number of applications. The contention model
quantifies the slowdown as it is perceived by all
applications running on the front-end. In addition, many
applications have tasks for which there are efficient codes
on both the front-end and the back-end machines. Such
codes include commonly used libraries (e.g., LAPACK [1]
and ScaLAPACK [8]) and tasks (such as matrix

3

HPDC’96

multiplication or sorting) for which different algorithms
are used to optimize the running time on different
machines. Our model provides a realistic estimate of the
costs of computing a task on the front-end machine (with
one algorithm) as compared to moving the data across the
network link and computing the task (perhaps with a
different algorithm) on the back-end machine. Such costs
can be factored into the strategy for scheduling the
coupled system so as to optimize application performance.
We believe that these techniques will prove useful for such
systems as the C90/T3D.

In order to validate our models we have used scientific
computations and synthetic benchmarks on non-dedicated
production systems in which the contention was emulated.
In this paper, we demonstrate our model on two
benchmarks used in scientific applications: an SOR
algorithm, which solves Laplace’s equation, and a
Gaussian Elimination algorithm. Both are typical of basic
tasks used in heterogeneous applications.

Note that the accuracy of our model closely correlates
with the accuracy of the appl icat ion-dependent
parameters, i.e., more accurate estimates of the behavior
of the current workload will lead to better predictions of
the contention effects on application performance. Typical
heterogeneous applications (e.g., [9][13][14]) execute for
a long period of time, alternating computation with
communication cycles. Therefore, contention effects
should be considered in the long term, when each
application is likely to be affected by both the computation
and communication cycles of the other applications
executing on the platform. Even in this case the variance
in execution time on production systems can be high,
which makes it difficult to accurately model contention
effects. Our initial experiments have been promising and
we describe them here.

In this paper, we make the following assumptions: We
assume that access to the coupled heterogeneous system is
controlled so that only applications executing on the
system share its resources. We also assume that the
working set of each application executing on the platform
fits in memory, i.e., no delay is imposed by swapping, and
that contention is experienced for the entire duration of an
application. We assume we know the set of all applications
executing on the system. Although this may seem limiting,
i t is common for system administrat ion to have
in fo rma t ion abou t app l i c a t i ons execu t i ng i n
supercomputing environments. This information may be
provided by the users or obtained from the resource
management system.

In the following section, we define a contention
measure, the slowdown factor, to adjust the computation
times and communication costs of an application to
accommodate for system load. The adjusted predictions

can be used to rank candidate schedules of application
tasks to system resources. We assume that computation
times have already been calculated for a dedicated
environment. However, we calculate the communication
costs for dedicated environments.

The slowdown factor reflects the current load of the
system and is always calculated at run-time. It can be
recalculated every time the system status changes or when
new applications arrive. The slowdown factor is used to
determine realistic performance predictions for the tasks,
and will be used by the scheduler. Since the slowdown
factor is always calculated at run-time, it must be efficient
to compute relative to how quickly applications enter and
leave the system.

3. Contention Models

We have performed experiments on two different
platforms: a Sun/CM2 and a Sun/Paragon at the San Diego
Supercomputer Center. The Sun/CM2 is formed by a Sun
460 and a Thinking Machines CM2, connected by a
dedicated link. The Sun/Paragon platform is formed by a
Sun Sparcstation and an Intel Paragon. The fact that they
are the only machines on an Ethernet network allows us to
consider the link between them to be dedicated. It is
important to note that the links between these machines
are dedicated to the machines, but shared by the
applications executing on the machines.

3.1. Sun/CM2 Experiments

The Sun acts as a front-end for the CM2, an SIMD
machine whose processors execute instructions received
from the Sun in a synchronous manner. The Sun and the
CM2 are tightly coupled in the sense that the CM2 never
executes a program by itself; it always depends on the
Sun, which sends the instructions and executes,
concurrently or not, the serial and scalar parts of the code.

The Sun/CM2 pla t form i s used as a coupled
heterogeneous system. The Sun hosts the application and
may execute tasks on the CM2 for better performance.
Executing a task on the CM2 may involve transferring
data to the CM2 before execution and back to the Sun
afterwards. Therefore, the decision on where to execute
each task will depend on the time to execute the task on
each machine (Sun and CM2), and on the communication
required if the task is executed on the CM2. In fact, a task
should execute on the CM2 only when

, (1)

where is the elapsed time when executing on the
Sun, is the elapsed time when executing on the
CM2, is the communication cost from the Sun
to the CM2, and is the communication cost

Tsun Tcm2 Csun cm2→ Ccm2 sun→+ +>

Tsun
Tcm2
Csun cm2→

Ccm2 sun→

4

HPDC’96

from the CM2 to the Sun.
In (1), contention generated by other applications

execu t ing on the p la t fo rm may s low down the
computation and communication, influencing the decision
on where to execute each task. Since there is only one
sequencer in our Sun/CM2 platform, only one process can
execute on the CM2 at a time. Therefore, the only
contention in this system is generated by multiple
applications executing on the Sun. However, contention
caused by CPU-bound processes on the Sun affects not
only tasks executing on the Sun, but also communication
and tasks executing on the CM2. This happens because
executing a task on the CM2 means that the parallel
instructions are executed on the CM2, but the serial and
scalar parts of the code execute on the Sun and can be
affected by other applications competing for the Sun’s
CPU.

3.1.1. Communication

In order to transfer data between the Sun and the CM2,
elements are copied from an array in one machine to
another array in the other machine. Each element is
transferred point-to-point between the Sun and the
p roces so r t ha t ho ld s t he r e spec t i ve e l emen t .
Communication between the Sun and the CM2 is an
element-by-element operation which is affected by
contention on the Sun.

The time to transfer data sets from the Sun to the CM2
in dedicated time is

,

where each data set is formed by a group of same-sized
messages, is the number of messages used to transfer
the ith data set from the Sun to the CM2, is the size
of the messages in the ith data set going from the Sun to
the CM2, is the startup time on the Sun, and is
the effective bandwidth from the Sun to the CM2. We
define ef fect ive bandwidth as the actual ra te of
transmission achieved, as opposed to the (peak) bandwidth
provided by the communication link. The time to transfer
data sets from the CM2 to the Sun is calculated
analogously and given by .

The values for , , , and are system-
dependent and can be calculated by benchmarks similar to
those described in [11]. One benchmark transfers one
array with 106 elements from the Sun to the CM2 and then
transfers 1 word from the CM2 to the Sun. If this takes C
seconds, where

and
,

dcommsun cm2→ Ni αsun

sizei

βsun
-----------+

⎝ ⎠
⎜ ⎟
⎛ ⎞

×
i data sets{ }∈

∑=

Ni
sizei

αsun βsun

dcommcm2 sun→
αsun βsun αcm2 βcm2

C αsun 10
6 βsun⁄ αcm2 1 βcm2⁄+ + +=

αsun αcm2 1 βcm2⁄+ + 10
6 βsun⁄«

then words per second. The value for
can be calculated in a similar way.

Another benchmark calculates and . It
transfers 106 arrays of 1 element each from the Sun to the
CM2 and then transfers 106 arrays of 1 element each back
to the Sun. If this takes C seconds, where

,

 and are known, and we assume ,
then we can calculate

 seconds.

The values for and are application-dependent
and should be provided by the user.

Our experiments show that CPU cycles are split
equally among all the processes running on the Sun with
the same priority. Therefore, a task executing on the Sun
will compute or communicate with the CM2 p + 1 times
slower when there are p extra (CPU-bound) processes
executing on the Sun. The effect of contention on the Sun
must be factored into the communication time calculation
as follows:

and

,
where

.

Figure 1: Communication between the Sun and the
CM2 in dedicated (p = 0) and non-dedicated (p = 3)
modes.

Figure 1 shows the modeled and actual times to transfer
a matrix of size to and from the CM2, where an
SOR algorithm is executed, in dedicated mode and non-
dedicated mode with 3 extra CPU-bound applications
executing on the Sun. The program was written in CM-
Fortran. This graph illustrates the fact that contention on
the Sun does affect communication between the Sun and
the CM2. In this example, our predictions were within an
average error of 11% of the actual measurements. In a
larger set of experiments, the error was within 15%.

βsun 10
6

C⁄≈ βcm2

αsun αcm2

C 10
6 αsun 1 βsun⁄ αcm2 1 βcm2⁄+ + +()×=

βsun βcm2 αsun αcm2=

αsun αcm2 C 10
6⁄ 1 βsun⁄– 1 βcm2⁄–⎝ ⎠

⎛ ⎞
2⁄≈ ≈

Ni sizei

Csun cm2→ dcommsun cm2→ slowdown×=

Ccm2 sun→ dcommcm2 sun→ slowdown×=

slowdown p 1+=

100 200 300 400 500
M (words)

0.0

200.0

400.0

600.0

800.0

tim
e

(s
ec

on
ds

)

actual (p = 0)
modeled (p = 0)
actual (p = 3)
modeled (p = 3)

M M×

5

HPDC’96

3.1.2. Computation

Since CPU cycles are split equally among all the processes
running on the Sun with the same priority, a task executing
on the Sun will execute p + 1 times slower when there are
p extra (CPU-bound) processes executing on the Sun.
Therefore, the effect of contention on execution time can
be calculated as follows:

,

,

and
,

where is the time to execute the task on the Sun
in dedicated mode, is the time to execute the
parallel instructions of a task on the CM2 (dedicated
mode), is the idle time on the CM2 (dedicated
mode) when waiting for instructions from the Sun,

 is the time to execute on the Sun (in dedicated
mode) the serial and scalar parts of a task whose parallel
instructions are executing on the CM2, and is the
number of extra CPU-bound applications executing on the
Sun.

Figure 2: Example of a task executing on the CM2.

Figure 2 illustrates the execution of a task on the CM2.
The serial instructions execute on the Sun whereas the
parallel instructions are sent to the CM2, which already
holds the data required for the computation. Depending on
how long the parallel instructions take to execute, the
CM2 may stay idle waiting for the Sun. Note that

 and are different values. Actually,
 never exceeds because the Sun and

the CM2 may execute concurrently, i.e., the Sun may be
pre-executing serial code while the CM2 is executing
parallel instructions. As shown in Figure 2, the Sun may

Tsun dcompsun slowdown×=

Tcm2 max dcompcm2 didlecm2+() ,{=

dserialcm2 slowdown×() }

slowdown p 1+=

dcompsun
dcompcm2

didlecm2

dserialcm2

p

Sun
serial instruction
serial instruction
parallel instruction
serial instruction
serial instruction
parallel instruction
serial instruction
serial instruction
serial instruction
parallel instruction

CM2

execute

execute

execute
execute

execute

execute
execute
idle
idle

idle
idle

instruction

idle
idle execute
serial instruction idle

instruction

instruction

result

didlecm2 dserialcm2
didlecm2 dserialcm2

also stay idle waiting for the result of a parallel instruction
(e.g., a reduction operation).

Figure 3 shows the modeled and actual times to execute
a Gaussian Elimination program on a matrix of size

 on the CM2 in non-dedicated mode with 3
extra CPU-bound applications executing on the Sun. The
algorithm was implemented in CM-Fortran. In the same
graph we present the time to execute the same algorithm in
dedicated mode () to show that the algorithm
actually does take longer to execute on the CM2 when

 and . This happens because the product of
the time to execute the serial part of the algorithm on the
Sun and the slowdown factor outweighs the time spent on
the CM2. Howeve r, when , su f fi c i en t
computation is executed by the CM2 so the three extra
processes on the Sun do not affect the execution
substantively. In this case, the times in dedicated and non-
dedicated mode are the same.

Figure 3: Modeled and actual times for Gaussian
Elimination on the CM2.

We have performed a large number of experiments
us ing syn the t i c benchmarks , wh ich emp loy a
representative subset of the operations provided by the
CM2 and used in high-performance programs, in order to
verify the generality of the model. The experiments
executed so far have shown the error between predicted
and actual times to be within 15% for both communication
and computation, which is encouraging.

3.2. Sun/Paragon Experiments

The Sun/Paragon platform is very different from the Sun/
CM2 because the Sun and the Paragon are totally
independent. However, the Sun can work as a “logical”
front-end to the Paragon by hosting applications which
may have tasks executed serially (on the Sun) or in
parallel (on the Paragon). As before, a task should execute
on the Paragon only when

,

where is the elapsed time when executing on the

M M× 1+

p 0=

M 200< p 3=

M 200≥

0 100 200 300
M

10

100

1000

tim
e

(s
ec

on
ds

)

actual (p = 0)
actual (p = 3)
modeled (p = 3)

Tsun Tp Csun p→ Cp sun→+ +>

Tsun

6

HPDC’96

Sun, is the elapsed time when executing on the
Paragon, is the communication cost from the
Sun to the Paragon, and is the communication
cost from the Paragon to the Sun.

For this platform we will consider the contention on the
Sun and on the network link. Note that, even though the
Paragon (a coarse-grained mesh-connected MIMD MPP)
is space-shared, traffic on the mesh may affect an
appl icat ion’s performance by s lowing down i ts
communication. This kind of inter-partition contention is
addressed by Liu et al. [12], who show that traffic effects
vary with the size of the messages on the network, and by
Tron and Plateau [17]. Also, contention for CPU in each
node may occur if the nodes are time-shared and gang-
scheduling [7] is implemented. These effects can be
included in .

3.2.1. Communication

Communication costs are affected by contention on the
link, which occurs when multiple applications executing
on the Sun must move data to computations concurrently
executing on the Paragon. (Recall that only one
application could communicate with the CM2). However,
communication is also delayed by contention for the Sun’s
CPU, because communication involves some CPU
execution for data format conversion.

There are two modes of communication between the
Sun and the Paragon. The Sun can either communicate
directly to each compute node of the Paragon using TCP/
IP, or it can use a service node as a bridge. In the second
mode, the Sun uses TCP/IP to communicate with the
service node, which communicates with the compute
nodes using NX, the communication interface available on
the Paragon. We have performed experiments using both
modes (which we call 1-HOP and 2-HOPS, respectively).
Figure 4 shows communication times (including data
format conversion costs) to transfer bursts of 1000 equal-
sized messages to and from the Paragon using both modes
of communication. Since they present very similar
behavior (see Figure 4), we will show the results for the 1-
HOP mode only.

Figure 4 and other experiments indicate that
communication cost is a piecewise linear function of the
message size. We model the communication from the Sun
to the Paragon in dedicated mode as

,

where each data set is formed by a group of same-sized
messages, is the number of messages used to transfer
the ith data set from the Sun to the Paragon, is the
size of the messages of the ith data set traversing the link
from the Sun to the Paragon, is the startup time on

Tp
Csun p→

Cp sun→

Tp

dcommsun p→ Ni αsun

sizei

βsun
-----------+

⎝ ⎠
⎜ ⎟
⎛ ⎞

×
i data sets{ }∈

∑=

Ni
sizei

αsun

the Sun, and is the effective bandwidth from the Sun
to the Paragon.

Figure 4: Time to send bursts of 1000 equal-sized
messages to and from the Paragon in dedicated mode.

The values for and can be calculated by
linear regression on the numbers obtained with a ping-
pong benchmark. This benchmark transfers messages
from the Sun to the Paragon in bursts containing 1000
messages of the same size. After each burst, one message
containing one word is transferred back to the Sun.
Although and are intrinsically system-
dependen t , t hey mus t be ca l cu l a t ed fo r e ach
communication interface and buffer size. However, these
values do not change dynamically and are calculated fairly
efficiently just once, not imposing any overhead on the
scheduling process at run-time. Both and are
application-dependent and easy for the user to provide.
Usually, these values are related to the size of the problem
being solved by the task.

Since communication cost is modeled as a piecewise
linear function, a better approximation can be obtained by
calculating different startup costs and bandwidths for two
pieces of the function: one for
words and another for words,
where threshold is the piecewise boundary. The threshold
which gives the best accuracy is system-dependent and
can be determined by exhaustive search. The number of
possible thresholds is small (it is equal to the number of
d i ffe ren t message s izes used by the p ing-pong
benchmark), and the threshold value can be calculated
statically, just once for each platform. Hence, the overhead
to calculate this value is negligible.

In the Sun/Paragon case, threshold = 1024 words.
Given a threshold value, we model the communication
from the Sun to the Paragon as follows:

,

βsun

0 1000 2000 3000
message size (words)

0.0

10.0

20.0

30.0

tim
e

(s
ec

on
ds

)

sun to paragon - 1HOP
sun to paragon - 2HOPS
paragon to sun - 1HOP
paragon to sun - 2HOPS

αsun βsun

αsun βsun

Ni sizei

message size threshold≤
message size threshold>

dcommsun p→ Ni αsun1

sizei

βsun1

------------+
⎝ ⎠
⎜ ⎟
⎛ ⎞

×
i data sets{ } 1∈

∑ +=

Ni αsun2

sizei

βsun2

------------+
⎝ ⎠
⎜ ⎟
⎛ ⎞

×
i data sets{ } 2∈

∑

7

HPDC’96

where the first term represents the first piece of the
function () and the second term
represents the second piece ().
In addition, contains data sets in which the
messages have threshold or less words, is the
startup time on the Sun for messages with threshold or less
words, is the effective bandwidth from the Sun to
the Paragon for messages with threshold or less words,

 contains data sets in which the messages
have more than threshold words, is the startup time
on the Sun for messages with more than threshold words,
and is the effective bandwidth from the Sun to the
Paragon for messages with more than threshold words.

The communication cost from the Paragon to the Sun,
given by , is modeled analogously. Both

 and are only calculated
once per <application, problem-size, platform> triple.
Since they do not vary with load, they do not need to be
recalculated at run-time. In particular, calculating
communication costs should not impact the efficiency of
the scheduling process.

Our experiments show that both the number of
applications on the Sun (computing and communicating
with the Paragon) and the size of the messages being
transferred affect communication costs. However, we have
noticed that the effect of different message sizes is limited
and communication costs can be approximated by:

,

where

.

In the slowdown calculation, the first summation
accounts for other applications competing for CPU cycles,
whereas the second summation accounts for other
applications communicating with the Paragon.

The value is the average delay imposed on
the communication by i applications computing on the
Sun and can be calculated by measuring the delay imposed
by i compute-intensive contention generators on the ping-
pong benchmark (executed from the Sun to the Paragon).
The value is the average delay imposed on the
communication by i applications communicating with the
Paragon. It is the average of two delays: the average delay
imposed on the ping-pong benchmark (executed from the
Sun to the Paragon) by i contention generators that
transfer one-word messages from the Sun to the Paragon
and the average delay imposed on the same benchmark by
i contention generators that transfer one-word messages
from the Paragon to the Sun.

In addition, p is the number of extra applications

message size threshold≤
message size threshold>

data sets{ } 1
αsun1

βsun1

data sets{ } 2
αsun2

βsun2

dcommp sun→
dcommsun p→ dcommp sun→

Csun p→ dcommsun p→ slowdown×=

slowdown 1 pcompi delaycomp
i×⎝ ⎠

⎛ ⎞
i 1=

p∑+ +=

pcommi delaycomm
i×⎝ ⎠

⎛ ⎞
i 1=
p∑

delaycomp
i

delaycomm
i

executing on the Sun, is the probability that i
applications will compute on the Sun at the same time, and

 is the probability that i applications will
communicate with the Paragon at the same time. Both

 and are calculated based on the
percentages of computat ion and communication
associated with each application executing on the Sun.
Suppose and one application communicates 20%
of the time and computes 80% of the time whereas the
other communicates 30% of the time and computes 70%
of the time. In this case:

The percentages of computation and communication
associated with each application executing on the Sun can
be either directly given by the users or calculated from
computation and communication costs (in dedicated
mode) provided by the user. Since computation and
communication estimates are typical parameters for
performance-efficient schedulers, we consider them to be
available for the slowdown calculation.

The slowdown factor is calculated at run-time and,
therefore, it is important to guarantee that its calculation is
efficient so that it does not impose too much overhead on
the scheduling process. The values and

 are system-dependent and do not change
dynamically. They are calculated just once for each
platform and, therefore, their calculation does not impose
any additional overhead on the scheduling process at run-
time. The values and change with the
load on the system and are obtained at run-time. Using
dynamic programming, it is possible to generate all

 (or), for , in O(p2) time. If a
new application is added to the system, the new values for

 (or) can be obtained in O(p) time. If an
application finishes, it will take O(p2) time for the values
to be regenerated, but updating the slowdown factor
whenever an application finishes is only necessary if task
migration is allowed. The slowdown calculation itself
takes O(p) time. Since p is small1 and the overall
calculation of the slowdown takes O(p2) time, the
overhead imposed by its calculation is negligible.

Figure 5 illustrates by showing the modeled
and actual times for transferring bursts of 1000 equal-
sized messages to the Paragon when there are two
additional applications executing on the Sun which
alternate computation and communication cycles. The
contending applications communicate 25% and 76% of

1. The number of applications executing on a computer is generally lim-
ited by the computer’s resources and typically small, e.g. see [18].

pcompi

pcommi

pcompi pcommi

p 2=

pcomm1 0.2 0.7 0.3 0.8×+×=
pcomm2 0.2 0.3×=
pcomp1 0.2 0.7 0.3 0.8×+×=
pcomp2 0.7 0.8×=

delaycomp
i

delaycomm
i

pcompi pcommi

pcompi pcommi 1 i p≤ ≤

pcompi pcommi

Csun p→

8

HPDC’96

the time, respectively, transferring messages with 200
words. In this experiment, the average error for modeled
versus actual communication cost was within 12%.

Figure 5: Time to send bursts of 1000 equal-sized
messages from the Sun to the Paragon in non-
dedicated mode, with two processes executing on the
Sun, one of which communicates 25% of the time and
the other of which communicates 76% of the time.

The communication from the Paragon to the Sun, given
by , is modeled analogously. Figure 6 shows the
modeled and actual times for transferring bursts of 1000
equal-sized messages from the Paragon to the Sun when
there are two additional applications executing on the Sun
which communica te 25% and 76% of the t ime,
respectively, transferring messages with 200 words. In this
experiment, the average error for modeled versus actual
communication cost was within 14%.

Figure 6: Time to send bursts of 1000 equal-sized
messages from the Paragon to the Sun in non-
dedicated mode, with two processes executing on the
Sun, one of which communicates 25% of the time and
the other of which communicates 76% of the time.

We have also performed experiments with different sets
of contention generators which use different message
sizes, communicate with different frequencies, and have
various computation per communication ratios. For these
experiments, we have observed a typical average error of

0 1000 2000 3000
message size (words)

0.0

20.0

40.0

60.0

80.0

tim
e

(s
ec

on
ds

)

modeled
actual

Cp sun→

0 1000 2000 3000
message size (words)

0.0

10.0

20.0

30.0

40.0

50.0

tim
e

(s
ec

on
ds

)

modeled
actual

15%. This error reflects both the variance in the actual
communication times and the fact that we do not consider
the size of the messages (transferred by the competing
applications) in the model. In our experiments, we have
observed that the maximum error our model exhibits on
the average does not exceed 30%. The maximum error
occurs when applications competing for the link are
communicating intensively. This happens because, in this
case, the message size (which is not factored into the
calculation of) has a significant impact on the
communication costs.

3.2.2. Computation

Computation on the Sun is affected by other applications
computing on the Sun and/or communicating with the
Paragon. The delay imposed by other applications
computing on the Sun reflects the fact that CPU time is
evenly split among the competing processes. The delay
imposed by other applications communicating on the link
between the Sun and the Paragon depends on the number
of applications in the Sun communicating with the
Paragon and the size of the messages being transferred.
The impact of the message size on computation is
significant and cannot be ignored by the model. Therefore,
the execution time on the Sun can be approximated by:

and

.

In the slowdown calculation, the first summation
accounts for other applications competing for CPU cycles,
which are evenly split among all applications on the Sun.
The second summation accounts for other applications
communicating with the Paragon.

The value is the time to execute the task on
the Sun in dedicated mode, p is the number of extra
applications executing on the Sun, is the
probability that i applications will compute on the Sun at
the same t ime, is the probabi l i ty that i
applications (on the Sun) will try to communicate with the
Paragon at the same time, and is the delay
imposed on the computation by i applications (on the Sun)
which transfer messages with j words to and from the
Paragon.

The value is calculated from two delays:
the average delay imposed on a CPU-bound application by
i contention generators that transfer j-word messages from
the Sun to the Paragon, and the average delay imposed on
the same CPU-bound application by i contention

delaycomm
i

Tsun dcompsun slowdown×=

slowdown 1 pcompi i×()
i 1=
p∑+ +=

pcommi delaycomm
i j,×⎝ ⎠

⎛ ⎞
i 1=
p∑

dcompsun

pcompi

pcommi

delaycomm
i j,

delaycomm
i j,

9

HPDC’96

generators that transfer j-word messages from the Paragon
to the Sun, where j is the maximum message size used in
the system. Both and are calculated in
the same way as for the communication case.

From our experiments, the effect of message size on the
slowdown is significant, and we have observed that a
“bad” j can cause the error to be as high as 75%. However,
we have noticed that above a threshold on the message
size the delay imposed is roughly constant. In the Sun/
Paragon case, this threshold is around 1000 and, therefore,

, for . This threshold
can be determined by calculating the delay imposed by
contention generators transferring messages with
increasing sizes.

We have also observed that good accuracy can be
obtained by calculating for three values of j
(1, 500, 1000). In this case, to determine , k
closest to j = 1, 500 or 1000 is chosen2. It is not clear, at
this point, if three values will be enough for platforms
other than the Sun/Paragon. It is clear, though, that j is an
important part of the slowdown calculation; its value
should reflect the maximum message size used in the
system and can be obtained from the current applications’
message sizes as given by the user.

Figure 7: Time to execute the SOR algorithm on the
Sun, in non-dedicated mode, with two extra
applications executing on the Sun. The contending
applications communicate 66% and 33% of the time
respectively, and compute the remaining time.

Figure 7 shows the modeled and actual times for
executing the SOR program on the Sun in dedicated and
non-dedicated modes, parameterized by problem size
(which is) . In this experiment, two more
applications are executing on the Sun. They alternate
computation and communication cycles and communicate
with the Paragon 66% (using 800-word messages) and
33% (us ing 1200-word messages) o f the t ime ,
respectively. In this example, our predictions were within

2. Note that j = 1 is only used for message size < 95 words.

pcompi pcommi

delaycomm
i 1000,

delaycomm
i k,≈ k 1000≥

delaycomm
i j,

delaycomm
i k,

M

0.0

100.0

200.0

300.0

tim
e

(s
ec

on
ds

)

modeled (j = 1)
modeled (j = 500)
modeled (j = 1000)
actual

100 120 140 160 180 200

M M×

an average error of 4% of the actual measurements when j
= 1000. For j = 500, the error was around 16% and, for j =
1, the error was within 32%. This example illustrates the
importance of using the appropriate j.

Figure 8 shows the modeled and actual times for
executing the SOR program on the Sun in dedicated and
non-dedicated modes. However, in this experiment, the
two extra applications on the Sun communicate with the
Paragon 40% (using 500-word messages) and 76% (using
200-word messages) of the time respectively, and compute
the remaining time. In this example, our predictions were
within an average error of 5% of the actual measurements
when j = 500. For j = 1 and j = 1000, the error was 25%.

Figure 8: Time to execute the SOR algorithm on the
Sun in non-dedicated mode with two extra applications
executing on the Sun. The contending applications
communicate 40% and 76% of the time respectively,
and compute the remaining time.

We have also performed experiments with different sets
of contention generators which use different message
sizes, communicate with different frequencies, and have
various computation per communication ratios. The
typical average error was below 15%. According to our
observations, competing applications communicating
intensively or transferring small bursts can cause the error
to be as high as 33%. We have noticed, however, that in
these cases the delay imposed by communication
corresponds to the delay imposed by contention for CPU
in the Sun. We are currently investigating this fact in order
to improve our predictions.

4. Summary and Future Work
Most applications share the resources of coupled
heterogeneous systems with other applications. Since
system load can vary dramatically, allocation strategies
which assume that resources have a constant availability
and/or capability are unlikely to promote performance-
efficient allocations in practice. It is critical to provide a
realistic model of the effects of contention on application
performance in order to best allocate application tasks to

100 120 140 160 180 200
M

0.0

100.0

200.0

300.0

tim
e

(s
ec

on
ds

)

modeled (j = 1)
modeled (j = 500)
modeled (j = 1000)
actual

10

HPDC’96

machines.

In this paper, we have presented a model which predicts
contention effects in Host/MPP coupled heterogeneous
platforms. The model provides a basis for predicting
realistic communication and computation costs, and was
shown to correlate with actual times within an average
15% error for a set of scientific benchmarks commonly
found in heterogeneous applications. Note that the
variance in times to execute applications on production
systems is typically high, and therefore makes it difficult
for a contention model to be accurate. For this reason, our
objective has been to obtain accuracy on an average basis.
The experiments executed thus far have shown that we
have achieved our goal.

We are continuing to investigate causes for contention.
We are currently extending our model to include memory
constraints, as well as I/O operations. In addition, we plan
to character ize the set t ing in which contending
applications execute for only part of the execution of a
given application. Since system load may vary during the
execution of an application, the slowdown factors should
be recalculated when the job mix changes, and task
migration should be considered.

Finally, we believe that the slowdown factors
developed for these small platforms can be used for larger
heterogeneous systems. An accurate contention model is a
fundamental part of a performance-efficient allocation
strategy for heterogeneous systems, and ultimately
essential to the use of these systems as platforms for
parallel distributed applications.

Acknowledgments

We are grateful to Rich Wolski, Jennifer Schopf, and
Cosimo Anglano for useful discussions. We would also
like to thank Elizabeth Simon, Reagan Moore, Mike
Vildibill, George Kremenek, David Lilja, the UCSD
Parallel Computation Laboratory and the San Diego
Supercomputer Center for their support.

References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J.
Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S.
Ostrouchov, and D. Sorensen. “LAPACK Users’ Guide,
Second Edition”, SIAM, Philadelphia, PA, 1995.

[2] M. Atallah, C. Black, D. Marinescu, H. Siegel, and T. Casa-
vant, “Models and Algorithms for Coscheduling Compute-
Intensive Tasks on a Network of Workstations”, Journal of
Parallel and Distributed Computing, vol. 16, pp. 319-327,
1992.

[3] A. Beguelin, J. Dongarra, G. Geist, R. Manchek, and V.
Sunderam, “Graphical Development Tools for Network-
Based Concurrent Supercomputing”, in Proceedings of
Supercomputing 91, pp. 435-444.

[4] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao,
“Application-Level Scheduling on Distributed Heteroge-
neous Networks”, Technical Report CS96-482, University
of California, San Diego, Computer Science and Engineer-
ing Department, May 1996.

[5] A. Bricker, M. Litzkow, and M. Livny, “Condor Technical
Summary”, Technical Report #1069, University of Wiscon-
sin, Computer Science Department, May 1992.

[6] H. Dietz, W. Cohen, and B. Grant, “Would you run it
here...or there? (AHS: Automatic Heterogeneous Super-
computing)”, in Proceedings of the International Confer-
ence on Parallel Processing, vol. II, pp.217-221, August
1993.

[7] D. Feitelson, “A Survey of Scheduling in Multiprogrammed
Parallel Systems”, Research Report, IBM Research Divi-
sion, T. J. Watson Research Center, October, 1994.

[8] http://www.netlib.org/scalapack/scalapack_home.html,
ScaLAPACK Software Library.

[9] A. Kuppermann and M. Wu, “Quantum Reaction Dynamics
on a Gigabit/Sec Network”, in Proceedings of the Gigabit
Testbed Maxijam, November 1994.

[10] S. Leutenegger and X. Sun, “Distributed Computing Feasi-
bility in a Non-Dedicated Homogeneous Distributed Sys-
tem”, NASA - ICASE Technical Report 93-65, September
1993.

[11] D. Lilja, “Experiments with a Task Partitioning Model for
Heterogeneous Computing”, in Proceedings of the Hetero-
geneous Computing Workshop, pp. 29-35, April 1993.

[12] W. Liu, V. Lo, K. Windisch, and B. Nitzberg, “Non-contigu-
ous Processor Allocation Algorithms for Distributed Mem-
ory Multicomputers”, in Proceedings of Supercomputing
94, pp. 227-236, 1994.

[13] C. Mechoso, J. Farrara, and J. Spahr, “Running a Climate
Model in a Heterogeneous, Distributed Computer Environ-
ment”, in Proceedings of the Third IEEE International Sym-
posium on High Performance Distributed Computing, pp.
79-84, August 1994.

[14] A. Phillips, J. Rosen, and V. Walke, “Molecular Structure
Determination by Convex Global Underestimation of Local
Energy Minima”, University of Minnesota Supercomputer
Institute Research Report UMSI 94/126, July 1994.

[15] V. Sunderam, “PVM: A Framework for Parallel Distributed
Computing”, Concurrency: Practice and Experience, vol. 2,
n. 4, pp. 315-339, December 1990.

[16] Virtual Environments and Distributed Computing at SC’95.
GII Testbed and HPC Challenge Applications on the I-
WAY. Edited by Holly Korab and Maxine D. Brown. A pub-
lication of ACM/IEEE Supercomputing’95.

[17] C. Tron and B. Plateau, “Modeling of Communication Con-
tention in Multiprocessors”, in Proceedings of Modeling
Techniques and Tools for Computers - Performance Evalua-
tion, LNCS, pp. 406-424, 1994.

[18] M. Wan, R. Moore, G. Kremenek, and K. Steube, “A Batch
Scheduler for the Intel Paragon with a Non-contiguous
Node Allocation Algorithm”, in Proceedings of the Work-
shop on Job Scheduling Strategies for Parallel Processing,
pp. 29-40, April 1996.

[19] J. B. Weissman, “The Interference Paradigm for Network
Job Scheduling”, in Proceedings of the Heterogeneous
Computing Workshop, pp. 38-45, April 1996.

[20] X. Zhang and Y. Yan, “A Framework of Performance Pre-
diction of Parallel Computing on Non-dedicated Heteroge-
neous Networks of Workstations”, in Proceedings of 1995
International Conference of Parallel Processing, vol. I, pp.
163-167, 1995.

