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ABSTRACT 
Advance-reservation requests are an essential feature of 
LambdaGrids, where resources may need to be co-allocated at 
pre-determined times. In this paper, we discuss unconstrained 
advance reservations, which use flexible time-windows to lower 
blocking probability and, consequently, increase resource 
utilization. We claim and show using simulations that the 
minimum window size, which theoretically brings the blocking 
probability to 0, in a first-come-first-served advance reservation 
model without time-slots, equals the waiting time in a queue-
based on-demand model. We also show, with simulations, the 
window sizes, which bring the blocking probability to its 
minimum, for an advance reservation model with time-slots. 
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1. INTRODUCTION 
A LambdaGrid [5] consists of a grid infrastructure, in which 
resources (e.g., computers, storage, and visualization engines) are 
interconnected by an optical network, and the optical channels are 
scheduled along with the other resources. Advance reservation of 
grid resources guarantees that they are available at pre-determined 
times. Advance reservation requests can be of two types: 
constrained and unconstrained, as mentioned in [1]. 
Unconstrained advance-reservation requests give the scheduler 
flexibility since the requests can be scheduled either at the start 
time or at any time within the specified window. 
This paper shows that flexibility enables an advance reservation 
scheduling model to provide blocking probability close to zero, a 
behavior similar to a queue-based on-demand model, in which 

requests eventually are granted if they wait in the queue long 
enough.               
Hypothesis 1: 
The value of the average window size, which will theoretically 
lower the blocking probability to zero, in the first-come-first-
served advance-reservation scheduling domain, is the same as the 
mean waiting time in a queue-based on-demand system when λ/µ 
< 1, i.e., ρ < 1, where λ is the average arrival rate, µ is the average 
service time, and ρ is the average traffic intensity.                                                  

2. ADVANCE RESERVATION MODELS 
In this section, we show results for the M/M/1 system, in which 
the arrival and holding times follow an exponential distribution. 
The simulations were performed with ρ varying form 0.2 to 0.8, λ 
= 0.2, and the value of µ adjusted using λ/ρ. The average wait 
time per service interval is ρ/(1- ρ) and was obtained in [3]. The 
window size is the average obtained from 50 different traces.  

2.1 Model without time-slots 
In this case, no time-slots were used, and the average window size 
per trace was calculated as the sum of the window size  flexibility, 
i.e., the time needed for each request to be accepted, experienced 
by each user request, divided by the total number of requests. 

2.2 Model with time-slots 
Since using time-slots for managing the advance reservation 
allocation database is a practical alternative, we extended the 
model above to use time-slots. Each time-slot consisted of one 
hour. The start time of the request was aligned to the start of the 
next time-slot. The service time of each request was rounded to an 
integral number of time-slots. The average window size was 
calculated as the sum of the window flexibility experienced by 
each user request, divided by the total number of requests, where 
each request could be flexible to at most 1,000 hours. Note that, 
according to the simulations, for all the 50 traces and for different 
values of ρ, a window size of 1,000 led to a blocking probability 
of zero. Therefore, the maximum window size flexibility was 
chosen to be 1,000 hours. 
From Figure 1, we observe that the window sizes for an advance 
reservation system without time-slots match the corresponding 
on-demand queue wait times. The window sizes obtained with 
time-slots are higher than the ones for the model without time-
slots since time-slots introduce wastage, because each request is 
assigned an integral number of time-slots. Note that the unit used 
for the window size is hours, and the length of each time-slot is 
one hour.  
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Figure 1: Window sizes from calculations, simulations without time-slots, 
and simulations with time-slots 

 
Figure 2: Window sizes (0-20) 

Figure 2 shows, for a single trace, the effect of increasing the 
window size on both the blocking probability and the resource 
utilization.  Note that, while the blocking probability decreases, 
the resource utilization increases. 

3. SIMULATION RESULTS 
We have simulated advance reservation scheduling using M/M/1, 
M/D/1, M/B/1, B/M/1, and B/B/1 types of arrival and service 
times, using a single server. These are standard notations [3], but 
note that we have replaced ‘G’ (which is used in the standard 
notation) by ‘B’ (bounded Pareto), since recent research on 
Internet traffic indicates heavy-tailed arrival and service times [4]. 
The probability density function for bounded Pareto distribution 
is defined as 
f(x) = (αkα/(1-(k/p)α))x(-α-1) , k ≤ x ≤ p,                                         (1) 
as mentioned in [2]. In our simulations, the parameters for the 
heavy tailed distribution for the service times were α = 1.7, k = 1, 
and p = 1,000, with the mean being 2.401 for the M/B/1 case [2]. 
In the B/M/1 case, α = 0.9 [4], k = 1, and p = 1,000 for the arrival 
times. In both cases, we used p = 1,000 since our allocations were 
for 60 weeks, i.e., 10,080 hours, and we wanted p to be, most of 
the time, much less than the length of the reservation window, so 
that a large number of requests would fall in the reservation 
window, to allow us to study the effect of the length of the 
flexible window on the blocking probability. 
The following subsections present the results obtained for M/B/1, 
and B/M/1. We have omitted other results due to space 
constraints.  

3.1 Exponential Inter-Arrival and Bounded 
Pareto Service Times 
In this case, the value of ρ was varied from 0.2 to 0.8, where the 
arrival times followed an exponential distribution, and the service 
times followed a bounded Pareto distribution. The values of λ 
were 0.0833, 0.1666, 0.25, and 0.333 for the four cases presented 
in Figure 3, which shows the effect of increasing the window size. 
The service time values were adjusted as per values of λ and ρ 
using ρ = λ/µ.  

 
Figure 3: Window sizes (0-500) 

3.2 Bounded Pareto Inter-Arrival and 
Exponential Service Times 
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In this case, the value of ρ was varied from 0.2 to 0.8, where the 
arrival times followed a bounded Pareto distribution, and the 
service times followed an exponential distribution.  
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Figure 4: Window sizes (0-500) 

The values of µ were 0.5572, 0.2785, 0.1857, and 0.1392 for the 
four cases shown in Figure 4, which also shows the effect of 
increasing the window size. 
Note that, the results presented in Figures 3 and 4 show that 
increasing the window size leads to a decrease in the blocking 
probability (to its minimum) and to an increase in the resource 
utilization, corroborating the results presented in Figure 2. 

4. CONCLUSION 
In this paper, we have shown that, for an M/M/1 system, the 
window sizes in an advance reservation model without time-slots, 
match the corresponding average waiting times in an on-demand 
queue-based system. We have also shown that increasing window 
sizes, in an advance reservation model with time-slots, decreases 
the blocking probability and increases the resource utilization. 
Our results are important in contributing to improve user 
satisfaction while increasing resource utilization.  
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