Flexible Time-Windows for Advance Reservation in LambdaGrids

Neena Kaushik Silvia Figueira Stephen Chiappari

Santa Clara University Santa Clara, California, USA

Advance reservation

A LambdaGrid provides the computational, storage, visualization, and the optical-network resources to the user as schedulable resources.

Resources can be reserved in advance and requests may be rejected when the resources are not available

Flexibility

■ GOAL → Use flexibility to increase acceptance rate and decrease blocking probability.

Hypothesis

The value of the average window time for all user requests, which will theoretically lower the blocking probability in the advance-reservation scheduling domain to 0, is the same as the mean waiting time of an equivalent queue-based on-demand scheduler, when the traffic intensity is less than 1.

Results

- Window size that brings the blocking probability to zero
 M/M/1
- Represented in the results are window sizes for :
 - Queuing model
 - Simulation with no time-slots
 - Simulation with time-slots

Simulation parameters

Traffic intensity $\rho = 0.2$ to 0.8

- 50 different traces
 - For each trace, calculate the average window size.
 - Take the average window size over the 50 values obtained.
 - Maximum possible window size = 1,000

Window size that brings the blocking probability to zero

ρ	WS(in hours)	Other Parameters
0.2	0.25	$\lambda = 0.2, \ \mu = 1$
0.4	1.33	$\lambda = 0.2, \ \mu = 0.5$
0.6	4.5	$\lambda = 0.2, \mu = 0.333$
0.8	16	$\lambda = 0.2, \ \mu = 0.25$

Flexibility

How much flexibility will help to decrease the blocking probability of advance reservations?

Simulation parameters

A single trace was generated.

Calculate the blocking probability and utilization for increasing window sizes.

The window size is increased until the blocking probability drops to zero or close to zero.

Decreasing blocking probability with increasing window size (1 of 3)

Decreasing blocking probability with increasing window size (2 of 3)

 $f(x) = (\alpha k^{\alpha} / (1 - (k/p)^{\alpha})) x^{(-\alpha-1)}, k \le x \le p$ M/B/1 : $\alpha = 1.7, k = 1, p = 1000$

Decreasing blocking probability with increasing window size (3 of 3)

 $f(x) = (\alpha k^{\alpha} / (1 - (k/p)^{\alpha})) x^{(-\alpha-1)}, k \le x \le p$ B/M/1 : $\alpha = 0.9, k = 1, p = 1000$

Conclusion

Flexible time-windows can improve resource utilization in advance reservation scheduling.

Flexible window size is equal to mean waiting time in the queue.