
PDPTA 2000

1

Abstract
Internet-based clusters of workstations have been
extensively used to execute parallel applications.
Although these internet-based clusters seem to be an
easy and inexpensive way of obtaining great
performance, it may not always be so. When using
such a cluster for executing a parallel application,
performance may not be as good as expected due to
delays in communication. Also, the heterogeneity in
communication makes it hard to take advantage, or
reuse, communication strategies that were useful in
regular-topology platforms, e.g., parallel machines or
LAN-based clusters of workstations. For instance,
broadcasting in an internet-based cluster may be
more challenging due to the variety of communication
links and, consequently, of point-to-point latencies. In
this paper, we present a strategy to improve
hypercube-based broadcasting algorithms that are
used in regular-topology platforms, so that they can
execute efficiently in internet-based clusters of
workstations.

Keywords: broadcasting, hypercube algo-
rithms, network of workstations, internet-based
clusters of workstations.

1 Introduction
Recent advances in high-speed networks and
improved microprocessor performance are mak-
ing clusters of workstations an appealing vehicle
for cost-effective parallel computing. Clusters of
workstations built with commodity hardware and
software components are playing a major role in
supercomputing [12], being used effectively as
parallel machines for large, parallel, scientific
applications. With the advent of the Internet,
these clusters have been evolving from homoge-
neous machines connected by a LAN (Local
Area Network) to different kinds of machines

connected by the Internet. In fact, there are sev-
eral groups working on systems that enable users
to “steal” cycles from idle (or seldom used)
machines located in other departments or even
other institutions. Some examples are the NOW
Project [1] from the University of California,
Berkeley and the CONDOR System [6] from the
University of Wisconsin.

Although these internet-based clusters seem
to be an easy and inexpensive way of obtaining
great performance, it may not always be so.
When using such a cluster for executing a paral-
lel application, performance may not be as good
as expected due to delays in communication.
Internet-based clusters are connected by hetero-
geneous links, which may or may not include
long-distance high-latency low-bandwidth paths.
Depending on the application's communication
pattern and computation/communication ratio,
the delays imposed by these slow paths may
affect or not the performance of the application.

The heterogeneity in communication makes
it hard to take advantage, or reuse, communica-
tion strategies that are useful in regular-topology
platforms, such as parallel machines or LAN-
based clusters of workstations. For instance,
broadcasting in an internet-based cluster may be
more challenging due to the variety of communi-
cation links and, consequently, of point-to-point
latencies.

Broadcasting is an important communication
strategy that is used in a variety of linear algebra
algorithms [8]. In fact, algorithms for broadcast-
ing in different kinds of environments have been
discussed extensively. Broadcasting algorithms
for hypercube machines have been discussed in
both [5] and [9]. In [4], the authors presents a
study on broadcasting algorithms for homoge-
neous parallel environments. Also, several

Using a Hypercube Algorithm for
Broadcasting in Internet-Based Clusters

Silvia M. Figueira

Department of Computer Engineering
Santa Clara University

Santa Clara, CA 95053-0566

PDPTA 2000

2

groups have been working on projects related to
broadcasting in heterogeneous internet-based
clusters of workstations. In [11], the authors
present ECO, a packet containing efficient col-
lective operations for these clusters of worksta-
tions. ECO groups hosts according to the
network topology and implements the broadcast-
ing operation using specific algorithms for dif-
ferent LANs. In [10], the authors also present a
solution for more efficient broadcasting in inter-
net-based clusters of workstations. They also
group the hosts according to the network topol-
ogy, but they use a binomial tree for each LAN.
In [2], Banikazemi et al deal with the heterogene-
ity in the cluster by forming broadcasting trees
according to each machine’s capacity. In [3], the
authors present a communication model of heter-
ogeneous clusters of workstations for perfor-
mance characterization of collective operations.

In this paper, we present a strategy to
improve hypercube-based broadcasting algo-
rithms, which are used in regular-topology
homogeneous platforms, so that they can execute
more efficiently in internet-based clusters of
workstations. Our strategy is based on organizing
the hypercube according to the distance (or
latency) between each pair of nodes. This is
accomplished by placing nodes that are close
together in communicating positions of the
hypercube.

This paper is organized as follows. Section 2
discusses the basic hypercube-based broadcast-
ing algorithm used in regular-topology plat-
forms. Section 3 presents a way of improving
this algorithm to enhance its performance in
internet-based clusters. Section 4 shows experi-
ments executed and results obtained with the
improvement proposed. Section 5 concludes and
discusses future work.

2 Hypercube-Based Broadcasting
Algorithm
For broadcasting, we use the algorithm proposed
by Foster [7]. It broadcasts using a hypercube
communication template. The algorithm is exe-
cuted by each task in a hypercube communica-
tion structure (obtained by the processes’
identifiers). This algorithm allows an operation
that requires all-to-all communication among P

processes to be performed in logP steps. The
algorithm is presented below:

procedure hypercube (myid, input, logp, output)
begin

state = input
for i = 0 to logp - 1

dest = myid XOR 2i

send state to dest
receive message from dest
state = OP (state, message)

endfor
output = state

end

Note that logp denotes the size of the hyper-
cube, and myid represents the node’s identifier.
XOR denotes an exclusive OR operation, and OP
is the user-supplied operator, used to combine
local data with data arriving from the ith neigh-
bor in the hypercube. In each step of the algo-
rithm, each process exchanges its local state
(which embeds its local input with the informa-
tion received so far from its neighbors) with one
of its neighbors in the hypercube and, then, com-
bines the message received from that neighbor
with state to generate a new state.

As shown in [7], this algorithm can be used
efficiently, in regular-topology platforms, for
vector reductions, matrix transpositions, merge
sorts, and so on. However, in internet-based clus-
ters, the algorithm performance will depend on
the organization of the hypercube.

3 Broadcasting in Internet-Based
Clusters
To use the algorithm presented in Section 2 in
non-hypercube platforms, the processes need to
be organized in a hypercube. This is done accord-
ing to the nodes’ identifiers, which are usually
assigned randomly (independently of any perfor-
mance measure) to the nodes. For example, in
Figure 1, there is a cluster formed by 4 nodes
located in the same LAN. These nodes are
assigned identifiers 0, 1, 2, and 3. According to
these identifiers, a 2D hypercube can be created,
as shown in Figure 2, where node 0 is connected
to nodes 1 and 2, but not to node 3, which is also
connected to nodes 1 and 2.

In regular-topology platforms, organizing the

PDPTA 2000

3

hypercube randomly may lead to good perfor-
mance. However, in internet-based clusters, we
need a more sophisticated strategy to build the
hypercube. Intuitively, the algorithm would exe-
cute more efficiently if we could form the hyper-
cube by having communication take place only
between nodes that are close together. We define
that node A is closer to node B than to node C, if
the latency between nodes A and B is lower than
the latency between nodes A and C.

Figure 1: Local Area Network with 4 nodes,
identified as 0, 1, 2, and 3.

Figure 2: 2D hypercube formed by 4 nodes,
according to their identifiers.

Our strategy to reorganize the nodes to form
a more performance-efficient hypercube is based
on the distance (or latency) between the nodes.
The broadcasting algorithm works synchro-
nously and, at each step, each node communi-
cates with a specific node in the same subcube.
In this case, placing nodes that are close together
in communicating positions, so that communica-
tion in each step of the algorithm happens within
a short distance, will decrease communication
costs and lower the total cost of the broadcasting
operation.

To illustrate, consider the cluster presented
in Figure 3, where nodes 0 and 3 are part of a
LAN, while nodes 1 and 2 are part of another
LAN. Suppose the communication link between
LAN1 and LAN2 has high latency. If the hyper-
cube is formed according to the nodes’ identifi-
ers, it is going to be like the one shown in
Figure 2. In this case, all the communication
operations will go through the low-latency link

10 2 3

LAN

0 1

32

between the two LANs. A broadcast operation in
a 2D hypercube is done in two steps. In the first
step, node 0 exchanges information with node 1,
while node 2 exchanges information with node 3.
These operations will go through the low-latency
link between the 2 LANs. In the second step,
node 0 exchanges information with node 2, while
node 1 exchanges information with node 3. These
operations will also go through the low-latency
link between the 2 LANs.

However, if the hypercube is organized
according to the nodes’ locality, it is going to
look like the one shown in Figure 4. In this case,
only one step of the algorithm is going to be
penalized. In the first step, node 0 exchanges
information with node 3, while node 1 exchanges
information with node 2. These are intra-LAN
communication operations. In the second step,
node 0 exchanges information with node 1, while
node 2 exchanges information with node 3. These
operations will go through the low-latency link
between the 2 LANs. It is clear that the hyper-
cube shown in Figure 4 is more performance-
efficient than the hypercube shown in Figure 3.

Figure 3: Cluster formed by 4 nodes: 0, 1, 2, and
3. Nodes 0 and 3 are part of LAN1, while nodes 1
and 2 are part of LAN2.

Figure 4: 2D hypercube formed by the nodes in
Figure 3, according to the nodes’ locations.

To form the low-cost hypercube, we have
developed a form-hypercube algorithm, which
tries to minimize the maximum distance within

30

1 2LAN1

LAN2

0 3

21

PDPTA 2000

4

each subcube. The maximum distance within a
subcube is the maximum distance between all
pairs of nodes inside the same subcube. The
algorithm starts with a random hypercube, i.e., a
hypercube formed according to the nodes’ identi-
fiers. Then, it tries to exchange nodes between
pairs of subcubes. The exchange takes place if,
after exchanging nodes, the maximum distance
within both new subcubes is less than the maxi-
mum between the maximum distance within
each subcube before the exchange. Intuitively,
the algorithm tries to equalize the maximum dis-
tances within all the subcubes.

The form-hypercube algorithm is presented
below:

algorithm form-hypercube
begin

for each subcube i and for each subcube j
for each node x in i and each node y in j

if exchanging x and y makes
maxi < max and maxj < max

exchange x and y
endif

endfor
endfor

end

In the algorithm above, max represents the
maximum between the maximum distances
within subcube i and subcube j before the
exchange. The values maxi and maxj represent
the maximum distance within subcube i and the
maximum distance within subcube j, respec-
tively, after the exchange.

The form-hypercube algorithm executes in
time O(nodes2 * subcubesize2), where nodes is
the total number of nodes in the hypercube, and
subcubesize is the size (in number of nodes) of
the subcube that the algorithm is trying to mini-
mize. For example, if the algorithm is trying to
exchange nodes between 1D subcubes, then sub-
cubsize = 2.

4 Experiments
We have performed experiments on the IBM SP
at the University of Michigan. The IBM SP is a
LAN-based, regular-topology cluster, in which
we emulated diverse internet-based clusters by
enforcing different latencies between the nodes.
Our emulation has the following parameters: the

number of nodes in the cluster and the maximum
number of islands in the cluster, i.e., the number
of groups of nodes which are in the same LAN,
or close enough to share a very low latency. From
these two parameters, the emulator generates ran-
dom internet-based clusters, which have various
combinations of number of islands, islands’
sizes, and latencies among the various islands.
The latencies are given in multiples of a basic
latency.

In each set of experiments, we ran the algo-
rithm 50 times, each with 2,000 all-to-all broad-
cast operations on 16 nodes. In each experiment,
the number of islands, the islands’ size, and the
latency between the islands vary randomly. The
number of islands varies from 1 to 4, and the
latency varies from 1 to 4 times 1500usec, which
is the latency encountered in 10Mb Ethernet net-
works.

The experiments performed have shown that
the time to execute a broadcast operation depends
heavily on the cluster topology, and that reorga-
nizing the nodes according to the distance defi-
nitely affects the performance obtained.

Figure 5, Figure 6, and Figure 7 show the
times to execute 10 experiments. In each experi-
ment, the topology of the cluster was generated
randomly. For each experiment, the first bar rep-
resents the time to execute the algorithm when
the hypercube was organized randomly, i.e., the
assigning of nodes to subcubes was random. The
second bar represents, for each experiment, the
time to execute the algorithm when the nodes
were reorganized by the form-hypercube algo-
rithm, i.e., the hypercube was formed by reorder-
ing the nodes in an attempt to place nodes that are
close in communicating positions.

In Figure 5, the second bar represents, for
each experiment, the time to execute the algo-
rithm when the hypercube was formed by reor-
dering the nodes in an attempt to place nodes that
are close in the same 1D subcube. In this set of
experiments, the times to execute with a random
hypercube vary from 22 seconds to 194 seconds,
according to the topology of the cluster. Note that
reorganizing the nodes improves the efficiency of
the algorithm for all the clusters shown in this set
of experiment. In this case, the gain was between
2 and 59%.

In Figure 6, the second bar represents, for

PDPTA 2000

5

each experiment, the time to execute the algo-
rithm when the hypercube was formed by reor-
dering the nodes in an attempt to place nodes that
are close in the same 2D subcube. In this set of
experiments, the times to execute with a random
hypercube vary from 22 seconds to 142 seconds,
according to the topology of the cluster. Note that
reorganizing the nodes improves the efficiency
of the algorithm for all the clusters shown in this
set of experiments as well. In this case, the gain
was between 4 and 51%.

Figure 5: Times to execute the broadcasting
algorithm with a hypercube formed randomly and
with a hypercube that was reorganized according
to 1D subcubes.

Figure 6: Times to execute the broadcasting
algorithm with a hypercube formed randomly and
with a hypercube that was reorganized according
to 2D subcubes.

0

50

100

150

200

random

reorganized

ti
m

e
(s

ec
o

n
d

s)

experiments

0

50

100

150

random
reorganized

ti
m

e
(s

ec
o

n
d

s)

experiments

In Figure 7, the second bar represents, for
each experiment, the time to execute the algo-
rithm when the hypercube was formed by reor-
dering the nodes in an attempt to place nodes that
are close in the same 3D subcube. In this set of
experiments, the times to execute with a random
hypercube vary from 22 seconds to 142 seconds,
according to the topology of the cluster. Note that
reorganizing the nodes improves the efficiency of
the algorithm for all the clusters shown in this set
of experiments. In this case, the gain was
between 2 and 54%.

Figure 7: Times to execute the broadcasting
algorithm with a hypercube formed randomly and
with a hypercube that was reorganized according
to 3D subcubes.

One important result obtained from these
experiments is the average gain obtained with
each hypercube. In the graphs shown above, the
average gain for hypercubes formed using 1D
and 2D subcubes was 30 and 29%, respectively.
The average gain obtained with hypercubes
formed using 3D subcubes was 20%. This shows
that, for 16-node clusters, it is more effective, on
the average, to use smaller subcubes.

Note that, in some cases, the gain obtained by
reorganizing the hypercube is very small or none
at all. This happens when the random hypercube
already has a performance-efficient topology, and
no improvement is possible.

Figure 8 shows the times to execute 7 experi-
ments. In each experiment, the topology of the
cluster was generated randomly. For each experi-
ment, the graph compares the times to execute
the broadcasting algorithm when the hypercube

0

50

100

150

random
reorganized

ti
m

e
(s

ec
o

n
d

s)

experiments

PDPTA 2000

6

was reorganized according to subcubes of size
1D, 2D, and 3D. These experiments are represen-
tative of a large set of experiments, which have
shown that, for 16 nodes, reorganizing the hyper-
cube according to 1D subcubes is the best
approach in most of the cases. In some cases,
using a 2D subcube works better. However, 3D
subcubes were not a good option at all in this
setup.

This is an important result, since, as shown
before, the form-hypercube algorithm executes
in time O(nodes2 * subcubesize2). Therefore, for
this setup, since 1D subcubes should be used, the
time to execute the form-hypercube algorithm is
going to be O(4 * nodes2).

Figure 8: Times to execute the broadcasting
algorithm with a hypercube that was reorganized
according to 1D, 2D, and 3D subcubes.

For larger clusters, it may be useful to use a
double version of the form-hypercube algorithm.
In this case, the hypercube would be reorganized
according to 1D subcubes. Then, the already
improved hypercube would be reorganized again
according to 2D hypercubes. Note that this
option was not useful with 16 nodes, and we
were not able to execute in larger clusters.

5 Conclusion
Broadcasting algorithms are extensively used by
scientific applications, and adapting these algo-
rithms to execute efficiently in internet-based
clusters is crucial to improve these applications’
performance in this kind of platform.

In this paper, we presented a strategy to orga-

0

20

40

60

80

100

120

140

1D 2D 3D

ti
m

e
(s

ec
o

n
d

s)

experiments

nize the nodes in an internet-based cluster into a
hypercube. The strategy is based on the distance
between the nodes in the cluster and is imple-
mented by the form-hypercube algorithm, which
exchanges nodes between subcubes trying to
decrease the distance between communicating
nodes in the hypercube. The experiments per-
formed have shown that decreasing these dis-
tances leads to lower communication costs and,
consequently, to better performance of the broad-
casting algorithm.

We plan to extend other broadcasting algo-
rithms, such as the binomial tree, to improve their
efficiency when executing on internet-based clus-
ters. We also plan to study the effects that differ-
ent clusters, with different topologies, have on
the performance of specific broadcasting algo-
rithms.

Acknowledgements
The experiments presented in this paper were
performed at the IBM SP at the University of
Michigan. Time at the IBM SP has been provided
by a grant from NPACI.

References
[1] T. Anderson, D. Culler, D. Patterson, and the

NOW team, “A Case for Networks of Worksta-
tions: NOW,” IEEE Micro, vol. 15, no. 1, pp. 54-
64, February 1995.

[2] M. Banikazemi, V. Moorthy, and D. K. Panda,
“Efficient Collective Communication on Hetero-
geneous Networks of Workstations,” in Proceed-
ings of the International Conference on Parallel
Processing, August 1998.

[3] M. Banikazemi, J. Sampathkumar, S. Prabhu, D.
Panda, and P. Sadayappan, “Communication
Modeling of Heterogeneous Networks of Work-
stations for Performance Characterization of Col-
lective Operations,” in Proceedings of the
Heterogeneous Computing Workshop, April
1999.

[4] M. Bernaschi and G. Iannello, “Collective Com-
munication Operations: Experimental Results vs.
Theory,” Concurrency: Practice and Experience,
vol. 10, no. 5, pp. 359-386, 1998.

PDPTA 2000

7

[5] D. P. Bertsekas, C. Özveren, G. D. Stamoulis, P.
Tseng, and J. N. Tsitsiklis, “Optimal Communi-
cation Algorithms for Hypercubes,” in Journal of
Parallel and Distributed Computing, vol. 11, pp.
263-275, 1991.

[6] A. Bricker, M. Litzkow, and M. Livny, “Condor
Technical Summary”, Technical Report #1069,
University of Wisconsin, Computer Science De-
partment, May 1992.

[7] I. Foster, “Designing and Building Parallel Pro-
grams - Concepts and Tools for Parallel Software
Engineering,” Addison Wesley Publishing Com-
pany, 1995.

[8] D. Gannon and J. Van Rosendale, “On the Impact
of Communication Complexity in the Design of
Parallel Numerical Algorithms,” IEEE Transac-
tions on Computers, vol. C-33, pp. 1180-1194,
December 1984.

[9] S. L. Johnsson and C. Ho, “Optimum Broadcast-
ing and Personalized Communication in Hyper-
cubes,” IEEE Transactions on Computers, vol.
38, no. 9, pp. 1249-1268, September 1989.

[10] T. Kielmann, H. E. Bal, and S. Gorlatch, “Band-
width-Efficient Collective Communication for
Clustered Wide Area Systems,” in Proceedings
of the International Parallel and Distributed Pro-
cessing Symposium, May 2000.

[11] B. B. Lowekamp and A. Beguelin, “ECO: Effi-
cient Collective Operations for Communication
on Heterogeneous Networks,” in Proceedings of
the 10th International Parallel Processing Sym-
posium, April 1996.

[12] Task Force on Cluster Computing, http://
www.dgs.monash.edu.au/~rajkumar/tfcc/.

