
VECPAR 2002

1

Improving Binomial Trees for Broadcasting in
Local Networks of Workstations1

Silvia M. Figueira

Department of Computer Engineering
Santa Clara University

Santa Clara, CA 95053-0566, USA
sfigueira@scu.edu

Abstract. NOWs (Networks of workstations) have been extensively used to
execute parallel applications. Although NOWs seem to be an easy and
inexpensive way of obtaining great performance, it may not always be so.
When using such an environment for executing a parallel application,
performance may not be as good as expected due to delays in communication.
Also, the heterogeneity in communication makes it hard to take advantage, or
reuse, communication strategies that were useful in regular-topology platforms,
e.g., parallel machines or LAN-based clusters of workstations. For instance,
broadcasting in a NOW may be more challenging due to the variety of
communication links and, consequently, of point-to-point latencies. In this
paper, we present a strategy to improve broadcast algorithms that are based on
binomial trees, which are used in regular-topology platforms, so that they can
execute efficiently in Local NOWs.

1 Introduction

Recent advances in high-speed networks and improved microprocessor performance
are making clusters of workstations an appealing vehicle for cost-effective parallel
computing. Clusters of workstations are playing a major role in supercomputing [15],
being used effectively as parallel machines for large, parallel, scientific applications.
With the advent of the Internet, these clusters have been evolving from homogeneous
machines connected by a Local Area Network (LAN) to different kinds of machines
connected by the Internet. These heterogeneous clusters have been called NOW (Net-
work of Workstations) in the literature. In fact, several groups have developed sys-
tems to support the usage of these networks. Some examples are the NOW Project [1]
from the University of California, Berkeley and the CONDOR System [6] from the
University of Wisconsin.

Although the high-performance computing community has been trying to sell the
idea that using machines everywhere is the solution, using local machines may be a

1. This research was supported in part by NSF cooperative agreement ACI-9619020
through computing resources provided by the National Partnership for Advanced
Computational Infrastructure at the San Diego Supercomputer Center. 



VECPAR 2002

2

more interesting approach in several situations. Usually, researchers have access to
machines inside their own institution only. Besides, even when they do have access to
machines in other institutions, they will probably have lower priority and higher
costs. Also, the performance obtained with local machines only may be higher than
the performance obtained when using machines which are separated by WAN (Wide
Area Network) links. Another important issue is security. Some researchers may not
be willing to have their applications execute outside their own secure network, which
sometimes is protected by a firewall. From a different perspective, many institutions
may not want foreign applications (applications that belong to other institutions) to
execute in their machines, because this will allow potential intruders into their secure
environments.

For these reasons, it seems that LNOWs (Local Networks of Workstations),
which are formed basically by heterogeneous machines connected by heterogeneous
LAN links only, are the perfect environment for distributed parallel applications. In
LNOWs, the machines may be directly connected or separated by anything from one
to several hops. Administratively, these machines may belong to the same or to coop-
erating institutions.

Although these LNOWs seem to be an easy and inexpensive way of obtaining
great performance, it may not always be so. When using an LNOW for executing a
parallel application, performance may not be as good as expected due to delays in
communication. LNOWs are connected by heterogeneous links, which may or may
not include high-latency low-bandwidth paths. Depending on the application's com-
munication pattern and computation/communication ratio, the delays imposed by
these slow paths may affect or not the performance of the application. Also, the
machines forming LNOWs may be time-shared, and contention for CPU may need to
be factored into performance predictions and scheduling strategies.

The heterogeneity in communication makes it hard to take advantage, or reuse,
communication strategies that were useful in regular-topology platforms, e.g., parallel
machines or LAN-based clusters of workstations. For instance, broadcasting in an
LNOW may be more challenging due to the variety of communication links and, con-
sequently, of point-to-point latencies.

Broadcasting is an important communication strategy that is used in a variety of
linear algebra algorithms [9]. In fact, algorithms for broadcasting in different kinds of
environments have been discussed extensively. Broadcast algorithms for hypercube
machines have been discussed in both [5] and [10]. In [4], the authors presents a study
on broadcast algorithms for homogeneous parallel environments. Also, several
groups have been working on projects related to broadcasting in heterogeneous
NOWs. In [13], the authors present ECO, a packet containing efficient collective
operations for these networks of workstations. ECO groups hosts according to the
network topology, i.e., each group contains nodes that belong to the same LAN.
Based on these groups, ECO implements the broadcast operation using a specific
algorithm for each LAN. In [12], the authors also present a solution for more efficient
broadcasting in networks of workstations. They also group the hosts according to the
network topology, but they use a binomial tree for each LAN. In [2], Banikazemi et al
deal with the heterogeneity in the cluster by forming broadcast trees according to the



VECPAR 2002

3

capacity of each machine. In [3], the authors present a communication model of heter-
ogeneous clusters of workstations for performance characterization of collective
operations. In [7], the author shows how to improve hypercube broadcast algorithms
so that they can execute more efficiently in NOWs.

In this paper, we present a strategy to improve broadcast (i.e., one-to-all) algo-
rithms that are based on binomial trees, which are generally used in regular-topology
platforms, so that they can execute efficiently in LNOWs. The strategies discussed do
not assume any kind of topology, i.e., the machines may be organized in any topology.
It takes into account the distance (or latency) between the nodes to come up with a
performance-efficient binomial tree to be used by a broadcast algorithm. We evaluate
the efficiency of the strategy proposed by comparing the time to execute broadcast
operations using different strategies.

The paper is organized as follows. Section 2 explains how binomial trees can be
used for broadcasting in LNOWs. Section 3 shows how to improve binomial trees to
make them more efficient for broadcasting in LNOWs. Section 4 presents a represen-
tative set of the experiments performed. Section 5 concludes and discusses future
work.

2 Using a Binomial Tree for Broadcasting in LNOWs

According to the results presented in [4] and [11], one-to-all operations require differ-
ent structures depending on the topology of the network. For instance, if the nodes are
connected by high-latency links (e.g., WAN links), a flat tree will be the best choice.
This happens because by the time a message comes to a distant node, and this node is
ready to start forwarding the message, the source node will have had time to start for-
warding the message to all the nodes. On the other hand, if the nodes are part of a
LAN connected by high-speed links, a binomial tree is the best choice, since a node
can start forwarding a message received before the source has time to send the mes-
sage to all the nodes. In fact, binomial trees have been extensively used for one-to-all
operations in homogeneous LAN-based clusters of workstations, in which their wide
augmenting structure provides the broadcast operation with parallelism.

These are the extremes, and other options may be necessary when the topology is
more complex. For example, in [11], the authors show that, when the network is hier-
archical and formed by LAN-based clusters interconnected by WAN links, using
binomial trees intra cluster and a flat structure inter cluster is the best solution.

In this paper, we will focus on the case in which the network is formed by nodes
connected by LAN links. These nodes may be one or more hops away, and some of
them may be connected directly. Since the nodes are connected by LAN links, and
there is no specific structure connecting these nodes, the best approach would be to
use a binomial tree. 

To use a binomial tree for broadcasting in an LNOW, the nodes need to be orga-
nized as a binomial tree. In MPICH [14], this is done according to their identification
number. For example, in Figure 1, there is an LNOW formed by 8 nodes. These nodes
are assigned identification numbers 0 to 7. According to these numbers, a binomial
tree can be created, as shown in Figure 2.



VECPAR 2002

4

Fig. 1. LNOW formed by 8 nodes connected by LAN links.

Fig. 2. Binomial tree formed by 8 nodes according to their identification number.

In homogeneous LAN-based clusters of workstations, the nodes are homoge-
neous and connected by a fast LAN, and the distance (or latency) between each pair
of nodes is the same. Therefore, the position of each node in the tree does not affect
the performance of the broadcast operation, and forming the tree blindly, i.e., inde-
pendently of the network topology, leads to good performance. However, in LNOWs,
due to the heterogeneity in communication, we need a performance-efficient binomial
tree, in which the placement of the nodes on the tree reflects the topology of the net-
work. To illustrate, Figure 3 shows the tree obtained according to the identification
numbers assigned blindly to the nodes. The number on each edge represents the dis-
tance between the respective pair of nodes, which was obtained from Table 1. Dis-
tances are in number of hops, and a distance of zero between two nodes means that
these two nodes are directly connected.

It is clear that the tree in Figure 3 is not very efficient. For instance, nodes 0 and
3 are close, but they communicate through node 2, which is not as close to either of
them. The same happens to nodes 0 and 6, which are also close, but communicate
through node 4, which is not close to either of them. This example motivates the need
to rearrange the nodes in order to decrease communication costs.

0 1 2 3

4 5 6 7

LAN links

0

1

5

2 4

3

7

6



VECPAR 2002

5

Fig. 3. Binomial tree formed blindly according the nodes’ identification number.

3 Improving the Binomial Tree for Broadcasting in LNOWs

Intuitively, a broadcast algorithm would execute more efficiently if we could have
communication take place only between nodes that are close together. We define that
node A is closer to node B than to node C, if the latency between nodes A and B is
lower than the latency between nodes A and C. Our strategy to reorganize the nodes to
form a more performance-efficient low-cost binomial tree is based on the distance (or
latency) between the nodes. We try to place nodes that are close together in communi-
cating positions, so that communication in each step of the broadcast operation hap-
pens within a short distance. This will decrease communication costs and lower the
total cost of the broadcast operation.

In order to compare different strategies, we will use a cost measure. The cost of a
tree is defined as the cost of the path with the highest cost, and the cost of each path is
calculated as the sum of all its edges (i.e., distances) from the root to the respective
leaf. For example, the cost for the tree in Figure 3 is 3+3+0=6. This measure assumes
that all the paths are covered roughly in parallel, which is true in LNOWs, and it uses
the longest path for comparison since this is the path that determines the time to exe-

Table 1: Distances between the nodes (in number of hops).

0 1 2 3 4 5 6 7

0 0 2 2 0 3 3 0 0

1 2 0 0 2 5 5 2 2

2 2 0 0 2 5 5 2 2

3 0 2 2 0 3 3 0 0

4 3 5 5 3 0 0 3 3

5 3 5 5 3 0 0 3 3

6 0 2 2 0 3 3 0 0

7 0 2 2 0 3 3 0 0

0

1

5

2 4

3

7

6

3

3

0

2
2

2 0



VECPAR 2002

6

cute a broadcast operation.
Taking the distance into account, we can build an improved binomial tree using

different algorithms. The first algorithm, which we call Depth-First, sweeps the bino-
mial tree recursively from right to left, depth first, choosing each child to be the node
(from the ones left) that is closest to the parent. The algorithm is shown in Figure 4.

This algorithm tries to place nodes that are closer in the same subtree and gives
priority to the right (deepest and fullest) side of the tree. Figure 5 shows the tree
obtained using the Depth-First algorithm when applied to the same LNOW described
in Table 1.

Fig. 4. Depth-First algorithm.

Fig. 5. Binomial tree formed by the Depth-First algorithm,
according to the distances shown in Table 1.

This strategy provides a bad result for some topologies, because it may cause
some paths to be heavier than others, delaying the entire operation. In Figure 5, for
example, the path formed by nodes 0, 2, and 4 is heavier than the others, and the cost
of the tree, 2+5=7, is higher than the cost of the tree shown in Figure 3. Intuitively, the
best binomial tree for broadcasting in an LNOW should have a balanced total distance
on the paths from the root to the leaves. This would lead to a better distribution of
communication costs.

The second algorithm, which we call Breadth-First, sweeps the binomial tree
from right to left, breadth first, choosing each child to be the node (from the ones left)
that is closest to the parent. This strategy tries to balance the paths from the root to the

depth-first (p, n)
>> node n is in position p
c = number of children in position p 
for i = c - 1 down to 0

x = new child chosen for node n 
update x’s position in the tree
depth-first (x’s position, x)

0

5

1

2 3

4

7

6

0

0

0

2
3

5 2



VECPAR 2002

7

leaves by choosing a child for each path in each level of the tree. The process goes
from right to left, giving priority to the longest paths at the right side of the tree. The
algorithm is shown in Figure 6. It uses a list, where new children is placed dynami-
cally, to enforce the breadth-first search.

Fig. 6. Breadth-First algorithm.

This seems to be a good approach, and it does work in some cases. However, it is
also not very robust, in the sense that it fails for many topologies, producing trees that
are worse than the one generated blindly. The problem is that this algorithm does not
take into account the fact that the paths are not all the same size. Therefore, the total
distance in the paths will not be balanced, and there will be heavy paths imposing a
long delay on the broadcast process. This solution may work well for n-ary trees,
where the paths have about the same number of nodes.

Figure 7 shows the tree obtained using the Breadth-First algorithm when applied
to the LNOW described in Table 1. The tree generated in this example also contains a
heavy path, 0+2+5=7, which compromises the performance of the broadcast opera-
tion.

Fig. 7. Binomial tree formed by the Breadth-First algorithm,
according to the distances shown in Table 1.

breadth-first ()
>>node 0 is in position 0
place node 0 in list l
for each node n in list l

take node n from list l
p = position of node n
c = number of children in position p
for i = c - 1 down to 0

x = new child chosen for node n 
update x’s position in the tree
include x in list l

0

7

2

6 3

4

5

1

0

2

5

23

0
0



VECPAR 2002

8

The third algorithm, which we call Balanced-Path, solves the problem with the
paths of different sizes. This algorithm sweeps the tree, serving the nodes with the
highest number of undefined children first, choosing each child to be the node (from
the ones left) that is closest to the parent. The algorithm is shown in Figure 8.

This strategy balances the paths from the root to the leaves by giving priority to
the parents that have the largest number of children, since parents with more children
belong to longer paths. In a tie, the algorithm goes from right to left, giving priority to
the longest paths at the right side of the tree. This algorithm does take into account the
fact that the paths are not the same size. Therefore, the total distance in the paths will
be balanced, and the communication costs will be distributed roughly evenly. Experi-
ments have shown that this strategy does generate performance-efficient binomial
trees.

Fig. 8. Balanced-Path algorithm.

Figure 9 shows the tree obtained using the Balanced-Path algorithm when
applied to the LNOW described in Table 1. It is clear that the improved tree will be
able to provide a better performance, since the paths are well balanced. The cost of
this tree, which is 3, is lower than the cost of the trees shown in Figure 3, Figure 5,
and Figure 7.

Fig. 9. Binomial tree formed by the Balanced-Path algorithm,
according to the distances shown in Table 1.

For an LNOW formed by p nodes, the three algorithms presented take O(p2)
steps to generate an improved binomial tree. Since the binomial tree only needs to be
updated in case of a significant change in the network load, this cost is not significant
in comparison with the gains obtained.

balanced-path ()
for each node n

p is the node with the largest number of children 
x = new child chosen for node p
update x’s position in the tree

0

5

2

7 3

4

1

6

0

0

2

23

0
3



VECPAR 2002

9

4 Experiments

We have verified the performance obtained with each kind of tree by performing
experiments on the IBM SP Blue Horizon at the San Diego Supercomputer Center.
The IBM-SP is a LAN-based, regular-topology cluster, in which we have emulated
diverse LNOWs by enforcing different latencies between the nodes. Our emulator
was implemented using MPI [14] and has the following parameters: the number of
nodes in the cluster and the maximum number of groups in the cluster, i.e., the maxi-
mum number of groups in which the nodes are directly connected. From these two
parameters, the emulator generates random LNOWs, which have various combina-
tions of number of groups, groups’ sizes, and latencies among the various groups. The
latencies are given in multiples of a basic latency, which is equivalent to the latency
between 2 workstations connected by fast Ethernet (100Mbps), i.e., ~35µs. The emu-
lator generates the topologies by generating the distance between each node and node
0. Distances are in number of hops, and the distance between two nodes is calculated
as follows. Two nodes that have the same distance to node 0 are in the same group,
i.e., they are 0 hops away from each other. For example, if node 1 is 2 hops away from
node 0, and node 2 is 2 hops away from node 0, then node 1 is 0 hops away from node
2. The distance between two nodes that belong to different groups is calculated as the
sum of the distance between each node and node zero. For example, if node 2 is 2
hops away from node 0, and node 4 is 3 hops away from node 0, then node 2 is 5 hops
away from node 4. To characterize the LNOW, the maximum distance between 2
nodes is 20 hops.

Experiments have shown that the time to execute a broadcast operation depends
on the cluster topology, and that reorganizing the nodes according to the distance def-
initely affects the performance obtained. The graphs below present a representative
set of our experiments. Each graph presents a set of 4 experiments (i.e., 4 different
topologies) and compares the usage of different strategies for each of them. The
topology, i.e., the number of groups and the size of the groups, is generated randomly
and varies from experiment to experiment. For each experiment, we show the time to
execute 10,000 one-to-all operations using, respectively, the regular binomial tree
generated blindly (which is actually used by MPICH [14]), a depth-first tree, a
breadth-first tree, and a balanced-path tree. We also show the time to execute 10,000
one-to-all operations using a flat structure (in which the source node sends a point-to-
point message to each of the other nodes) and a magpie [11] structure (in which the
source node sends a message to one node in each group, which forwards the message
to the other nodes in the same group using a binomial tree). Note that, even though
the magpie structure is not a perfect match for this unstructured environment, since
the nodes may or may not be organized in groups, we include its performance for
completeness. In our experiments, when the topology presents groups, the magpie
algorithm uses a binomial tree for each group, and when the topology does not
present groups, the magpie structure is reduced to a flat structure.

Figure 10 shows a set of experiments where the number of nodes is 32 and the
maximum number of groups is 8. This means that the 32 nodes are divided into up to
8 groups of nodes. In this case, the flat structure is the best option. Among the algo-



VECPAR 2002

10

rithms based on binomial trees, the one that uses the balanced-path tree is the best
option, corroborating with the study shown in Section 3. Note that, in experiment 2,
the depth-first tree achieves a performance that is worse than the performance
obtained with the regular binomial tree. In experiment 4, it is the breadth-first tree that
achieves a performance that is worse than the performance obtained by the regular
binomial tree.

Figure 11 shows a set of experiments where the number of nodes is 64 and the
maximum number of groups is 32. This means that the 64 nodes are divided into up to
32 groups of nodes. In this case, the flat structure is just a little better than the bal-
anced-path binomial tree. The performance obtained with the flat structure is sensi-
tive to the number of nodes used. Among the binomial trees, the balanced-path one is
still the best option.

Figure 12 shows a set of experiments where the number of nodes is 128 and the
maximum number of groups is 8. This means that the 128 nodes are divided into up to
8 groups of nodes. In this scenario, the flat structure is the worst option, and the bal-
anced-path binomial tree is the best one. This set of experiments shows that for a
large number of nodes, in this type of environment, flat structures are inefficient.

Figure 13, Figure 14, and Figure 15 show sets of experiments where the number
of nodes is 128. In Figure 13, the maximum number of groups is 32. In Figure 14, the
maximum number of groups is 64. In Figure 15, the maximum number of groups is
128. The results obtained in each set of experiments are similar, showing that the
number of groups does not affect the behavior of the strategies.

From the experiments presented, it is clear that using a strategy to improve the
binomial tree is key for broadcast operations to execute efficiently in LNOWs. Gener-
ally, the gains provided by the improved trees can be quite high. Among the algo-
rithms based on binomial trees, the one based on a balanced-path tree achieves the
best performance. In fact, it always achieves a performance that is better than the per-
formance obtained with the regular blind tree. The performance obtained with the
depth-first and the breadth-first trees is, in most cases, comparable to the performance
obtained with the regular blind tree.

The flat structure is the best option when using a small number of nodes, but it is
inefficient when the number of nodes increases. In fact, for a large number of nodes,
the flat structure provides a performance that is much worse than the performance
obtained with any of the binomial trees.

The magpie approach, which is the best option for LAN-based clusters intercon-
nected by WAN links (according to [11]), is not a good option in this environment,
specially when there are no groups, i.e., when the nodes are scattered. In this case, the
magpie structure resembles the flat structure, which provides a poor performance
when the number of nodes is large.

From the experiments presented, we can also conclude that, in this kind of envi-
ronment, the topology of the network and the number of groups in the network do not
affect significantly the performance of the algorithms. In fact, the important factor is
the number of nodes, which affects the performance obtained with the flat structure.



VECPAR 2002

11

Fig. 10. The graph compares the usage of different strategies, when the number of nodes is 32 
and the number of groups in the given topologies is at most 8.

Fig. 11. The graph compares the usage of different strategies, when the number of nodes is 64 
and the number of groups in the given topologies is at most 32.

Fig. 12. The graph compares the usage of different strategies, when the number of nodes is 
128 and the number of groups in the given topologies is at most 8.

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4

regular
depth
breadth
path
flat
magpie

tim
e 

(s
ec

on
ds

)

experiments

0

1

2

3

4

5

6

1 2 3 4

regular
depth
breadth
path
flat
magpie

tim
e 

(s
ec

on
ds

)

experiments

0

1

2

3

4

5

6

7

8

1 2 3 4

regular
depth
breadth
path
flat
magpie

tim
e 

(s
ec

on
ds

)

experiments



VECPAR 2002

12

Fig. 13. The graph compares the usage of different strategies, when the number of nodes is 
128 and the number of groups in the given topologies is at most 32.

Fig. 14. The graph compares the usage of different strategies, when the number of nodes is 
128 and the number of groups in the given topologies is at most 64.

Fig. 15. The graph compares the usage of different strategies, when the number of nodes is 
128 and the number of groups in the given topologies is at most 128.

0

1

2

3

4

5

6

7

8

1 2 3 4

regular
depth
breadth
path
flat
magpie

tim
e 

(s
ec

on
ds

)

experiments

0

1

2

3

4

5

6

7

8

1 2 3 4

regular
depth
breadth
path
flat
magpie

tim
e 

(s
ec

on
ds

)

experiments

0

1

2

3

4

5

6

7

8

1 2 3 4

regular
depth
breadth
path
flat
magpie

tim
e 

(s
ec

on
ds

)

experiments



VECPAR 2002

13

5 Conclusion

Broadcast algorithms are heavily used by scientific applications, and adapting these
algorithms to execute efficiently in LNOWs is crucial to improve these applications’
performance in these networks.

In this paper, we have presented three algorithms to organize the nodes that form
an LNOW into a performance-efficient binomial tree to be used in broadcast opera-
tions. These algorithms - Depth-First, Breadth-First, and Balanced-Path - are based
on the distance between the nodes in the cluster.

Intuitively, the best binomial tree for broadcasting in an LNOW should have a
balanced total distance on the paths from the root to the leaves, since this leads to a
better distribution of communication costs. In fact, according to the experiments, the
broadcast algorithm based on the balanced-path binomial tree achieves the best per-
formance among the algorithms based on binomial trees. The experiments performed
have also shown that using the performance-efficient balanced-path binomial tree is
even more important as more nodes are used, since in this case the flat structure pro-
vides a poor performance. In summary, the balanced-path binomial tree is an impor-
tant general option for broadcasting in LNOWs.

Using a performance-enhanced binomial tree is important not only for a broad-
cast operation’s performance, but it also contributes to decrease the traffic on the net-
work, improving the performance of the network as a whole.

In the future, we plan to develop better strategies for other broadcast operations,
such as gather, scatter, and barrier, so that they can execute efficiently in LNOWs.

References

1. T. Anderson, D. Culler, D. Patterson, and the NOW team, “A Case for Networks of
Workstations: NOW,” IEEE Micro, vol. 15, no. 1, pp. 54-64, February 1995.

2. M. Banikazemi, V. Moorthy, and D. K. Panda, “Efficient Collective Communication on
Heterogeneous Networks of Workstations,” in Proceedings of the International Conference
on Parallel Processing, August 1998.

3. M. Banikazemi, J. Sampathkumar, S. Prabhu, D. Panda, and P. Sadayappan,
“Communication Modeling of Heterogeneous Networks of Workstations for Performance
Characterization of Collective Operations,” in Proceedings of the Heterogeneous
Computing Workshop, April 1999.

4. M Bernaschi and G. Iannello, “Collective Communication Operations: Experimental
Results vs. Theory,” Concurrency: Practice and Experience, vol. 10, no. 5, pp. 359-386,
1998.

5. D. P. Bertsekas, C. Özveren, G. D. Stamoulis, P. Tseng, and J. N. Tsitsiklis, “Optimal
Communication Algorithms for Hypercubes,” in Journal of Parallel and Distributed
Computing, vol. 11, pp. 263-275, 1991.

6. A. Bricker, M. Litzkow, and M. Livny, “Condor Technical Summary”, Technical Report
#1069, University of Wisconsin, Computer Science Department, May 1992.

7. S. M. Figueira, “Using a Hypercube Algorithm for Broadcasting in Internet-Based
Clusters,” in Proceedings of the International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA), June 2000.



VECPAR 2002

14

8. I. Foster, “Designing and Building Parallel Programs - Concepts and Tools for Parallel
Software Engineering,” Addison Wesley Publishing Company, 1995.

9. D. Gannon and J. Van Rosendale, “On the Impact of Communication Complexity in the
Design of Parallel Numerical Algorithms,” IEEE Transactions on Computers, vol. C-33, pp.
1180-1194, December 1984.

10. S. L. Johnsson and C. Ho, “Optimum Broadcasting and Personalized Communication in
Hypercubes,” IEEE Transactions on Computers, vol. 38, no. 9, pp. 1249-1268, September
1989.

11. T. Kielmann, R. F. H. Hofman, H. E. Bal, A. Plaat, and R. A. F. Bhoedjang, “MagPIe: MPI’s
Collective Communication Operations for Clustered Wide Area Systems,” in Proceedings
of the Symposium on Principles and Practice of Parallel Programming, May 1999.

12. T. Kielmann, H. E. Bal, and S. Gorlatch, “Bandwidth-Efficient Collective Communication
for Clustered Wide Area Systems,” in Proceedings of the International Parallel and
Distributed Processing Symposium, May 2000.

13. B. B. Lowekamp and A. Beguelin, “ECO: Efficient Collective Operations for
Communication on Heterogeneous Networks,” in Proceedings of the 10th International
Parallel Processing Symposium, April 1996.

14. Message-Passing Interface Forum, “MPI: A Message-Passing Interface Standard,”
International Journal of Supercomputing Applications, 8(3/4), 1994.

15. Task Force on Cluster Computing, http://www.dgs.monash.edu.au/~rajkumar/tfcc/.


