First Order Logic

Artificial Intelligence, Santa Clara University 2016
Thomas Schwarz, SJ
The nature of language

• Sapir-Whorf hypothesis (linguistic relativity):
 • Correlation between language and thought
 • Language determinism
 • Language entirely determines the range of possible cognitive processes of an individual
 • Example of constructivism
 • Human faculties and concepts are largely influenced by socially constructed and learned categories
The nature of language

• Natural language is a medium for communication
 • Not merely for representation
• Meaning of language depends on context
• Ambiguity (e.g. meaning of spring) does not impair thinking
The nature of language

• Formal logic:
 • Two different representations do not matter
• Thinking / Learning
 • Outcome can depend on representation
Combining Formal and Natural Languages

- More expressive logic
 - Nouns and noun phrases — objects
 - Verbs and verb phrases — relations
 - Special case: Function
 - One value for a given input
 - Special case: Property
 - Unary relation
Combining Formal and Natural Languages

• One plus two equals three
 • Objects: one, two, three
 • Relation: equals
 • Function: plus

• Equals(Plus(one, two), three)
Combining Formal and Natural Languages

• One plus two equals three
 • Objects: one, two, three
 • Relation: equals
 • Function: plus

• Equals(Plus(one, two), three)
Combining Formal and Natural Languages

• Squares neighboring the wumpus are smelly
 • Objects: wumpus, squares
 • Relation: neighboring
 • Property: smelly

• Neighboring(square, wumpus) implies Smelly(square)
Combining Formal and Natural Languages

- Evil king John ruled England in 1200
 - Objects: John, England, 1200
 - Relation: Rule
 - Property: Evil, King
Syntax and Semantics of First-Order Logic

• Symbols and interpretation
 • Constant symbols: objects
 • Predicate symbols: relations
 • Function symbols: functions

• Interpretation: what do symbols stand for
 • Intended interpretation
 • Richard ~ Richard Lionhearted
 • John ~ John Lackland
 • Brother ~ male sibling relation
 • ...
Syntax and Semantics of First-Order Logic

Sentence → AtomicSentence
 | Sentence Connective Sentence
 | Quantifier Variable,...Sentence
 | ¬Sentence
 | (Sentence)
AtomicSentence → Predicate(Term,...) | Term=Term | Predicate

Term → Function (Term,...)
 | Constant
 | Variable

Connective → ⇒ | ∧ | ∨ | ⇔
Quantifier → ∀ | ∃
Constant → A | X₁ | John | ...
Variable → a | x | s | ...
Predicate → Before | HanColor | Raining | ...
Function → Mother | LeftLegOf | ...
Syntax and Semantics of First-Order Logic

• Atomic sentences
 • predicate symbol
 • optionally followed by a parenthesized list of terms

• Examples:
 • Brother(Richard, John)
 • Married(Father(Richard), Mother(John))
Syntax and Semantics of First-Order Logic

- Complex sentences
 - Obtained using logical connectives
- Example:
 - not Brother(LeftLeg(John), Richard)
 - Brother(John, Richard) and Brother(Richard, John)
Syntax and Semantics of First-Order Logic

• Quantifiers

 • Universal quantification

 \[\forall x \quad \text{King}(x) \Rightarrow \text{Person}(x) \]

 • \(x \) is a variable

 • Term with no variable is called a ground term

• \(\forall x \ P(x) \) true in a model

• IFF true in all extended interpretations

• which specifies a domain element to which \(x \) refers
Syntax and Semantics of First-Order Logic

Universal quantification

\[\forall (\text{variables}) (\text{sentence}) \]

Everyone at Berkeley is smart:
\[\forall x \ At(x,\text{Berkeley}) \Rightarrow \text{Smart}(x) \]

\[\forall x \ P \text{ is true in a model } m \text{ iff } P \text{ is true with } x \text{ being each possible object in the model} \]

Roughly speaking, equivalent to the conjunction of instantiations of \(P \)

\[(At(\text{KingJohn},\text{Berkeley}) \Rightarrow \text{Smart}(\text{KingJohn})) \]
\[\land (At(\text{Richard},\text{Berkeley}) \Rightarrow \text{Smart}(\text{Richard})) \]
\[\land (At(\text{Berkeley},\text{Berkeley}) \Rightarrow \text{Smart}(\text{Berkeley})) \]
\[\land \ldots \]
Syntax and Semantics of First-Order Logic

• Existential quantification

\[\exists x \quad \text{Crown}(x) \land \text{OnHead}(x, \text{John}) \]

• Needs to be true for at least one domain object in each extended interpretation
Syntax and Semantics of First-Order Logic

Existential quantification

\[\exists \text{(variables)} \ (\text{sentence}) \]

Someone at Stanford is smart:
\[\exists x \ \text{At}(x, \text{Stanford}) \land \text{Smart}(x) \]

\[\exists x \ P \text{ is true in a model } m \text{ iff } P \text{ is true with } x \text{ being some possible object in the model} \]

Roughly speaking, equivalent to the disjunction of instantiations of \(P \)

\[(\text{At}(\text{KingJohn}, \text{Stanford}) \land \text{Smart}(\text{KingJohn})) \]
\[\lor (\text{At}(\text{Richard}, \text{Stanford}) \land \text{Smart}(\text{Richard})) \]
\[\lor (\text{At}(\text{Stanford}, \text{Stanford}) \land \text{Smart}(\text{Stanford})) \]
\[\lor \ldots \]
Syntax and Semantics of First-Order Logic

- Perils of translations to First Order Logic
 - How to express that Dick has two brothers, Ernie and Fred
 \[\text{Brother}(\text{Dick}, \text{Ernie}) \land \text{Brother}(\text{Dick}, \text{Fred}) \]
 - is false
 - Need to prevent that Ernie and Fred refer to the same object
 - Does not exclude that Dick has more brothers
 \[\text{Brother}(\text{Dick, Ernie}) \land \text{Brother}(\text{Dick, Fred}) \land \text{Ernie} \neq \text{Fred} \land \forall x \quad \text{Brother}(\text{Dick, } x) \Rightarrow (x = \text{Ernie} \lor x = \text{Fred}) \]
Syntax and Semantics of First-Order Logic

Another common mistake to avoid

Typically, \wedge is the main connective with \exists

Common mistake: using \Rightarrow as the main connective with \exists:

$\exists x \ At(x, Stanford) \Rightarrow Smart(x)$

is true if there is anyone who is not at Stanford!
Syntax and Semantics of First-Order Logic

- Database systems: *Database semantics*
 - *unique names assumption*
 - Every constant refers to a different object
 - *closed-world assumption*
 - Atomic sentences not known to be true are in fact false
 - *domain closure:*
 - There are no more domain elements than those named by constant symbols
Monty Python and The Art of Fallacy

Cast

– Sir Bedevere the Wise, master of (odd) logic
– King Arthur
– Villager 1, witch-hunter
– Villager 2, ex-newt
– Villager 3, one-line wonder
– All, the rest of you scoundrels, mongrels, and nere-do-wells.
An example from Monty Python by way of Russell & Norvig

• FIRST VILLAGER: We have found a witch. May we burn her?
• ALL: A witch! Burn her!
• BEDEVERE: Why do you think she is a witch?
• SECOND VILLAGER: She turned me into a newt.
• B: A newt?
• V2 (after looking at himself for some time): I got better.
• ALL: Burn her anyway.
• B: Quiet! Quiet! There are ways of telling whether she is a witch.
Monty Python cont.

• **B**: Tell me… what do you do with witches?
• **ALL**: Burn them!
• **B**: And what do you burn, apart from witches?
• **Third Villager**: …wood?
• **B**: So **why do witches burn**?
• **V2 (after a beat)**: because they’re made of wood?
• **B**: Good.
• **ALL**: I see. Yes, of course.
B: So how can we tell if she is made of wood?
V1: Make a bridge out of her.
B: Ah… but can you not also make bridges out of stone?
ALL: Yes, of course… um… er…
B: Does wood sink in water?
ALL: No, no, it floats. Throw her in the pond.
B: Wait. Wait… tell me, what also floats on water?
ALL: Bread? No, no no. Apples… gravy… very small rocks…
B: No, no, no,
• **KING ARTHUR**: A duck!
• *(They all turn and look at Arthur. Bedevere looks up, very impressed.)*
• **B**: Exactly. So… logically…
• **V1 (beginning to pick up the thread)**: If she… weighs the same as a duck… she’s made of wood.
• **B**: And therefore?
• **ALL**: A witch!
Monty Python Fallacy #1

• $\forall x \text{ witch}(x) \rightarrow \text{burns}(x)$
• $\forall x \text{ wood}(x) \rightarrow \text{burns}(x)$
• ------------------------------
• $\therefore \forall z \text{ witch}(x) \rightarrow \text{wood}(x)$

• $p \rightarrow q$
• $r \rightarrow q$
• --------
• $p \rightarrow r$ Fallacy: Affirming the conclusion
Monty Python Near-Fallacy #2

- wood(x) → can-build-bridge(x)
- -------------------------------
- ∴ can-build-bridge(x) → wood(x)

• B: Ah… but can you not also make bridges out of stone?
Monty Python Fallacy #3

• ∀x wood(x) → floats(x)
• ∀x duck-weight (x) → floats(x)
• ----------------------------
• ∴ ∀x duck-weight(x) → wood(x)

• p → q
• r → q
• -------
• ∴ r → p
Using first order logic

- First order logic Knowledge Base (KB)
 - Use TELL to add assertions
 - Use ASK for queries (a.k.a. goals)
 - Example: \(\text{ASK}(\text{KB, } \exists x : \text{Person}(x)) \)
 - Find substitutions / binding list:
 - Example: \(\text{ASKVARS}(\text{Person}(x)) \)
 - Answer: \(\{x/\text{John}\}, \{x/\text{Richard}\} \)
Using First-Order Logic

- Binding lists cannot always be supplied
 - KB:
 \[\text{King(John)} \lor \text{King(Richard)} \]
 - No answer for
 \[\text{ASKVAR(King(x))} \]
Natural Numbers

• Peano axioms
 • Constant symbol 0
 • Successor function S
• Definition of natural numbers

\[
\begin{align*}
\text{NatNum}(0) \\
\forall n \text{NatNum}(n) \Rightarrow \text{NatNum}(S(n))
\end{align*}
\]

• Constraints on successor function

\[
\begin{align*}
\forall n : 0 \neq S(n) \\
\forall n, m : n \neq m \Rightarrow S(n) \neq S(m)
\end{align*}
\]
Using First-Order Logic

• Peano axioms
 • Define addition

\[\forall n : \text{NatNum}(n) \Rightarrow +(0, n) = n \]
\[\forall n, m : \text{NatNum}(n) \land \text{NatNum}(m) \Rightarrow +(S(n), m) = S(+ (n, m)) \]
Knowledge Engineering

- Knowledge Engineering Process
 1. Identify the task:
 - Range of questions
 - Kinds of facts
 2. Assemble the relevant knowledge
 3. Decide on a vocabulary of predicates, functions and constants
 4. Encode general knowledge about the domain
Knowledge Engineering

- Knowledge Engineering Process
 5. Encode a description of the specific problem instance
 6. Pose queries to the inference procedure and get answers
 7. Debug the knowledge base
Electronic Circuit Domain

• Step 1: Identify the task
 • Does the circuit add up properly
 • If all inputs are high, what is the output of gate A2
 • Does the circuit contain feedback loops
• Not considered:
 • Timing delays
 • Circuit area
 • Power consumption
 • Production costs
Electronic Circuit Domain

- Step 2: Assemble the relevant knowledge
 - Need to know rules about gates
 - Need to specify connections
- Step 3: Decide on a vocabulary
 - Assert that an object X is a gate
 - $\text{gate}(X1)$
 - Assert the type of a gate
 - $\text{Type}(X1) = \text{XOR}$
 - Talk about circuits
 - $\text{Circuit}(C1)$
Electronic Circuit Domain

- Step 3: Decide on a Vocabulary (cont.)
 - Terminals
 - Terminal(x)
 - Each gate has one output terminal and one or two input terminals
 - First input terminal to X
 - In(1,X)
 - Out(X)
Electronic Circuit Domain

- Step 3: Decide on a Vocabulary (cont.)
 - Function arity gives the number of terminals
 - $\text{Arity}(c, i, j)$
 - Connectivity of terminals is a predicate
 - $\text{Connected}(\text{Out}(1,X1), \text{In}(1,X2))$
 - Use two signal values 0 and 1
 - Use function to obtain the signal at a terminal
 - $\text{Signal}(t)$
Electronic Circuit Domain

- Encode General Knowledge

\[\forall t_1, t_2 \text{Terminal}(t_1) \wedge \text{Terminal}(t_2) \wedge \text{Connected}(t_1, t_2) \Rightarrow \text{Signal}(t_1) = \text{Signal}(t_2) \]

\[\forall t \text{Terminal}(t) \Rightarrow \text{Signal}(t) = 1 \vee \text{Signal}(t) = 0 \]

\[\forall t_1, t_2 \text{Connected}(t_1, t_2) \iff \text{Connected}(t_2, t_1) \]

\[\forall g \text{Gate}(g) \wedge k = \text{Type}(g) \Rightarrow \]

\[k = \text{AND} \vee k = \text{OR} \vee k = \text{XOR} \vee k = \text{NOT} \]
Electronic Circuit Domain

\[\forall g \text{Gate}(g) \land \text{Type}(g) = \text{AND} \Rightarrow \]
\[\text{Signal(Out(1, g))} = 0 \iff \exists n \text{Signal(In(n, g))} = 0 \]

\[\forall g \quad \text{Gate}(g) \land \text{Type}(g) = \text{OR} \Rightarrow \]
\[\text{Signal(Out(1, g))} = 1 \iff \exists n \text{Signal(In(n, g))} = 1 \]

\[\forall g \quad \text{Gate}(g) \land \text{Type}(g) = \text{XOR} \Rightarrow \]
\[\text{Signal(Out(1, g))} = 1 \iff \text{Signal(In(1, g))} \neq \text{Signal(In(2, g))} \]

\[\forall g \quad \text{Gate}(g) \land \text{Type}(g) = \text{NOT} \Rightarrow \]
\[\text{Signal(Out(1, g))} \neq \text{Signal(In(1, g))} \]
Electronic Circuit Domain

\(\forall g \, \text{Gate}(g) \land \text{Type}(g) = \text{NOT} \Rightarrow \text{arity}(g, 1, 1) \)

\(\forall g \, \text{Gate}(g) \land (\text{Type}(g) = \text{AND} \lor \text{Type}(g) = \text{OR} \lor \text{Type}(g) = \text{XOR}) \Rightarrow \text{arity}(g, 2, 1) \)

\(\forall c \forall i \forall j \quad \text{Circuit}(c) \land \text{Arity}(c, i, j) \Rightarrow \\
(\forall n \quad n \leq i \Rightarrow \text{Terminal}(\text{In}(c, n))) \\
\land (\forall n \quad n > i \Rightarrow \neg\text{Terminal}(\text{In}(c, n))) \\
\land (\forall n \quad n \leq j \Rightarrow \text{Terminal}(\text{Out}(c, n))) \\
\land (\forall n \quad n > j \Rightarrow \neg\text{Terminal}(\text{Out}(c, n))) \)
Electronic Circuit Domain

\[\forall x, y : \text{Gate}(x) \land \text{Terminal}(y) \Rightarrow x \neq y \]
\[\forall x : \text{Gate}(x) \Rightarrow x \neq 0 \]
\[\forall x : \text{Gate}(x) \Rightarrow x \neq 1 \]
\[\forall x : \text{Gate}(x) \Rightarrow x \neq \text{Nothing} \]

\[\forall x : \text{Terminal}(x) \Rightarrow x \neq 0 \]
\[\forall x : \text{Terminal}(x) \Rightarrow x \neq 1 \]
\[\forall x : \text{Terminal}(x) \Rightarrow x \neq \text{Nothing} \]
Electronic Circuit Domain

And ≠ Or
And ≠ Xor
And ≠ Not
Or ≠ Xor
Or ≠ Not
Xor ≠ Not
Nothin ≠ And
Nothing ≠ Or
Nothin ≠ Xor
Nothing ≠ Not
Electronic Circuit Domain

- Encode the specific problem instance

\[
\text{Circuit}(C_1) \land \text{arity}(C_1, 3, 2)
\]
\[
\text{Gate}(X_1) \land \text{Type}(X_1) = \text{Or}
\]
\[
\text{Gate}(X_2) \land \text{Type}(X_2) = \text{Xor}
\]
\[
\text{Gate}(A_1) \land \text{Type}(A_1) = \text{And}
\]
\[
\text{Gate}(A_2) \land \text{Type}(A_2) = \text{And}
\]
\[
\text{Gate}(O_1) \land \text{Type}(O_1) = \text{Or}
\]
Connected(Out(1, X₁), In(1, X₂))
Connected(Out(1, X₁), In(2, A₂))
Connected(Out(1, A₂), In(1, O₁))
Connected(Out(1, A₁), In(2, O₁))
Connected(Out(1, X₂), Out(1, C₁))
Connected(Out(1, O₁), Out(2, C₁))
Connected(In(1, C₁), In(1, X₁))
Connected(In(1, C₁), In(2, A₁))
Connected(In(2, C₁), In(2, X₁))
Connected(In(2, C₁), In(2, A₁))
Connected(In(3, C₁), In(2, A₂))
Connected(In(3, C₁), In(2, X₂))
Electronic Circuit Domain

- Debugging:
 - System currently unable to provide outputs for circuits except for 000 and 110 as inputs
 - Forgot to assert

\[1 \neq 0 \]

- This type of errors are very common