The square G^2 of a directed graph $G = (V, E)$ is a directed graph with the same set of vertices, but the edge set contains (u, v) if and only if there is another vertex w such that $(u, w), (w, v) \in E$. For each popular representation of a matrix, give efficient algorithms to calculate G^2.

An Euler tour of a strongly connected, directed graph $G = (V, E)$ is a numbering $e_i, i = 1, \ldots, n$ of all the edges so that e_i ends in a vertex v and e_{i+1} starts in the same vertex v. In addition, the last edge e_n ends in the starting vertex of e_1. Show that G has an Euler tour if and only if every vertex has in-degree $=$ out-degree. Describe an $O(E)$ algorithm that finds a Euler tour of G if such a tour exists. How about Euler paths?