1. Maps

Recall that a map \(f: M \rightarrow N, \ m \rightarrow f(m) \) is determined by three components, the set \(M \) of arguments, the range set \(N \), and an association rule that associates with each and every element \(m \in M \) a single image \(f(m) \).

Assume that \(M_1 \subset M \) is a subset of \(M \). The restriction \(f|_{M_1}: M_1 \rightarrow N, \ m \rightarrow f(m) \) has the same association rule as \(f \), but a different range of arguments.

Definition: A map \(f: M \rightarrow N, \ m \rightarrow f(m) \) is called injective iff the following condition is true:

\[
\forall m_1, m_2 \in M : f(m_1) = f(m_2) \Rightarrow m_1 = m_2
\]

Remark: The injectivity condition is equivalent to the following one

\[
\forall m_1, m_2 \in M : m_1 \neq m_2 \Rightarrow f(m_1) \neq f(m_2).
\]

This follows from a general principle of elementary logic. If \(S, T \) are two statements, then the statement \(S \Rightarrow T \) is equivalent to the statement \(-T \Rightarrow -S \).

Definition: A map \(f: M \rightarrow N, \ m \rightarrow f(m) \) is called surjective iff

\[
\forall n \in N \ \exists m \in M : f(m) = n.
\]

Remark: A map is surjective if every element of the range \(N \) of \(f \) is indeed the image of (one or more elements) of \(M \).

Definition: A map \(f: M \rightarrow N, \ m \rightarrow f(m) \) is called bijective iff it is both injective and surjective.

Definition: Let \(f: M \rightarrow N, \ m \rightarrow f(m) \) and \(g: N \rightarrow P, \ n \rightarrow g(n) \) be two maps such that the set of arguments of the latter is the range of the former. Then the composition of \(f \) and \(g \) is

\[
g \circ f: M \rightarrow P, \ m \rightarrow g(f(m)).
\]

We call \(\text{Id}_M: M \rightarrow M, \ m \rightarrow \text{Id}_M(m) := m \) the identity map.

Proposition: If \(f: M \rightarrow N, \ m \rightarrow f(m) \) is bijective, then there exists a map \(f^{-1}: N \rightarrow M \) such that \(f \circ f^{-1} = \text{Id}_N \) and \(f^{-1} \circ f = \text{Id}_M \).
2. Group Homomorphisms

Definition: Let \((G_1, \cdot)\) and \((G_2, \cdot)\) be two groups, both with a product written as the multiplication “\(\cdot\)”. A group homomorphism \(h: G_1 \to G_2\) is a map that fulfills the following condition:

\[\forall a, b \in G_1 : h(a \cdot b) = h(a) \cdot h(b).\]

We often say: “Let \(h: G_1 \to G_2\) be a group homomorphism” to mean “Let \((G_1, \cdot)\) and \((G_2, \cdot)\) be two groups and let \(h: G_1 \to G_2\) be a group homomorphism.

Proposition: Let \(h: G_1 \to G_2\) be a group homomorphism. Then

1. \(h\) maps the unit element (a.k.a. the identity element or the neutral element) of \(G_1\) into the unit element of \(G_2\).
2. For all \(a \in G_1\) we have \(f(a^{-1}) = (f(a))^{-1}\).

Proposition: Let \(G\) be a commutative group. (That is, the commutative law holds.) Let \(n\) be an integer. Then \(p_n: G \to G, g \mapsto p_n(g) := g^n\) defines a group homomorphism. Similarly, \(i: G \to G, g \mapsto i(g) := g^{-1}\) is a group homomorphism.

Proposition: Let \(h_1: G_1 \to G_2\) and \(h_2: G_2 \to G_3\) be group homomorphisms. Then the composition \(h_2 \circ h_1: G_1 \to G_3\) is also a group homomorphism.

Proposition: Let \(h: G_1 \to G_2\) be a group homomorphism. Define \(\text{kern}(h) = \{x \in G_1 \mid h(x) = e_{G_2}\}\) to be the set of all elements in \(G_1\) that are mapped onto the identity element of the second group. Then \(\text{kern}(h)\) is a subgroup.

Proposition: Let \(h: G_1 \to G_2\) be a group homomorphism. Define \(\text{im}(h) = \{x \in G_2 \mid \exists a \in G_1 : h(a) = x\}\) to be the set of all elements in \(G_2\) that are an image of one or more elements in \(G_1\). Then \(\text{im}(h)\) is a subgroup.

Proposition: Let \(h: G_1 \to G_2\) be a group homomorphism. Then \(h\) is injective iff \(\text{kern}(h) = \{e_{G_1}\}\).