Cyclic Groups

The integers \(\mathbb{Z} = \{ \ldots, -2, -1, 0, 1, 2, \ldots \} \) form an additive group. We shall determine its subgroups. In this context, we use the following fundamental fact of integer multiplication:

FACT: Let \(y, a \in \mathbb{Z} \). Then there exist integers \(n \in \mathbb{Z} \) and \(r \in \mathbb{Z} \), \(0 \leq r < |a| \) such that

\[
y = n \cdot a + r.
\]

Let \(H \) be a subgroup of (\(\mathbb{Z}, + \)). Let \(a \) be the smallest positive element in \(H \). (Why is there such an element? Could not \(H \) only consist of negative numbers?) Show that \(H = (a) := \{ n \cdot a \mid n \in \mathbb{Z} \} \).

Definition: Let \((G, \cdot) \) be a group. We say that \(G \) is cyclic if there exists an element \(a \in G \) such that every element of \(G \) can be written as \(a^n \) for some \(n \in \mathbb{Z} \). In this case, we call \(a \) a generator of \(G \).

Let \((G, \cdot) \) be a group and \(a \in G \) an element of \(G \). Then \(f : (\mathbb{Z}, +) \rightarrow (G, \cdot), n \rightarrow f(n) := a^n \) is a homomorphism. (Why?)

The kernel of \(f \) is a subgroup of (\(\mathbb{Z}, + \)). If this subgroup is all of \(\mathbb{Z} \), then the subgroup \(< a > = \{ a^n \mid n \in \mathbb{Z} \} \) is isomorphic to \(\mathbb{Z} \). Otherwise, \(\ker f = (d) \). Prove that the elements \(e, a, a^2, \ldots, a^{d-1} \) are all distinct.

Proposition: If the number of elements in a group \(G \) is \(p \), a prime, then \(G \) is cyclic.

Proposition: If \(G \) is cyclic, then so is any subgroup and any homomorphically image of \(G \).

Proposition: Let \(G = < a > \) be a cyclic subgroup of order (=size) \(m \). An element \(b \in G \) is a generator of \(G \) if and only if \(b = a^i \) with \(i \) relatively prime to \(m \).