(In the following, assume that all vectors are elements of a fixed vector space V over the field Φ.)

Definition: A subspace of a vector space V (over field Φ) is a set $S \subseteq V$ such that S is a vector space in its own right.

Lemma: A subset $M \subset V$ is a subspace of vector space V if and only if the following conditions hold:
1. $0 \in M$.
2. For all $a, b \in M$: $a + b \in M$.
3. For all $a \in M$ and $x \in \Phi$: $xa \in M$.

Lemma: If S and T are two subspaces of V, then $S \cap T$ is also a subspace.

Lemma: If S and T are two subspaces of V, then $S \cup T$ is usually not a subspace.

Definition: If $v_1, v_2, \ldots, v_n \in V$, then $< v_1, v_2, \ldots, v_n >= \left\{ \sum_{\nu=1}^{n} x_\nu v_\nu \mid x_1, x_2, \ldots, x_n \in \Phi \right\}$ is the linear hull of v_1, v_2, \ldots, v_n.

Definition: $v_1, v_2, \ldots, v_n \in V$ are called linearly dependent if there exists $x_1, x_2, \ldots, x_n \in \Phi$ not all zero such that $\sum_{\nu=1}^{n} x_\nu v_\nu = 0$. Conversely, $v_1, v_2, \ldots, v_n \in V$ are called linearly independent if $\sum_{\nu=1}^{n} x_\nu v_\nu = 0$ implies that $x_1 = x_2 = \ldots = x_n = 0$.

Lemma: If $v_1, v_2, \ldots, v_n \in V$ are linearly independent and $v_{n+1} \not\in < v_1, v_2, \ldots, v_n >$, then $v_1, v_2, \ldots, v_n, v_{n+1}$ are linearly independent, too.

Definition: $v_1, v_2, \ldots, v_n \in V$ are a base of V if and only if
1. $< v_1, v_2, \ldots, v_n > = V$.
2. v_1, v_2, \ldots, v_n are linearly independent.

Theorem: If $v_1, v_2, \ldots, v_n \in V$ are a base of V then every vector $v \in V$ can be written uniquely as $\sum_{\nu=1}^{n} x_\nu v_\nu = v$.

Our next task is to prove that the number of elements in a finite base of a vector space are uniquely determined.
Definition: $M = \{v_1, v_2, \ldots, v_n\}$ is a set of generators of V if $V = \langle v_1, v_2, \ldots, v_n \rangle$. We then also say that M generates V.

Lemma: The following are equivalent:
1. M is a base of V.
2. M is a minimal set of generators for V.
3. M generates V and M is linearly independent.
4. M is a maximal linearly independent subset of V.

Theorem: Every vector space has a base.