
Network Clustering via Maximizing Modularity:
Approximation Algorithms and Theoretical Limits

Thang N. Dinh

Department of Computer Science
Virginia Commonwealth University

Richmond, Virginia, USA
Email: tndinh@vcu.edu

Xiang Li, and My T. Thai

Dept. of Comp. & Info. Sci. & Eng.
University of Florida

Gainesville, Florida, USA
Email: {xixiang, mythai}@cise.ufl.edu

Abstract

Many social networks and complex systems are
found to be naturally divided into clusters of densely
connected nodes, known as community structure (CS).
Finding CS is one of fundamental yet challenging
topics in network science. One of the most popu-
lar classes of methods for this problem is to maxi-
mize Newman’s modularity. However, there is a lit-
tle understood on how well we can approximate the
maximum modularity as well as the implications of
finding community structure with provable guarantees.
In this paper, we settle definitely the approximability
of modularity clustering, proving that approximating
the problem within any (multiplicative) positive factor
is intractable, unless P = NP. Yet we propose the
first additive approximation algorithm for modularity
clustering with a constant factor. Moreover, we provide
a rigorous proof that a CS with modularity arbitrary
close to maximum modularity QOPT might bear no
similarity to the optimal CS of maximum modularity.
Thus even when CS with near-optimal modularity are
found, other verification methods are needed to confirm
the significance of the structure.

1. Introduction
Many complex systems of interest such as the

Internet, social, and biological relations, can be rep-
resented as networks consisting a set of nodes which
are connected by edges between them. Research in a
number of academic fields has uncovered unexpected
structural properties of complex networks including
small-world phenomenon [1], power-law degree distri-
bution, and the existence of community structure (CS)
[2] where nodes are naturally clustered into tightly

connected modules, also known as communities, with
only sparser connections between them. Finding this
community structure is a fundamental but challenging
problem in the study of network systems and has not
been yet satisfactorily solved, despite the huge effort
of a large interdisciplinary community of scientists
working on it over the past years [3].

Newman-Girvan’s modularity that measures the
“strength” of partition of a network into modules (also
called communities or clusters) [2] has rapidly become
an essential element of many community detection
methods. Despite of the known drawbacks [4], [5],
modularity is by far the most used and best known
quality function, particularly because of its successes
in many social and biological networks [2] and the
ability to auto-detect the optimal number of clusters
[6], [7]. One can search for community structure
by looking for the divisions of a network that have
positive, and preferably large, values of the modularity.
This is the underlying “assumption” for numerous
optimization methods that find communities in the
network via maximizing modularity (aka modularity
clustering) as surveyed in [3]. However, there is a little
understood on the complexity and approximability of
modularity clustering besides its NP-completeness [8],
[9] and APX-hardness [10]. The approximability of
modularity clustering in general graphs remains an
open question.

This paper focuses on understanding theoretical
aspects of CSs with near-optimal modularity. Let C∗ be
a CS with maximum modularity value and let QOPT

be the modularity value of C∗. Given 0 < ρ < 1,
polynomial-time algorithms that can find CSs with
modularity at least ρQOPT are called (multiplicative)
approximation algorithms; and ρ is called (multiplica-

2015 IEEE International Conference on Data Mining

1550-4786/15 $31.00 © 2015 IEEE

DOI 10.1109/ICDM.2015.139

101

2015 IEEE International Conference on Data Mining

1550-4786/15 $31.00 © 2015 IEEE

DOI 10.1109/ICDM.2015.139

101

tive) approximation factor. Given the NP-completeness
of modularity clustering, we are left with two choices:
designing heuristics which provides no performance
guarantee (like the vast major modularity clustering
works) or designing approximation algorithms which
can guarantee near-optimal modularity.

We seek the answers to the following questions:
how well we can approximate the maximum mod-
ularity, i.e., for what values of ρ there exist ρ-
approximation algorithms for modularity clustering?
Moreover, do CSs with near-optimal modularity bear
similarity to C∗, the ultimate target of all modularity
clustering algorithms? Our contributions (answers to
the above questions) are as follows.

• We prove that there is no approximation algo-
rithm with any factor ρ > 0 for modularity
clustering, unless P = NP, therefore defini-
tively settling the approximation complexity
of the problem. We prove this intractabil-
ity results for both weighted networks and
unweighted networks (with the allowance of
multiple edges.)

• On the bright side, we propose the first ad-
ditive approximation algorithm that find a
community structure with modularity at least
QOPT −2(1−κ) for κ = 0.766. The proposed
algorithm also provides better quality solu-
tions comparing to the-state-of-the-art modu-
larity clustering methods.

• We provide rigorous proof that CSs with
near-optimal modularity might be completely
different from C∗, the CS with maximum
modularity QOPT . This holds no matter how
close the modularity value to QOPT is. Thus
adopters of modularity clustering should care-
fully employ other verification methods even
when they found CSs with modularity values
that are extremely close to the optimal ones.

Related work. A vast amount of methods to find
community structure is surveyed in [3]. Brandes et al.
proves the NP-completeness for modularity clustering,
the first hardness result for this problem. The problem
stands NP-hard even for trees [9]. DasGupta et al.
show that modularity clustering is APX-hard, i.e., there
exists a constant c > 1 so that there is no (multiplica-
tive) c-approximation for modularity clustering unless
P=NP [10]. In this paper, we show a much stronger
result that the inapproximability holds for all c > 1.

Modularity has several known drawbacks. Fortu-
nato and Barthelemy [4] has shown the resolution

limit, i.e., modularity clustering methods fail to de-
tect communities smaller than a scale, the resolution
limit only appears when the network is substantially
large [11]. Another drawback is modularity’s highly
degenerate energy landscape [5], which may lead to
very different partitions with equally high modularity.
However, for small and medium networks of several
thousand nodes, the Louvain method [12] to optimize
modularity is among the best algorithms according to
the LFR benchmark [11]. The method is also adopted
in products such as LinkedIn InMap or Gephi.

While approximation algorithms for modularity
clustering in special classes of graphs are proposed
for scale-free networks[13], [14] and d-regular graphs
[10], no such algorithms for general graphs are known.

Organization. We present terminologies in Sec-
tion 2. The inapproximability of modularity clustering
in weighted and unweighted networks is presented in
Section 3. We present the first additive approximation
algorithm for modularity clustering in Section 4. Sec-
tion 5 illustrates that the optimality of modularity does
not correlate to the similarity between the detected CS
and the maximum modularity CS. Section 6 presents
computational results and we conclude in Section 7.

2. Preliminaries

We consider a network represented as an undirected
graph G = (V,E) consisting of n = |V | vertices
and m = |E| edges. The adjacency matrix of G is
denoted by A = (Aij), where Aij is the weight of
edge (i, j) and Aij = 0 if (i, j) /∈ E. We also denote
the (weighted) degree of vertex i, the total weights of
edges incident at i, by deg(i) or, in short, di.

Community structure (CS) is a division of the
vertices in V into a collection of disjoint subsets of
vertices C = {C1, C2, . . . , Cl} that the union gives
back V . Especially, the number of communities l is
not known as a prior. Each subset Ci ⊆ V is called
a community (or module) and we wish to have more
edges connecting vertices in the same communities
than edges that connect vertices in different communi-
ties. In this paper, we shall use the terms community
structure and clustering interchangeably.

The modularity [15] of C is defined as

Q(C) = 1

2M

∑
i,j∈V

(
Aij − didj

2M

)
δij (1)

where di and dj are degree of nodes i and j, respec-
tively; M is the total edge weights; and the element

102102

δij of the membership matrix δ is defined as

δij =

{
1, if i and j are in the same community

0, otherwise.
.

The modularity values can be either positive or nega-
tive and it is believed that the higher (positive) mod-
ularity values indicate stronger community structure.
The modularity clustering problem asks to find a
division which maximizes the modularity value.

Let B be the modularity matrix [15] with entries

Bij = Aij − didj
2M

. We have Q(C) = 1

2M

∑
i,j

Bijδij .

Alternatively the modularity can also be defined as

Q(C) =
l∑

t=1

(
E(Ct)

M
− vol(Ct)

2

4M2

)
, (2)

where E(Ct) is the total weight of the edges inside Ct

and vol(Ct) =
∑

v∈Ct
dv is the volume of Ct.

3. Multiplicative Approx. Algorithm
A major thrust in optimization is to develop ap-

proximation algorithms of which one can theoretically
prove the performance bound. Designing approxima-
tion algorithms is, however, very challenging. Thus,
it is desirable to know for what values of ρ, there
exist ρ-approximation algorithms. This section gives
a negative answer to the existence of approximation
algorithms for modularity clustering with any (multi-
plicative) factor ρ > 0, unless P = NP.

We show the inapproximability result for weighted
networks via a gap-producing redution from the PAR-
TITION problem in subsection 3.1. Ignoring the
weights doesn’t make the problem any easier to ap-
proximate, as we shall show in subsection 3.2 that the
same inapproximability hold for unweighted networks.

Our proofs for both cases use the fact that we
can approximate modularity clustering if and only if
we can approximate the problem of partitioning the
network into two communities to maximize modular-
ity. Then we show that the later problem cannot be
approximated within any finite factor.

3.1. Inapproximability in Weighted Graphs
Theorem 1: For any ρ > 0, there is no polynomial-

time algorithm to find a community structure with a
modularity value at least ρQOPT , unless P=NP. Here
QOPT denotes the maximum modularity value among
all possible divisions of the network into communities.

Figure 1. Gap-producing reduction from PARTITION to
modularity clustering. There exists a community struc-
ture of positive modularity if and only if we can divide
the integers x1, . . . , xn into two halves with equal sum.

Proof: We present a gap-producing reduction [16]
that maps an instance Φ of the following problem

PARTITION: Given integers x1, x2, . . . , xn, can
we divide the integers into two halves with equal sum?

to a graph G̃ = (Ṽ , Ẽ) such that

• If Φ is an YES instance, i.e., we can di-
vide xi into two halves with equal sum, then
QOPT (G̃) > 0.

• If Φ is a NO instance, then QOPT (G̃) = 0.

Reduction: The graph G̃ is shown in Fig. 1. G̃
consists of two special nodes s and t and n middle
nodes u1, u2, . . . , un. Each ui is connected to both s
and t with edges of weights xi. Let K = 1

2

∑n
t=1 xt.

Both s and t have self-loops of weights a = 1
8K+2 .

The total weights of edges in G̃ is

M̃ = 2

n∑
t=1

xt + 2a = 4K + 2a.

This reduction establishes the NP-hardness of dis-
tinguish graphs having a community structure of pos-
itive modularity from those having none. An approx-
imation algorithm with a guarantee ρ > 0 or better,
will find a community structure of modularity at least
ρQOPT (G̃) > 0, when given a graph from the first
class. Thus, it can distinguish the two classes of
graphs, leading to a contradiction to the NP-hardness
of PARTITION [17].

(→) If Φ is an YES instance, there exists a partition
of {1, 2, . . . , n} into disjoint subsets S1 and S2 such
that ∑

i∈S1

xi =
∑
j∈S2

xj =
1

2

n∑
t=1

xt = K,

103103

Consider a CS C̃ in G̃ that consists of two communities
C1 = {s} ∪ {ui|i ∈ S1} and C2 = {t} ∪ {uj |j ∈
S2}. We have vol(C1) = vol(C2) = M̃ . From (2), the
modularity value of C̃ is

Q(C̃) = 2K + 2a

M̃
− 2M̃2

4M̃2
=
a

M̃
> 0

Thus QOPT ≥ QC̃ > 0.

(←) If Φ is a NO instance, we prove by contradic-
tion that QOPT = 0. Assume otherwise QOPT > 0.
Let Q2 denote the maximum modularity value among
all partitions of G̃ into (at most) two communities. It
is known from [13] that

Q2 ≥ 1

2
QOPT .

Thus there exists a community Ĉ of modularity value
Q2 ≥ 1

2QOPT > 0 such that Ĉ has exactly two

communities, say Ĉ1 and Ĉ2. Let δ(Ĉ1) be the total

weights of edges crossing between Ĉ1 and Ĉ2. We
have

Q2 =
M̃ − δ(Ĉ1)

M̃
− vol(Ĉ1)

2 + vol(Ĉ2)
2

4M̃2
.

Substitute 2M̃ = vol(Ĉ1) + vol(Ĉ2) and simplify

Q2 =
1

4M̃2

(
2vol(Ĉ1)vol(Ĉ2)− 4M̃δ(Ĉ1)

)
(3)

=
vol(Ĉ1)vol(Ĉ2)

2M̃2

(
1−

[δ(Ĉ1)
vol(Ĉ1)

+
δ(Ĉ1)

vol(Ĉ2)

])
Since Q2 > 0, we have

δ(Ĉ1)

vol(Ĉ1)
+
δ(Ĉ1)

vol(Ĉ2)
< 1. (4)

We show that s and t cannot be in the same
community. Otherwise, assume s and t belong to Ĉ1,
then Ĉ2 contains only nodes from {u1, u2, . . . , un}.
Thus

vol(Ĉ2) = δ(Ĉ1) = 2
∑

uj∈Ĉ2

xj .

It follows that
δ(Ĉ1)

vol(Ĉ2)
= 1, which contradicts (4).

Since s and t are in different communities, whether
we assign ui into Ĉ1 or Ĉ2, it always contributes to
δ(Ĉ1) an amount xi. Therefore

δ(Ĉ1) =
n∑

t=1

xt = 2K =
1

2
M̃ − a.

Since Φ is a NO instance, the integrality of xi leads
to

vol(Ĉ1)− vol(Ĉ2) = 2

⎛
⎝ ∑

ui∈C1

xi −
∑

uj∈C2

xj

⎞
⎠ ≥ 2.

Moreover, a = 1
8K+2 <

1
2M̂

. Thus we have

δ(Ĉ1)

vol(Ĉ1)
+
δ(Ĉ1)

vol(Ĉ2)
≥ δ(Ĉ1)

(
1

M̃ − 1
+

1

M̃ + 1

)

=
(12M̃ − a)2M̃
M̃2 − 1

>
M̃2 − 2 1

2M̃
M̃

M̃2 − 1
= 1,

which contradicts (4).

Hence if Φ is a NO instance, then QOPT = 0.

3.2. Inapproximability in Unweighted Graphs

This section shows that it is NP-hard to decide
whether one can divide an unweighted graph into com-
munities with (strictly) positive modularity score. Thus
approximating modularity clustering is NP-hard for
any positive approximation factor. Our proof reduces
from the unweighted Max-Cut problem, which is NP-
hard even for 3-regular graphs [18]. Our reduction is
explicit and can be used to generate hard instances for
modularity clustering problem, as shown in Section 6.

Remark that one can replace weighted edges with
multiple parallel edges in the reduction in Theorem 1
to get a reduction for unweighted graphs. However,
such an approach does not yield a polynomial-time
reduction, since instances of PARTITION can have
items with exponentially large weights.

Theorem 2: Approximating modularity clustering
within any positive factor in unweighted graphs (with
the allowance of multiple edges) is NP-hard.

Proof: We reduce from an instance Ψ of the
Max-Cut problem “whether an undirected unweighted
graph G = (V,E) has a subset S ⊆ V of the vertices
such that the size of the cut δ(S) = {(u, v) ∈ E | u ∈
S, v /∈ S} is at least k?” to a graph G′ = (V ′, E′)
such that

• If the answer to Ψ is YES, i.e., there exists a
cut S with δ(S) ≥ k, then QOPT (G

′) > 0.

• If the answer to Ψ is NO, QOPT (G
′) = 0.

Using the same arguments in the proof of Theo-
rem 1, the above reduction leads to the NP-hardness
of approximating modularity clustering within any
positive finite factor in unweighted graphs.

104104

Figure 2. Reduction for a sample network with an edge
connecting two nodes. The multiplicity of edges in the
right network is T = n4 unless otherwise noted.

Our reduction is similar to the reduction from Max-
Cut in [18]. An example is given in Fig. 2. For each
vertex v ∈ V , we add two vertices v+ and v− into V ′.
Also we add two special vertices z+ and z− into V ′.
Thus V ′ = {v+, v− | v ∈ V }∪{z+, z−}. Next choose
a large integer constant T = n4, where n = |V |. We
connect vertices in G′ in the following orders:

• For each edge (u, v) ∈ E, connect u+ to v+

and u− to v−, each using T−1 parallel edges.

• There are no edges between u+ and u− for
all u ∈ V . Connect z+ to z− using c parallel
edges, where c = 4k−2m−1 (and m = |E|).

• Connect the remaining pairs of vertices, each
using T parallel edges.

Feasibility of Reduction. Obviously, the reduction has
a polynomial size. Denote by n′ and m′ the number
of vertices and edges in G′, respectively. We have

n′ = 2n+ 2 and m′ = 2n(n+ 1)T − 2m+ c.

We also need to verify that c ≥ 0. By [19], we can
always find in G a cut of size at least m

2 + 2, thus
we can distinguish trivial instances of Max-Cut with
k ≤ m

2 + 2 from the rest in a polynomial time. For
non-trivial instances of Max-Cut, i.e., k > m

2 + 2 we
have 4k − 2m− 1 > 4(m

2 + 2)− 2m− 1 > 0.

(→) If Ψ is an YES instance, there exists a cut
(S ⊆ V, S̄ = V \ S) satisfying δG(S) ≥ k. Let S+ =
{v+| v ∈ S}, S̄+ = {v+| v /∈ S}, S− = {v−| v ∈ S},
and S̄− = {v−| v /∈ S}. Construct a CS C = {C1, C2}
of G′ in which

C1 = S
+ ∪ S̄− ∪ {z+}, C2 = S− ∪ S̄+ ∪ {z−}.

We will prove that Q(C) > 0. By Eq. (3),

Q(C) = 1

4m′2 (2vol(C1)vol(C2)− 4m′δG′(C1)) (5)

Observe that dv+ = dv− = 2nT−dv, ∀v ∈ V and both
communities C1 and C2 either contains v+ or v− but
not both. The same observation holds for the vertices
z+ and z− that have degrees 2nT + c. Thus

vol(C1) = vol(C2) = m
′. (6)

To compute δG′(C1), we recall that the nodes in
C1 connect to those in C2, each with T parallel edges
with the exceptions of the following pairs:

• 2δG(S) pairs of nodes between (S+, S̄+) and
(S−, S̄−), each connected with T − 1 parallel
edges

• z+ connects to z− with only c parallel edges.

Hence, we have

δG′(C1) = n(n+ 1)T − 2δG(S) + c

≤ n(n+ 1)T − 2k + c. (7)

Substitute Eqs. (6) and (7) into (5), we have

Q(C) = 1

4m′2 (2m
′2 − 4m′δG′(C1)) =

m′ − 2δG′(C1)

2m′

≥ 1

2m′
(
2n(n+ 1)T − 2m+ c

− 2n(n+ 1)T + 4k − 2c
)
=

1

2m′ > 0.

Thus QOPT ≥ QC > 0.

(←) If Ψ is a NO instance, we prove by contradic-
tion that QOPT = 0. Assume otherwise QOPT > 0.
Let Q2 denote the maximum modularity value among
all partitions of G′ into (at most) two communities and
C = {C1, C2} be a community structure of G′ with
the modularity value Q2 ≥ 1

2QOPT > 0 [13]. We will
show that Q2 ≤ 0, hence, a contradiction. Assume that
y = |C1| ≤ |C2|, consider the following two cases:

Case y < n + 1: Since dv+ = dv− = 2nT −
dv, ∀v ∈ V and dz+ = dz− = 2nT + c, we have

vol(C1) ≤ 2nTy + 2c

Since vol(C1) + vol(C2) = 2m′, it follows that

vol(C1)vol(C2) ≤ (2nTy+2c)(2m′ − (2nTy+2c)).

Moreover, using the same arguments that leads to
Eq. 7, we have

δG′(C1) ≥ y(2n+ 2− y)T − yT = yT (2n+ 1− y).
Here the factor yT arises from the fact that there are
at most y pairs of (v+, v−) that across C1 and C2.

105105

Thus we obtain from (5) the following inequality

Q(C) = 1

4m′2 (2vol(C1)vol(C2)− 4m′δG′(C1))

≤ 1

2m′2
(
(2nTy + 2c)(2m′ − (2nTy + 2c))

− 2m′yT (2n+ 1− y)
)
.

After some algebra and applying the inequalities
y ≤ n and c ≤ 2n2, we obtain

Q(C) ≤ 2T 2ny

m′2

(
−(n+ 1− y) + O(n3)

T

)
< 0.

Case y = |C1| = |C2| = n+1: We bound δG′(C1)
by considering two sub-cases:

• If there is some v ∈ V such that v+, v− ∈ C1
or z+, z− ∈ C1, then δG′(C1) ≥ (n+ 1)(n+
1)T − nT − (n+ 1)(n+ 1)

• Otherwise, all pairs v+ and v− (as well as z+

and z−) are in different sides of the cut C1.
Thus C1 induces in G a cut S ⊆ V . Then
δG′(C1) ≥ n(n+1)T − 2δG′(S)+ c ≥ n(n+
1)T − 2(k − 1) + c, as δ(S) < k.

As n(n+1)T+T−(n+1)2 ≥ n(n+1)T−2(k−1)+c,
it holds for the both cases that

δG′(C1) ≥ n(n+ 1)T − 2(k − 1) + c.

Since
vol(C1)vol(C2) ≤ m′2,

using Eq. (5), we obtain

Q(C) ≤ 1

4m′2
(
2m′2 − 4m′ (n(n+ 1)T − 2(k − 1) + c)

)
≤ 1

2m′
(
2n(n+ 1)T − 2m+ c

− 2n(n+ 1)T + 4k − 4− 2c
)
=

−3

2m′ < 0.

Thus if Ψ is a NO instance, then QOPT = 0.

4. Additive Approx. Algorithm
We propose the first additive approximation algo-

rithm that find a community structure C satisfying the
following performance guarantee

Q(C) ≥ QOPT − 2(1− κ), (8)

where κ = 0.766. The algorithm is based on rounding
a semidefinite programm, similar to that in [20] for the
Max-Agree problem.

First, we formulate modularity clustering as a vec-
tor programming. Let ej ∈ R

n be the unit vector with
1 in the ith coordinate and 0s everywhere else. Let
xi ∈ {e1, e2, . . . , en} be the variable that indicates the
community of vertex i, i.e., if xi = ej then vertex i
belongs to community j. The vector programming is
as follows.

max
1

2M

∑
i,j

Bij xi · xj (9)

xi ∈ {e1, e2, . . . , en} ∀i, (10)

where (·) denotes the inner product (or dot product).

We relax the constraint xi ∈ {e1, e2, . . . , en} to get
a semidefinite program (SDP) with new constraints

xi · xi = 1 ∀i (11)

xi · xj ≥ 0 ∀i �= j (12)

xi ∈ R
n ∀i. (13)

One of the reason that modularity clustering resists
approximation approaches such as semidefinite round-
ing is that the matrix B contains both negative and
nonnegative entries. Indeed, all entries in B sum up
to zero [15]. To overcome this, we add a fixed amount
W
2M to the objective of SDP, where

W =
∑

(i,j)∈B+
Bij = |

∑
(i,j)∈B−

Bij | with

B+ = {(i, j) | Bij ≥ 0} and B− = {(i, j) | Bij < 0}.

The new objective is then

1

2M

(∑
i,j

Bijxi · xj −
∑

(i,j)∈B−
Bij

)

=
1

2M

(∑
(i,j)∈B+

Bijxi · xj +
∑

(i,j)∈B−
Bij(xi · xj − 1)

)

=
1

2M
(

∑
(i,j)∈B+

Bijxi · xj +
∑

(i,j)∈B−
−Bij(1− xi · xj)).

Note that all of coefficients in the new objective are
nonnegative. Thus we transform the modularity clus-
tering problem to an SDP of the Max-Agree problem
[20] which can be solved using the rounding procedure
in [20]. Our additive approximation algorithm can be
summarized as follows.

Since all coefficients in the new objective are
positive and the fixed factor W

2M does not affect the

106106

Algorithm 1 SDP to Maximize Modularity (SDPM)

1: Solve the SDP relaxation in (9) and (11)-(13)
2: Choose k random hyperplanes, and use projection

to divide the set of vertices into 2k clusters.
3: Return the better clustering C of k = 2 and k = 3.

solution of SDP. We can apply Theorem 3 in [20] to
obtain

QG(C) + W

2M
≥ κ

(
QOPT +

W

2M

)
, (14)

where κ = 0.766 is the approximation factor for the
generalized Max-Agree problem [20].

Since W
2M < 1 and QOPT < 1, we can simplify

(14) to yield the following theorem.

Theorem 3: Given graph G, there is a polynomial-
time algorithm that finds a community structure C of
G satisfying

QG(C) > κQOPT − (1− κ),
and

QG(C) > QOPT − 2(1− κ).
where κ = 0.766.

Apparently, the higher κ the better the performance
guarantee. Any improvement on the approximation
factor for the generalized Max-Agree problem will
immediately lead to the improvement in the approx-
imation factor for modularity clustering.

5. Do Small Gaps Guarantee Similarity?

Given 0 < a < b < 1 and an arbitrary graph G,
we show how to construct a “structurally equivalent”
graph G′ of G in which community structures have
modularity values between a and b. Multiple implica-
tions of this finding include:

• There are graphs of any size that have clus-
tering with extremely small modularity (e.g.
by choosing a and b close to zero.) This
gives additional light into why it is hard to
distinguish between graphs having no commu-
nity structure with positive modularity and the
others (Section 3.1.)

• There are graphs of any size that all “reason-
able” clustering of the network yields modu-
larity values in range (a(1−ε), a) for arbitrary
small ε > 0 and any 0 < a < 1 − ε. Thus
even we find a CS with modularity at least

(1−ε)QOPT orQOPT−ε, the obtained CS can
be completely different from C∗, the maximum
modularity CS.

Therefore, the presence of high modularity clusters
neither indicates the presence of community structure
nor how easy it is to detect such a structure if it exists.

We present our construction which consists of two
transformations, namely α-transformation and (τ, k)-
transformation.

α-transformation: An α-transformation with 0 <
α ≤ 1 maps each graph G = (V,E) with an
“equivalent” graph G′ = Tα(G) and maps (one-to-
one correspondence) each CS C of G to a CS C′ of G′
that satisfies

QG′(C′) = αQG(C),
where QG′(C′) and QG(C) denote the modularity of
C′ in G′ and C in G, respectively.

Construction: G′ also has V as the set of vertices.
The weighted adjacency matrix A′ of G′ is defined as

A′ij = Aij +
1− α
α

didj
2M

. (15)

We show in the following lemma that the same
community induced by C in G′ has modularity scaled
down by a fraction α.

Lemma 1: Given a community structure C of G,
the CS C′ induced by C in G′ = Tα(G) satisfies

QG′(C′) = αQG(C).

Proof: Let δij = 1 if i and j are in the same
community in C and δij = 0 otherwise. By definition

QG′(C′) = 1

2M ′
∑
i,j

(
A′ij −

d′id
′
j

2M ′

)
δij ,

where M ′, d′i, and d′j are the total edge weights,
weighted degree of i, and weighted degree of j in G′,
respectively.

We have

d′i =
∑
j∈V

A′ij =
∑
j∈V

(
Aij +

1− α
α

didj
2M

)

=
∑
j∈V

Aij +
1− α
α

di
∑
j∈V

dj/(2M) =
1

α
di. (16)

107107

Moreover,

M ′ =
1

2

∑
i∈V

d′i =
1

2α

∑
i∈V

di =
1

α
M. (17)

From (15), (16), and (17), we have

QG′(C′) = α

2M

∑
i,j

(
Aij +

1− α
α

didj
2M

− didj
2Mα

)
δij

=
α

2M

∑
i,j

(
Aij − didj

2M

)
δij = αQG(C).

(τ, k)-transformation: A (τ, k)-transformation
with 0 < τ < 1 and k ∈ Z+ maps a graph G = (V,E)
with a graph G′ = Tτ,k(G) and maps each community
structure C in G to a community structure C ′ in G′
that satisfies

QG′(C′) = τ + (1− τ − ε)QG(C),

where ε = (1−√τ)2

k .

Construction: The set of vertices V ′ is obtained by
adding to V k isolated vertices n+1, n+2, . . . , n+k.
Let β = 1√

τ
−1, i.e., τ = 1/(1+β)2. We attach loops

of weight β
2 di to vertices 1 ≤ i ≤ n and loops of

weight
β(β+1)

k M to n+1, . . . , n+k. Thus the weighted
adjacency matrix A′ of G′ is as follows.

A′ij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Aij 1 ≤ i �= j ≤ n
β
2 di 1 ≤ i = j ≤ n
1
kβ(β + 1)M i = j > n

0 otherwise .

(18)

CS C′ of G′ is obtained from C by adding k singleton
communities that contains only one node from {n +
1, . . . , n+ k}.

Lemma 2: Given a community structure C of G,
the community structure C′ induced by C in G′ =
Tτ,k(G) satisfies

QG′(C′) = τ + (1− τ − ε)QG(C),

where ε = (1−√τ)2

k .

Proof: Since a loop contribute twice to the degree,
we have

d′i =
∑
j �=i

Aij + 2
β

2
di = (1 + β)di, (19)

and

d′n+l =
2

k
β(β + 1)M, l = 1..k. (20)

Therefore

M ′ =
1

2

∑
i∈V ′

d′i =
1

2

(∑
i∈V

d′i + k
2

k
β(β + 1)M

)

= (1 + β)M + β(β + 1)M = (β + 1)2M. (21)

We have

QG′(C′) = 1

2M ′
∑

i,j∈V

(
A′ij −

d′id
′
j

2M ′

)
δij

+

k∑
l=1

(
β(β + 1)M

kM ′ − d′2n+l

4M ′2

)
δn+l,n+l.

Substitute (19), (20), and (21) into the above equation

QG′(C′) = 1

2M(β + 1)2

∑
i,j∈V

(
Aij − didj

2M

)
δij

+

∑
i∈V

β
2 di

M ′ +

(
β

β + 1
− β2

k(1 + β)2

)

=
1

(β + 1)2
QG(C) + 1− 1

(β + 1)2
− β2

k(β + 1)2

= τQG(C) + (1− τ − ε).
This yields the proof.

Now we can combine the two transformations to
“engineer” the modularity values into any desirable
range (a, b).

Theorem 4: Given a graph G, applying an
α-transformation on G, followed by a (τ, k)-
transformation yields a graph G̃ and a mapping from
each community structure C of G to a community
structure C̃ of G̃ that satisfies

QG̃(C̃) = ταQG(C) + (1− τ − ε),
where ε = (1−√τ)2

k .

Since −1/2 < QG(C) < 1 [13], setting τ = 1 −
(23a+

1
3b) and α = 2

3 (b−a) ensures that a < QG̃(C̃) <
b for any 0 < a < b < 1.

6. Computational Results

We compare the modularity values of the most
popular algorithms in the literature [2], [15], [21] to
that of the SDP rounding in Alg. 1 (SDPM). Also, we
include the state of the art, the Louvain (aka Blondel’s)

108108

Table 1. Order and size of network instances

ID Name n m

1 Zachary’s karate club 34 78
2 Dolphin’s social network 62 159
3 Les Miserables 77 254
4 Books about US politics 105 441
5 American College Football 115 613
6 Electronic Circuit (s838) 512 819

Table 2. Comparing modularity obtained by different
methods CNM (fast-greedy) [24], EIG [15], Louvain
[12], SDPM, the semidefinite rounding in this paper,

and the optimal modularity values OPT [22].

ID CNM EIG Louvain SDPM OPT

1 0.235 0.393 0.420 0.419 0.420
2 0.402 0.491 0.529 0.526 0.529
3 0.453 0.532 0.560 0.560 0.560
4 0.452 0.467 0.527 0.527 0.527
5 0.491 0.488 0.605 0.605 0.605
6 0.803 0.736 0.796 - 0.819

method, [12]. Since Blondel is a stochastic algorithm,
we repeat the algorithm 20 times and report the best
modularity value found. The optimal modularity values
are reported in [22]. For solving SDP, we use SDTP3
solver [23] and repeat the rounding process 1000 times
and pick the best result. All algorithms are run on a
PC with a Core i7-3770 processor and 16GB RAM.

6.1. Real-world networks

We perform the experiments on the standard
datasets for community structure identification [21],
[22], consisting of real-world networks. The datasets’
names together with their sizes are listed in Table 1.

The results are reported in Table 2. The SDP
method finds community structures with maximum
modularity (optimal) values. Our SDPM method has
high running-time and space-complexity. It ran out of
memory for the largest test case of 512 nodes and 819
edges. However, it not only approximates the max-
imum modularity much better than the (worst-case)
theoretical performance guarantee, Theorem 3, but also
is among the highest quality modularity clustering
methods.

6.2. Hard Instances via Max-Cut reduction
To validate the effectiveness of modularity cluster-

ing methods, we generate hard instances of modularity
clustering via the reduction from Max-Cut problem
in the proof of Theorem 2. The advantages of this
type of test includes: 1) Generated networks are small

0

50

100

10 30 50 70

SU
CC

ES
S

RA
TE

 (%
)

NETWORK SIZE

CNM

EIG

Louvain

SDPM

Figure 3. Success rate of finding CSs with positive
modularity values in the hard instances.

but yet challenging to solve and 2) Optimal solutions
and objective (modularity) are known. This contrasts
other test generators such as LFR [11] that often come
with planted community structure but not (guaranteed)
optimal solutions.

We generate the tests following the below steps:

• Generate a random (Erdős-Réyni) network G.

• Find the exact size k of the Max-Cut in G
using the Biq Mac solver [25].

• Construct a network G′ from the instance
〈G, k〉 of Max-Cut using the reduction in
Theorem 2.

• Run modularity maximization methods on G′.
A method passes a test if it can find a
community structure with a strictly positive
modularity value.

We vary network sizes between 10 to 70, increasing
by 10 and repeat the test five times for each network
size. The number of times each method passes the test
are shown in Fig 3. Our SDPM algorithm clearly has
much higher success rate than the rest. It passes all the
tests of size up to 40. The only method that manages to
pass some of the tests is the Eigenvector-based method
(EIG) [15]. EIG passes the tests of sizes 10, twice
and sizes 20 and 30, once. These tests illustrates the
excellent capability of the SDP rounding methods for
hard-instances of the modularity clustering problem.

7. Conclusion
In this paper, we settle the question on the ap-

proximability of modularity clustering. We show that
there is no (multiplicative) approximation algorithm
with any factor ρ > 0, unless P = NP. However, we
show that there is an additive approximation algorithm
that find community structure with modularity at least
κQOPT −(1−κ) with κ = 0.766. Not only modularity

109109

is hard to approximate, but also it is a poor indicator
for the existing of community structure. The existing of
high modularity clusters neither indicates the existing
of community structure nor how easy it is to detect
such a structure if it exists.

In the future, it is interesting to investigate additive
approximation algorithms for modularity clustering,
i.e., algorithms to find CS with modularity at least
QOPT − c for c > 0. We conjecture that there exists
c > 0 that approximating modularity clustering within
an additive approximation factor c is NP-hard.

8. Acknowledgement
This work is partially supported by NSF CAREER

0953284 and NSF CCF 1422116.

References

[1] D. J. Watts and S. H. Strogatz, “Collective dynamics
of ’small-world’ networks,” Nature, vol. 393, 1998.

[2] M. Girvan and M. E. Newman, “Community structure
in social and biological networks.” PNAS, vol. 99,
no. 12, 2002.

[3] S. Fortunato and C. Castellano, “Community structure
in graphs,” Ency. of Complexity and Sys. Sci., 2008.

[4] S. Fortunato and M. Barthelemy, “Resolution limit
in community detection,” Proceedings of the National
Academy of Sciences, vol. 104, no. 1, 2007.

[5] B. H. Good, Y.-A. de Montjoye, and A. Clauset,
“Performance of modularity maximization in practical
contexts,” Phys. Rev. E, vol. 81, p. 046106, Apr 2010.

[6] J. Ruan, “A fully automated method for discovering
community structures in high dimensional data,” in
Proc. of the IEEE Int. Conf. on Data Mining (ICDM),
2009, pp. 968–973.

[7] P. Shakarian, P. Roos, D. Callahan, and C. Kirk,
“Mining for geographically disperse communities in
social networks by leveraging distance modularity,” in
Proc. of the ACM Int. Conf. on Knowledge Discovery
and Data Mining (KDD), 2013, pp. 1402–1409.

[8] U. Brandes, D. Delling, M. Gaertler, R. Gorke,
M. Hoefer, Z. Nikoloski, and D. Wagner, “On modu-
larity clustering,” Knowledge and Data Engineering,
IEEE Transactions on, vol. 20, no. 2, 2008.

[9] T. N. Dinh and M. T. Thai, “Toward optimal com-
munity detection: From trees to general weighted
networks,” Internet Mathematics, vol. 11, no. 3, pp.
181–200, 2015.

[10] B. Dasgupta and D. Desai, “On the complexity of
newman’s community finding approach for biological
and social networks,” J. Comput. Syst. Sci., vol. 79,
no. 1, pp. 50–67, Feb. 2013.

[11] A. Lancichinetti and S. Fortunato, “Community detec-
tion algorithms: A comparative analysis,” Phys. Rev.
E, vol. 80, p. 056117, Nov 2009.

[12] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and
E. Lefebvre, “Fast unfolding of communities in large
networks,” Journal of Statistical Mechanics: Theory
and Experiment, vol. 2008, no. 10, 2008.

[13] T. N. Dinh and M. T. Thai, “Community detection
in scale-free networks: Approximation algorithms for
maximizing modularity,” in IEEE Journal on Selected
Areas in Communications, 2013.

[14] T. N. Dinh, N. P. Nguyen, and M. T. Thai, “An adap-
tive approximation algorithm for community detection
in dynamic scale-free networks,” in Proceedings IEEE
INFOCOM, 2013, pp. 55–59.

[15] M. E. J. Newman, “Modularity and community
structure in networks,” Proceedings of the National
Academy of Sciences, vol. 103, 2006.

[16] S. Arora and B. Barak, Computational Complexity: A
Modern Approach, 1st ed. New York, NY, USA:
Cambridge University Press, 2009.

[17] M. R. Garey and D. S. Johnson, Computers and
Intractability: A Guide to the Theory of NP-
Completeness. New York, NY, USA: W. H. Freeman
& Co., 1990.

[18] D. W. Matula and F. Shahrokhi, “Sparsest cuts and
bottlenecks in graphs,” Discrete Applied Mathematics,
vol. 27, no. 12, pp. 113 – 123, 1990.

[19] P. Vitanyi, “How well can a graph be n-colored?”
Discrete mathematics, vol. 34, no. 1, pp. 69–80, 1981.

[20] M. Charikar, V. Guruswami, and A. Wirth, “Clustering
with qualitative information,” Learning Theory, J. of
Comput. Syst. Sci., vol. 71, no. 3, pp. 360 – 383, 2005.

[21] G. Agarwal and D. Kempe, “Modularity-maximizing
graph communities via mathematical programming,”
Eur. Phys. J. B, vol. 66, 2008.

[22] D. Aloise, S. Cafieri, G. Caporossi, P. Hansen, S. Per-
ron, and L. Liberti, “Column generation algorithms
for exact modularity maximization in networks.” Phys.
Rev. E, vol. 82, 2010.

[23] R. H. Tütüncü, K. C. Toh, and M. J. Todd, “Solving
semidefinite-quadratic-linear programs using SDPT3,”
Mathematical Programming, vol. 95, no. 2, pp. 189–
217, 2003.

[24] A. Clauset, M. E. J. Newman, and C. Moore, “Finding
community structure in very large networks,” Phys.
Rev. E, vol. 70, p. 066111, Dec 2004.

[25] F. Rendl, G. Rinaldi, and A. Wiegele, “Solving Max-
Cut to optimality by intersecting semidefinite and
polyhedral relaxations,” Math. Programming, vol. 121,

no. 2, p. 307, 2010.

110110

