
Adaptive Reconnaissance Attacks with
Near-Optimal Parallel Batching

Xiang Li, J. David Smith, and My T. Thai
Computer and Information Science and Engineering Department

University of Florida

Gainesville, FL, 32611

Email: {xixiang, jdsmith mythai}@cise.ufl.edu

Abstract—In assessing privacy on online social networks, it
is important to investigate their vulnerability to reconnaissance
strategies, in which attackers lure targets into being their friends
by exploiting the social graph in order to extract victims’ sensitive
information. As the network topology is only partially revealed
after each successful friend request, attackers need to employ
an adaptive strategy. Existing work only considered a simple
strategy in which attackers sequentially acquire one friend at a
time, which causes tremendous delay in waiting for responses
before sending the next request, and which lack the ability to
retry failed requests after the network has changed.

In contrast, we investigate an adaptive and parallel strategy, of
which attackers can simultaneously send multiple friend requests
in batch and recover from failed requests by retrying after
topology changes, thereby significantly reducing the time to
reach the targets and greatly improving robustness. We cast
this approach as an optimization problem, Max-Crawling, and
show it inapproximable within (1 − 1/e + ε). We first design
our core algorithm PM -AReST which has an approximation
ratio of (1 − e−(1−1/e)) using adaptive monotonic submodular
properties. We next tighten our algorithm to provide a near-
optimal solution, i.e. having a ratio of (1 − 1/e), via a two-
stage stochastic programming approach. We further establish
the gap bound of (1 − e−(1−1/e)2) between batch strategies
versus the optimal sequential one. We experimentally validate
our theoretical results, finding that our algorithm performs near-
optimally in practice and that this is robust under a variety of
problem settings.

Index Terms—Adaptive Approximation Algorithms; Adaptive
Stochastic Optimization; Target Reconnaissance Attacks; Social
Networks Analysis.

I. INTRODUCTION

Online Social Networks (OSNs) have become quite vul-
nerable to privacy breaches due to automated social engi-
neering attacks from socialbots. These reconnaissance attacks
commonly employ the tactic of befriending target users to
extract sensitive information [1], [2]. Attackers often seek
to improve the odds of befriending their targets by first
befriending multiple users in the target’s social circle. Only
when attackers acquire enough mutual friends with the targets,
will they attempt lure the target into becoming their ”friend”.
Once successful, attackers can exploit the sensitive information
obtained for a number of purposes, including spearphishing
and account compromise [2]. Therefore, studying the vulner-
ability of OSNs to these threats is of great importance.

Understanding the friending strategies of reconnaissance
attacks is one of the ways to quantify the privacy vulnerability,
as recently introduced by Li et al. [3]. The intuition is that
once we identify the set of vulnerable users that attackers

need to befriend, we can raise awareness and protect these
users, thereby limiting the threat to user privacy. Furthermore,
the size of this set compared to the amount of information
collected in the attack can shed the light on how vulnerable
a network is. If this ratio is small, one can conclude that
the network is vulnerable. On the other hand, a large ratio
indicates greater robustness against reconnaissance attacks.

The realization of this study, however, encounters several
challenges. First of all, the variety of social responses to
friend requests make it difficult to design an efficient friending
strategy. Users tend to accept friend requests from people
with whom they share many friends. Users’ attributes, such
as location, gender, hometown, employer, and so forth, also
play an important role in making a decision. The greater the
similarity between the friend-er and friend-ee’s attributes, the
higher the chance that the friend request will be accepted. Last
– but perhaps most importantly – the topological information
of social networks is generally unavailable to attackers. Since
only two-hop topology is available by default in closed OSNs
like Facebook, the users connections are gradually revealed
to attackers when acquiring new friends. This poses a critical
question: How frequently should attackers send their requests
and observe the network topology?

Unfortunately, the study of this problem is still in infancy.
Initial existing work [3], [4] suggested a simple adaptive strat-
egy to combat the incomplete information. In their solutions,
attackers sequentially acquire one friend per time, wait for a
response (accept or reject), observe the network topology, and
continue sending the next request. This approach may obtain
the best possible solution as network topology is revealed
frequently. However, it causes tremendous delay in waiting for
responses before sending the next request. Existing solutions
further disallow retrying failed friend requests, which may
decrease the performance as it may eliminate important users
due to a prior rejection.

To overcome the above shortcomings, we investigate an
adaptive and parallel strategy in which attackers can si-
multaneously send multiple friend requests as a batch and
recover from failed requests by retrying in later batches,
thereby significantly reducing the time of reaching the targets.
Specifically, we propose to study the following optimization
problem, namely Adaptive Maximum Benefit Crawling (Max-
Crawling), which asks us to find a batch attacking strategy
so as to maximize the information collected within the budget
K. Solving this problem introduces two more challenges: 1)

2017 IEEE 37th International Conference on Distributed Computing Systems

1063-6927/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDCS.2017.130

1996

2017 IEEE 37th International Conference on Distributed Computing Systems

1063-6927/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDCS.2017.130

1993

2017 IEEE 37th International Conference on Distributed Computing Systems

1063-6927/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDCS.2017.130

699

Efficiently selecting best nodes within each batch without
observing the network topology, and 2) Deciding the size of
each batch.

Our contributions are summarized as follows:

• We model reconnaissance attacks as a Max-Crawling
problem, taking into account the uncertainty of friend
acceptance rate, based on the common neighbors and at-
tributes. We prove Max-Crawling cannot be approximated
within the ratio of (1 − 1/e + ε) unless P = NP even
when the whole network topology is available.

• We develop an adaptive and parallel algorithm, named
PM -AReST, for Max-Crawling. PM -AReST provides a
batch strategy that enables attackers to send many friend
requests simultaneously in uniformly-sized batches. Us-
ing adaptive stochastic optimization, we show that PM -
AReST has a performance ratio of (1 − e−(1− 1

e)). We
further develop a two-stage stochastic program to tighten
the performance bound to (1− 1/e).

• We bound the gap between batch strategies versus se-
quential strategies, which we then use to devise an attack
with varying batch sizes. In this attack, the attackers can
send ki � K friend requests in each batch for differing
ki. The variation is an important consideration, as it
facilitates the evasion of OSN defenses.

• We experimentally show that PM -AReST performs only
marginally worse than AReST, a sequential attacking
strategy developed by Li et al. [3], and that this difference
all but vanishes when failed requests may be retried.

• We show that under realistic assumptions of user response
times, PM -AReST significantly outperforms AReST in
terms of reconnaissance speed – and therefore that net-
works are significantly more vulnerable to PM -AReST
than AReST.

Related Work. Reconnaissance attacks on social networks
have shown to be very crucial to the privacy vulnerability of
OSNs [5]. Ryan & Mauch showed that fake profiles can be
effectively used to befriend members of the NSA, military
intelligence agencies, and Global 500 corporations [6]. These
fake profiles can be automated to form socialbots [2], which
can then be used to automatically infiltrate organizations [3],
[4], [7]. Furthermore, reconnaissance attacks preclude the use
of any defending mechanism against Sybil attacks, on which
there has been significant study [8] (and references therein).
Therefore, it urgently calls for radically new models and
analytical techniques to assess the vulnerability of OSNs to
these attacks.

When considering offensive methods, two works that are
relevant the most to our paper are in [3], [4]. However, these
papers only provided a sequential attacking strategy, which
may be impractical to execute in the real world setting. In
addition, the network models are simplified. They do not ac-
count for the changing acceptance rate nor allowing attackers
to retry failed requests.

On the defensive front, Paradise et al. suggested monitoring
a subset of users by simulating an attacker on topologies
taken from social networks [9]. However, this and much of
the related work along this direction are based on heuristics
built on known sociological properties. Furthermore, they did

not provide a theoretical analysis of identifying the set of
vulnerable users. Additionally, in the literature the attacker is
usually assumed to have knowledge of the network topology.

Further, assessing network vulnerability to infiltration and
reconnaissance attacks is a new metric [3]. The vulnerability of
networks due to malicious actors or external disasters has been
characterized in a number of ways [10]–[16] (and references
therein). However, the differences between these destructive
attacks and reconnaissance attacks precludes applying these
vulnerability measurements directly. Where prior work is
concerned with the ability of an attacker to disrupt a network
in term of network connectivity for example, we instead look
at the ability of an attacker to extract information from it,
thereby forming a new research direction.

Organization. The rest of the paper is organized as follows.
Section II presents the social network models, our problem
definition, and its inapproximablity. The PM -AReST algorithm
and all the theoretical analysis are introduced in Sections
III and IV respectively. Section V presents our experimental
evaluation and Section VI concludes the paper.

II. PROBLEM SETTING AND INAPPROXIMABILITY

We begin by modeling the problem space, then formally
define the problem and prove its inapproximability.

A. Network Models

We abstract an OSN as a directed graph G = (V,E) where
V = {v1, v2, . . . , vn, s} is the set of n users and attacker s,
who initially has no connections to other users. E is the set
of m directed edges where each edge (u, v) ∈ E represents
the friendship between u and v. Note that due to privacy
protections, the s only has access to incomplete friendship
information (i.e. network topology). However, the likelihood
of each relation can be estimated with link prediction methods
[17]–[19], which may incorporate both publicly observable
connections and users public profiles. We model this by letting
each edge e ∈ E exist with some probability pe ∈ [0, 1]. Once
u accepts the friend request of s and all of u’s friends are
revealed, fixing puv to 0 or 1 depending on whether the edge
(u, v) was absent or present, respectively.

Friend Request Acceptance Model. Each node u is asso-
ciated with a random variable Xu where Xu = 1 indicates u
will accept a friend request from s, 0 otherwise. Xu follows a
distribution which reflects the current topology during an at-
tack. For example, suppose u has probability q(u) of accepting
s’s friend request. The attacker may be able to increase this
probability by first befriending some of u’s friends, resulting
in a probality of q′(u) > q(u) later in the attack. Without
loss of generality, we assume Xu follows a certain discrete
distribution q(u) with a domain Du, where diu ∈ [0, 1] be the
ith value in Du. We allow s to re-send friend requests to users
that had previously rejected them at the later time.

B. Attacker Model

We consider an attacker seeking to collect as much informa-
tion as possible from a set of users T ⊆ V , constrained by a
budget K. The attacker knows the cost c(u)→ Z

+ of sending
a request to each user u. In the simplest case, this represents

19971994700

the opportunity cost of spending time attempting to befriend
user u. More complex cases, such as considering the cost of
updating the bot’s profile to match a user u’s attributes (i.e.
exploiting homophily), are also representable with this model.
Let s be a single account on the network controlled by the
adversary, with N(s) = ∅ initially.1 This account may be a
socialbot or manually-operated.

Conceptually, the reconnaissance attack works as follows.
The attacker first obtains a master-list of target users T through
one or more public channels, e.g., an organization’s website or
from the OSNs themselves. The privacy features common on
OSNs prevent s from reliably gathering complete information
on t ∈ T except by becoming friends with t. Therefore, s
aims to choose the best set of users to maximize the benefit
gained from friends made. As a result of the acceptance
model described above, it may be beneficial for s to befriend
u �∈ T in order to boost the acceptance chance of one or
more targets. Therefore, the friending set F �⊆ T . However,
s cannot send too many requests or they will be detected by
even a trivial network monitoring system. The best strategy
for s is to mimic the behavior of normal users, e.g. sending
small numbers of requests, observing the responses, and then
repeating the process. Once a user v accepts s’s friend request,
their information will be harvested and their neighborhood
N(v) will be revealed. This strategy of repeatedly making
decisions subject to observed results of previous steps is called
an adaptive strategy.

Information Benefit Model. The benefit gained from a
friending set F depends on both the final network topology
(i.e. which users accepted or rejected s’s requests) and the
target set. We represent the benefit gained by each of (a)
friends made, (b) friends-of-friends (i.e. v ∈ N(s), u ∈ N(v)
if u is a friend-of-friend of s) made, and (c) edges revealed
as Bf (u | T), Bfof (u | T) ≤ Bf (u | T), and Bi(u, v | T),
respectively. For notational clarity, we leave the T parameter
implied in the remainder of this work. Each node u may
only produce one kind of benefit: Bf (u) or Bfof (u). These
functions allow expression of complex targeting priorities.

C. Preliminaries and Problem Definitions
Since G is partially unknown to s and friend requests sent

from s to u may fail, we use adaptive stochastic optimization
to tackle our problem. We begin by introducing notation. For
each node u ∈ V , let Yu ∈ {0, 1, ?} denote the state of u,
where 1 indicates that u accepts the friend request from s, 0
indicates that u rejects the friend request, and ? represents an
unknown, i.e., s has not sent a request to u yet. Initially, the
states of all u should be ?. Likewise, for each edge (u, v) ∈ E,
define Yuv ∈ {0, 1, ?}. 1 means the edge (u, v) exists (revealed
when s friends with u and v is u’s friend), 0 indicates edge
(u, v) is not present (revealed when s friends with u and we
learn for certain that v is not a friend of u), and ? means
unknown, i.e. u rejects the friend request from s, or s has not
sent a friend request to u yet, or u has their privacy level set
to self-only. Let Ω be the set of all possible states of G and
φ = {Yv}v∈V ∪{Yuv}(u,v)∈E → Ω be a possible state, called a

1For simplicity, we consider only one attacker, although our solutions are
readily extended to the case of multiple attackers.

(full) realization. We call φ(u, e) the state of node u and edge
e under realization φ. Without abusing the notation, we use
φ(u) and φ(e) to denote the state of node u and edge e under
φ, respectively. Clearly there are many possible realizations
which follow a probability distribution P [φ]. We represent this
with the random variable Φ, with P [φ] = P [Φ = φ] over all
realizations.

We consider a batch strategy π in which s sends friend
requests to a batch F ′, observes the state of all u ∈ F ′ and
all edges incident to u, picks the next set of batch to be friend
with, sees their state, and so on. Therefore, our observation on
networks after sending each batch of friend requests can be
represented as a partial realization ω. We use dom(ω) to refer
to the domain of ω, ie., the set of nodes and edges observed
in ω. A partial realization ω is consistent with a realization
φ if they are equal everywhere in the domain of ω, written
as φ ∼ ω. If ω and ω′ are both consistent with some φ and
dom(ω) ⊆ dom(ω′), we say ω is a subrealization of ω′. We
use the notation F (π, φ) (sometimes just F) to represent the
set of node selected by strategy π under realization φ.

The total benefit gain from strategy π under realization φ
can be written as follows.

f(π, φ) =
∑

u∈Nf (π,φ)

Bf (u) +
∑

v∈Nfof (π,φ)

Bfof (v)

+
∑

(u,v)∈Ni(π,φ)

Bi(u, v) (1)

where

Nf (π, φ) = {u|u ∈ F (π, φ), φ(u) = 1}
Nfof (π, φ) = {v|∃u ∈ F (π, φ) : φ(u, v) = 1} \Nf (π, φ)

Ni(π, φ) = {(u, v)|u ∈ Nf (π, φ), φ(u, v) = 1}
We are now ready to formally define our problem as follows:

Definition 1 (Adaptive Maximum Benefit Crawling
(Max-Crawling)). Given a social network G = (V,E)
where V is the set of user accounts, E is a set of
possible friendships between users, a budget K ∈ Z

+,
and all associated functions discussed above, find a
batch attacking strategy π with c(F (π, φ)) ≤ K where
c(F) =

∑
u∈F c(u) for all φ so as to maximize the expected

benefit f(π) = E[f(F (π,Φ),Φ)], where the expectation is
taken w.r.t P (φ).

D. Inapproximability
We prove the following inapproximability result, bounding

the approximation guarantee that any algorithm can provide.

Theorem 1. The Max-Crawling problem cannot be approxi-
mated within a factor (1− 1/e+ ε) unless P = NP

Proof. We will reduce from the Max-Cover problem, which is
defined as follows: given a collection of possibly overlapping
sets S = {S1, S2, ..., Sm′} and integer k′, find a subcollection
S ′ ⊆ S such that |S ′| ≤ k′ to maximize | ∪Si∈S′ Si|.

Given an instance of Max-Cover, we reduce it to an instance
of Max-Crawling as follows: Let V = ∪Si∈SSi, then for each
element ej ∈ V , we create a node vj in the Max-Crawling

19981995701

s1

s2

s3e1
e2

e3

e4
e5 v1 v2 v3 v4 v5

u1 u2 u3

s

Fig. 1: Reduction from Max-Cover to Max-Crawling

instance. For each set Si ∈ S , we also create a node ui.
If ej ∈ Si, create a directed edge (ui, vj) with puivj = 1.
Additionally, fix q(u) = 1, ∀u ∈ V , Bf (ui) = 0, Bf (vj) = 1,
Bfof (ui) = 0, Bfof (vj) = 1 and K = k′. The reduction
is illustrated in Fig 1. This reduction can clearly be done in
polynomial time.

If we have a Max-Crawling solution that has benefit D′
then there must exist a solution D̃ ≥ D′ when we send
all friends request to ui. Notice that the substitution of a vj
with a ui could only increase the gain. By the reduction we
obtain a Max-Cover solution with coverage D̃ by choosing
the sets Si corresponding to selected ui. Clearly, if we have
an α-approximation algorithm for Max-Crawling, then we
also have an α- approximation algorithm for the Max-Cover
problem. Thus due to the inapproximability of Max-Cover
[20], the Max-Crawling problem cannot be approximated
within a factor (1− 1/e+ ε) unless P = NP

III. ADAPTIVE AND PARALLEL ATTACKING STRATEGIES

In this section, we present our algorithm, the Parallel and
Adaptive Reconnaissance Strategy (PM -AReST), for solving
Max-Crawling. For a clearer presentation, we first introduce
our solution with all nodes having uniform cost, i.e. c(u) = 1,
a fixed friend request acceptance probability q(u), and a fixed
batch size k. We will discuss our solution for a general case
later in section IV-C. For simplicity, we assume that K is
divisible by k, i.e K = mk for m ∈ Z

+.

A. Algorithm Overview

PM -AReST, detailed in Alg. 1, has two main phases: Batch
Selection and Observation. In the Batch Selection phase, PM -
AReST will call BATCHSELECT (line 3) to select the best
possible set F ′ = {u1, . . . , uk} to friend in parallel. Upon
sending the friend requests, PM -AReST executes the Obser-
vation phase, which establishes “accept” or “reject” status of
uj . If uj ∈ F ′ accepted the friend request from s, the partial
realization ω will be updated with exact information on puv
for all v ∈ N(u) and q(u). The expected benefit Q is also
updated with the expected marginal gain of u conditioned on
partial realization ω (line 7), which is defined as follows:

Δf (u|ω) = E[f(dom(ω) ∪ {u},Φ)− f(dom(ω),Φ)|Φ ∼ ω]

These two phases will be iteratively executed until the total
number of friend requests reached to K.

The most crucial step of PM -AReST lies in the Batch
Selection phase. Within each batch, the nodes uj are selected
without observing the results of selecting the previous j − 1

p1 q1

p1p2 p1q2 q1p2 q1q2

ω

ω ∪ {u}

ω ∪ {u, v}

Fig. 2: The tree of realizations for a batch of size k = 2,
where qi = 1− pi.

nodes in F ′. PM -AReST addresses this challenge by consider-
ing the expected marginal gain of a node, taking into account
all observations made so far and all nodes that have already
been selected within the batch (but not yet observed).

Algorithm 1: PM -AReST Algorithm

Input: Graph G = (V,E, p,B, q), K, k, z ∈ Z
+,K = zk

Output: An ordered set of sets of nodes F ⊂ 2V for s to
send a friend request. Q the benefit gained by
friending all batch F ′ ∈ F .

1 F ← ∅;ω ← ∅;Q← 0
2 for i = 1..m do
3 F ′ ← BATCHSELECT(ω, k)
4 Send friend request to all uj ∈ F ′ in parallel.
5 for uj ∈ F ′ do
6 if uj accepts then
7 Q← Q+Δf (u | ω)
8 ω ← ω ∪ {(uj , accept)} ∪ observe(G, uj)

9 else
10

ω ← ω ∪ {(uj , reject)}
11

F ← F ∪ {F ′}
12

Return F , Q

B. Batch Selection Procedure
The BATCHSELECT procedure takes the current partial

realization ω as an input, and returns the set F ′ of k nodes that
s should send its friend requests. The goal of BATCHSELECT

is to greedily choose the best set F ′ that can gain the most
possible expected benefit upon sending friend requests to F ′.
Such computation is non-trivial, since choosing an additional
node for a batch F ′ requires considering all combinations of
success and failure for each node chosen in F ′ thus far. Fig.
2 illustrates the tree formed by this process. Each node in the
tree is directly computed as if the sequence of requests for
it had been done (note, however, that no requests are sent or
observations made until after the batch is complete).

Therefore, BATCHSELECT must carry forward additional
data that is not part of the partial realization ω, as ω is not
updated during the batch process. Specifically, three pieces of
additional information are needed: the set of all edges that
would be revealed in a given branch of the expectation tree
(RE), U [v] the unlikelihood of a node v being added as a
friend-of-friend during another request in the batch, and γ the
probability of the given branch being taken when the requests
are sent. We denote each branch state β = (γ,RE , U) (the

19991996702

root having β0 = (1, ∅, ∅)). Two further states are computed
for each state in the current row, denoted accept(β, u) and
reject(β, u), which represent the branches in which friending
u succeeds and fails, respectively. These are defined as:

accept(β, u) = (γq(u | ω), RE ∪ E(u), U ∪ up(U, u))

reject(β, u) = (γ(1− q(u | ω)), RE , U)

where up(U, v) = {v → (1 − puv)U [v] | v ∈ N(u)} and
v �∈ U =⇒ U [v] = 1. We further define the batch marginal
gain Δb as follows:

Δb(u | ψ,RE , U) = q(u)

(
Bf (u)

+
∑

v∈N ′(u)

puvU [v]Bfof (v) +
∑

e∈N ′′(u)\RE

Bi(e)

)

where N ′(u) = N(u) \Nfof (π, ψ) \Nf (π, ψ) and N ′′(u) =
{(u, v) | v ∈ N(u), (u, v) �∈ Ni(π, ψ)}

We use the unlikelihood of v being a friend-of-friend be-
cause that allows us to efficiently compute the joint probability
on-line as the product of 1− pxv values. During computation
of batch marginal gain (Δb), this probability is used to weight
Bfof (v) by the likelihood that (a) after friending u, v is a
friend-of-friend, and (b) that it has not become a friend-of-
friend already from one of the other nodes in the batch.

Note that each row of the expectation tree depends only
on the previous row and the values within each row are
independent. Knowing this enables us to compute the branches
in each row in a massively parallel fashion without any
reduction in solution quality. It is only necessary to update the
Δb and p values of the 2-hop neighborhood of each selected
node. Therefore, a cache is used to avoid re-computing these
values unnecessarily (as shown in lines 8-11 of Alg. 2).

Algorithm 2: BATCHSELECT Procedure

Input: Partial Realization ω, batch size k
Output: F ′ a set of friend requests to send

1 F ′ ← ∅
2 A← [β0]
3 CΔ = ∅ for i = 1 . . . k do
4 u← maxu Γ(u | A)
5 where Γ =

∑
β∈A γCΔ[u]

6 with CΔ[u] = Δb(u | ω,RE , U) computed lazily
7 A← [accept(β, u), reject(β, u)∀β ∈ A in parallel]
8 for v ∈ N(u) do
9 for w ∈ N(v) do

10 Erase w from cache CΔ

11 Erase v from cache CΔ

12 F ′ = F ′ ∪ {u}
13 Return F ′

IV. THEORETICAL PERFORMANCE ANALYSIS

Before analyzing the approximation ratios of PM -AReST,
we formally present two properties of adaptive monotonicity
and submodularity [21] as follows:

Definition 2 (Adaptive Monotonicity). A function f(.) is
adaptive monotone w.r.t the distribution P (φ) if for all ω with
P [Φ ∼ ω] > 0 and all v ∈ V , we have: Δ(v | ω) ≥ 0

Definition 3 (Adaptive Submodularity). A function f(.)
is adaptive submodular w.r.t the distribution P [φ] of all
realizations if for all ω and ω′ such that ω ⊆ ω′ and for
all v ∈ V \dom(ω′), we have:

Δ(v|ω) ≥ Δ(v|ω′) (2)

A. Analysis of PM -AReST
Lemma 1. For the batch selection at iteration i, the BATCH-
SELECT procedure greedily selects a node u such that

u = argmax
u∈V \F

Δf (u|F ′, ω)

where

Δf (u|F ′, ω) = E[f(dom(ω) ∪ {u} ∪ {F ′},Φ)
−f(dom(ω) ∪ {F ′},Φ)|Φ ∼ ω]

F denotes the set of selected nodes up to iteration i − 1, F ′
is the current batch, and ω is a partial realization at iteration
i− 1.

Proof. To begin, we remark that the closed form of Δf (u | ω)
can be written as:

accept(u)

⎛
⎝Bf (u) +

∑
v∈N ′(u)

puvBfof (v) +
∑

e∈N ′′(u)

Bi(e)

⎞
⎠

Next, observe that at state β0, Δb = Δf since U [v] is
identically 1, RE = ∅.

Now, suppose that l requests have been added to the batch.
Let Ωl be a random variable representing the possible partial
realizations after those l requests have been sent. This gives

E [Δb(u | ω,RE , U) | Ωl = ω′] = E [Δf (u | ω′) | Ωl = ω′]

where RE and U are taken from the branch corresponding
to ω′. Then, by observing that Pr[Ωl = ω′] = γ we directly
obtain Γ(u | A) = E [Δf (u | ω′) | Ωl = ω′] = Δf (u | F ′, ω),
where F ′ is the set of those l requested users.

Now let us consider the following sub-problem, Finding
Optimal Batch (FOB). Define the function g : 2V ×2V×Ω →
R

+. For F ′ ⊆ V , and for any partial realization ω ⊆ V × Ω,
g(F ′, ω) = E[f(dom(ω) ∪ F ′)− f(dom(ω))]. Given a graph
G and a fixed ω, FOB asks us to find a subset F ′ ⊆ V of size
k such that g(F ′, ω) is maximum.

Lemma 2. Let ω be a fixed partial realization and OPTb be
the optimal solution to FOB. Then g(F ′, ω) ≥ (1−1/e)OPTb.

Proof. It is easy to see that g is monotonic increasing for any
ω. We now show that g is also submodular for any ω. Since
a non-negative linear combination of submodular function
is submodular, instead of proving g submodular over all
realization of G (expected value), we will prove g submodular
under a random realization Φ ∼ ω. This reduces to prove f is
submodular under Φ. Formally, consider two subsets F1 and
F2 where dom(ω) ⊆ F1 ⊆ F2, and u /∈ F2, we need to prove:

20001997703

f(F2 ∪ {u})− f(F2) ≤ f(F1 ∪ {u})− f(F1)

Let Δuf(F) = f(F ∪ {u}) − f(F). We consider the
possibilities for u by cases:

1) If u /∈ N(v)∀v ∈ F2, then Δuf(F2) = Δuf(F1);
2) If u ∈ N(v) for some v ∈ F1 and u /∈ N(v)∀v ∈

F2 \ F1, then Δuf(F2) = Δuf(F1);
3) If u ∈ N(v) for some v ∈ F2 \ F1 and u /∈ N(v)∀v ∈

F1, then

Δuf(F1)−Δuf(F2) = Bfof (u) +
∑

v∈F2\F1

Bfof (v)

=⇒ Δuf(F2) ≤ Δuf(F1)

Thus we have g is submodular. Since g is monotonic sub-
modular, and BATCHSELECT greedily selects each node u
as shown in Lemma 1, it will return a solution at least
(1− 1/e)OPTb

Now let us consider the following mapping. Given a graph
G = (V,E), construct a graph G′ = (V ′, E′) as follows. For
each subset Fi = {vi1, vi2, . . . , vik} ⊆ V , create a node v′i ∈
V ′ and its associated set Fi (sometimes denoted as F (v′i) for
clarity). For each edge (u, v) ∈ E, create an edge (v′i, v

′
j) ∈ E′

if u ∈ Fi and and v ∈ Fj . Each new edge (v′i, v
′
j) has the same

probability puv and Bi(u, v) with edge (u, v). Therefore, there
are multiples edges between a pair of nodes in G′. For each
node v′i ∈ V , set q(v′i) = 1.

Define function h as follow. For a subset D ⊆ V ′, for any
pair (v′i, v

′
j) ∈ D, F (v′i) ∩ F (v′j) = ∅, we have h(D) =

f(∪v′
i∈DFi).

Lemma 3. Function h is monotonic submodular

Proof. It is easy to see that h is monotone increasing. Now
we prove that h is submodular. Again, since a non-negative
linear combination of submodular function is submodular, we
only prove the following for one fixed realization. Consider
two subsets D1 ⊆ D2 ⊆ V ′, and v′ /∈ D2, we need to prove
that:

h(D2 ∪ {v′})− h(D2) ≤ h(D1 ∪ {v′})− h(D1)

We have:

Δv′h(D2) = h(D2 ∪ {v′})− h(D2)

= f(∪v′
i∈D2

Fi ∪ F (v′))− f(∪v′
i∈D2

Fi)

≤ f(∪v′
j∈D1

Fj ∪ F (v′))− f(∪v′
j∈D1

Fj)

= Δv′h(D1)

The inequality is due to f is submodular (Lemma 2) and the
fact that ∀v′i ∈ D2, Fi ∩ F (v′) = ∅.
Lemma 4. (h, Z) is adaptive monotonic and adaptive sub-
modular where Z(φ′) is the distribution induced by P (φ),
followed by the above mapping.

Proof. Adaptive monotonicity is immediate due to the defini-
tion of h. For the proof of adaptive submodularity, consider
two fixed partial realizations ω′1 and ω′2 of G′ where ω′1 ⊆ ω′2

and a node v′ ∈ V ′\dom(ω′2), we need to prove that
Δh(v

′|ω′1) ≥ Δh(v
′|ω′2).

Let ω1 and ω2 denote the two corresponding partial realiza-
tion of ω′1 and ω′2 on G through the above mapping. Let Φ′
denote a random realization on G′. We have:

Δh(v
′|ω′1) = E[h(dom(ω′1) ∪ {v′},Φ′)− h(dom(ω′1),Φ

′)|Φ′ ∼ ω′1]

= E[f(dom(ω1) ∪ F (v′),Φ)− f(dom(ω1),Φ)|Φ ∼ ω1]

≥ E[f(dom(ω2) ∪ F (v′),Φ)− f(dom(ω2),Φ)|Φ ∼ ω1]

= Δh(v
′|ω′2)

The inequality follows due to the fact that (f, P) is adaptive
monotonic and submodular [3] and dom(ω2)∩F (v′) = ∅.
Theorem 2. The PM -AReST algorithm has an approximation
ratio of

(
1− e−(1− 1

e)
)

.

Proof. Let OPTM be the optimal solution to the Max-
Crawling problem, and SOLM be the solution obtained by
Alg. 1. Based on our mapping construction, it is easy to verify
that there is a 1-1 correspondence between finding the batch
strategy (each batch of size k) for (f, P) and sequentially
selecting one node at a time for (h, Z). Thus we will bound
the ratio based on (h, Z).

As shown in Lemma 2, at each iteration i of Alg. 1, the
gain BATCHSELECT obtained compared with OPTb is at least
(1 − 1/e) with respect to function g. In term of h, let v′i
represent a batch F ′i selected at iteration i, then we have

Δh(v
′
i | ωi−1) ≥ (1− 1/e)max

v′
Δh(v

′ | ωi−1)

As shown in Lemma 4, h is adaptive monotone and sub-
modular, thus by Thm. 5.2 [21], we obtain:

SOLM ≥
(
1− e−(1− 1

e)
)
OPTM

B. Two-stage Stochastic Linear Program

In this section, we present a two-stage stochastic program-
ming based approach to exactly solve the FOB problem. We
first use binary decision variables xu to represent whether or
not user u is selected as a target to friend, i.e, xu = 1 if user
u is selected, and 0, otherwise.

We impose on x the batch size constraint
∑

u∈A(s) xu = k.
Variables x are known as first stage variables. The values of x
are to be decided before the actual realization of the uncertain
parameters in G. For each realization φ ∼ ω, we denote the
neighborhood of u as Nφ(u), and the set of nodes that accept
the requests as Aφ(s). Let B(x, y, φ) represent the benefit gain
of friend requests x under a realization φ, F (s) represent the
set of friends of s, FoF (s) represent the set of friend of friend
of s, C(s) = V \F (s) \FoF (s), and yv = 1 when v is a new
friend of friend of s, and 0 otherwise. We have:

B(x, y, φ) = max
∑

u∈Aφ(s)

xu(Bf (u) +
∑

v∈NΦ(u)

Bi(u, v))

+
∑

u∈C(s)
Bfof (u)y

φ
u

20011998704

For each realization φ, B(x, y, φ) can be computed using a
second stage integer programming:

max B(x, y, φ) (3)

s. t. yφv ≤
∑

v∈Nφ(u)

xu, ∀v ∈ C(s) (4)

yφv + xv ≤ 1, ∀v ∈ Aφ(s) (5)

yφv ∈ {0, 1}, ∀v ∈ C(s) (6)

The two-stage stochastic integer formulation for the Max-
Crawling problem is as follows. We denote Φ as a random
realization that is consistent with ω.

max
x∈{0,1}n

E [B(x, y,Φ)] (7)

s. t.
∑

u∈V \F (s)

xu = k (8)

xu ∈ {0, 1}, ∀u ∈ V \ F (s) (9)

The objective is to maximize the expected gain E [B(x, y,Φ)].
This stochastic programming problem is, however, not yet
ready to be solved with a linear algebra solver.

1) Discretization: To solve a two-stage stochastic problem,
one often need to discretize the problem into a single (very
large) linear programming problem. That is we need to con-
sider all possible realizations Φ ∼ ω and their probability
masses P (Φ = φ). Since the objective involves only the
expected gain of the second stage variables yφv , the two-stage
stochastic program can be discretized into a mixed integer
programming, as follows.

max
∑

Φ∼ω

P (Φ = φ)B(x, y, φ) (10)

s.t.
∑

u∈u∈V \F (s)

xu = k, (11)

xu ∈ {0, 1}, ∀u ∈ V \ F (s) (12)

yφv ≤
∑

v∈NΦ(u)

xu, ∀v ∈ C(s), ∀φ ∼ ω (13)

yφ
v + xv ≤ 1, ∀v ∈ Aφ(s), ∀φ ∼ ω (14)

yφv ∈ {0, 1}, ∀v ∈ C(s), ∀φ ∼ ω (15)

The objective is to maximize the expected gain. In (10), P (Φ)
denotes the probability of having the realization φ, and the
remainder of the objective computes the benefit gained from
the batch of friend requests under realization φ. The first pair
of constraints limit the size of the batch to k. The remaining
constraints pertain to benefit calculation. As the benefits gained
from each φ are different, we calculate them separately. Within
each realization φ, all the edges and acceptances are revealed
and thus we can neglect the probabilities. We ensure that each
benefit is counted only once by constraining the x’s and y’s
to {0, 1}, and that no node has both Bf and Bfof counted for
it (constraint (14)). In constraint (13), we ensure that node v
becomes a friend of friend of s only if N(v) ∩N(s) �= ∅.

2) Realization Reduction: An approach to reduce the num-
ber of realizations is to apply the Sample Average Approxi-
mation (SAA) method. We generate T independent samples
φ1, φ2, · · · , φT using Monte Carlo simulation (i.e. to gener-

ate sets Nφ(u) and Aφ(s)). The objective E[B(x, y,Φ)] is
approximated by the sample average. The new formulation is

max
1

T

∑
φ∈φ1,··· ,φT

B(x, y, φ)

As T →∞, the objective function converges to E[B(x, y,Φ)]
with probability 1. Moreover, an optimal solution of the
sample average approximation provides an optimal solution
of the stochastic program with probability approaching 1
exponentially fast w.r.t. T . Formally, denote by x∗ and x̂ the
optimal solution of the stochastic programming and the sample
average approximation, respectively. For any ε > 0, by [22]
we have

Pr [E [B(x̂, y,Φ)]− E [B(x∗, y,Φ)] > ε]

≤
(
n

k

)
exp

(
−T ε2

δ2max

)
(16)

where δ2max is upper bounded by the maximum vari-
ance for the random variable B(x, y,Φ). As the bene-
fits are constant and Bf , Bfof are usually larger than
Bi, we have B(x, y,Φ) ∼ Ω(n) and δ2max ≤
n2. Therefore, if T ≥ n2

ε2 (k log n − logα), then
Pr [E [B(x̂, y,Φ)]− E [B(x∗, y,Φ)] < ε] > 1 − α for any
α ∈ (0, 1).

As discussed in Theorem 2, we immediately have the
following theorem.

Theorem 3. If Alg. 1 used the above IP instead of BATCHSE-
LECT, the total benefit gained from Alg. 1 is at least (1−1/e)
from OPTM .

C. Generalization

We now detail the theory enabling the generalized cost
function, acceptance model, and batch selection.

Cost Function. When c(u) is no longer a uniform cost, we
slightly modify BATCHSELECT to greedily select u such that:

u = argmax
u∈V \F

Δf (u|F ′, ω)
c(u)

As g is still monotonic submodular, Lemma 2 is still held.
Retrying Failed Requests. An unlikely rejection early in a

batch may greatly hurt the performance of PM -AReST, espe-
cially as the batch size increases. Allowing rejected requests
to be retried in later batches is not only more realistic, but
allows s to recover some of this lost performance. Alg. 1 is
slightly modified to put rejected nodes back and update the
cache.

Theoretical Analysis. As K = mk, each node u may be
being requested at most m times. To represent these repeated
request, we construct an auxiliary graph Ga = (Va, Ea) as
shown in Fig. 3. For each ui ∈ V , add ui0 and m nodes
uij for j = 1...m to Va. Also add a directed edge (uij , ui0)
to Ea. For any (ui, uj) ∈ E, add (ui0, uj0) to Ea. Let
Va = Vn ∪ Vo where Vn = {uij | i = 1...|V |, j = 1...m}
and Vo = {ui0 | i = 1...|V |}. Likewise, let Ea = En ∪ Eo

where En = {(uij , ui0) | i = 1...|V |, j = 1...m} and
Eo = {(ui0, uj0) | i = 1...|V |, j = 1...m}. Each edge

20021999705

u1 u3

u2

u10 u30

u20

...

u11

u12

u1m
...

u31

u32

u3m

· · ·
u21u22 u2m

Fig. 3: An auxiliary graph to represent the repeated friend
requests. The figure on the left is the original graph G and the
one on the right is the auxiliary graph Ga.

(ui0, uj0) ∈ Eo have the same probability with pui,uj in E.
Each edge (uij , ui0) ∈ En will has a probability randomly
draw from probability distribution Dui .

The realization in Ga is now defined on edge only. For
each edge e = (uij , u0i) ∈ En, Ye ∈ {0, 1, ?} where 0
indicates node ui rejected the friend request at time j, 1
indicates accept, and ? refers not being requested yet. For
each edge e = (ui0, uj0) ∈ Eo, Ye ∈ {0, 1, ?} where 0
indicates uj /∈ N(ui), 1 indicates uj ∈ N(ui), and ? refers the
unknown. For each i, only one edge in the set of {(uij , ui0)}
can be 1.

Given a realization ω of Ga, a node ui ∈ V is a friend of
s if ui0 is one hop away from any node in Vn via an edge e
with Ye = 1, called live edge. ui is a friend of friend of s if
ui0 is two hops away from any node in Vn via a live path (of
length 2). All of the following analysis will be on Ga.

Lemma 5. BATCHSELECT returns a batch with a benefit gain
at least (1− 1/e) from OPTb

Proof. Note that during the execution of BATCHSELECT, no
observation has been done. Thus it is straightforward to prove
this lemma using similar arguments as in Lemma 2.

Consider a decision tree of an attacking strategy π where
each branch from level i to level i + 1 corresponds to ωi

after round i under π. Let Λi = {ω1
i , . . . , ω

|Λi|
i } be the set of

all partial realization from level i to i + 1. (|Λi| = # of the
branches.) Each node in this tree represents a batch selected.

Let F = {w1, . . . , wm} be the set of batches selected by the
modified Alg 1 in that order. Each wi denote one batch. Let
F ∗ = {c1, . . . , cm} be the set of batches selected by the opti-
mal solution in that order. And finally let Fi = {w1, . . . , wi}.
Likewise for F ∗. We have the following lemma

Lemma 6.

h(F ∗) ≤ h(Fi) +mΔi for 0 ≤ i ≤ m− 1 (17)

where Δi = h(Fi+1) − h(Fi) and h(Fi) =∑|Λi|
j=1

∑
φ∼ωj

i
P [φ | ωj

i]h(Fi, φ)

Proof. Consider any fixed iteration i, for 1 ≤ z ≤ m, we
have:

h(F ∗z ∪ Fi)− h(F ∗z−1 ∪ Fi) ≤ h(Fi ∪ {cz})− h(Fi)

≤ h(Fi+1)− h(Fi) = Δi

Therefore,

m∑
z=1

(
h(F ∗z ∪ Fi)− h(F ∗z−1 ∪ Fi)

)
≤h(F ∗ ∪ Fi)− h(Fi) ≤ mΔi

Theorem 4. The modified Alg. 1 to this general setting has
an approximation ratio of (1− e−(1− 1

e)).

Proof. We first show that (1 − 1/e)h(F ∗) ≤ h(F). From
Lemma 6, we have:

h(F ∗) ≤ h(Fi) +mΔi = Δ0 + · · ·+Δi−1 +mΔi (18)

For the second term of Eq. (18), by the definition of Δi, it
is easy to verify that Δ0 + · · ·+Δi−1 = h(Fi).

Multiplying both sides of (18) by (1 − 1
m)

(m−1−i), and
adding them up for 0 ≤ i ≤ m− 1, we have:

m(1− (1− 1

m
)m)h(F ∗) ≤ m(Δ0 + · · ·+Δm−1)

= mh(F) (19)

Since (1− 1/m)m → 1/e when m→∞, we have h(F) ≥
(1− 1/e)h(F ∗). Combining with Lemma 5, we complete the
proof.

Remarks. Even though the theoretical performance bound
is the same for both non-repeat and repeat failed requests,
experiments show that re-sending friend requests obtain more
benefit. This approach allows s having more attempts to be
friend with some critical and important users.

Varying Batch Sizes. It is suspicious for s to keep sending
the same number of requests simultaneously. Thus s may want
to vary the batch sizes. One simple way is that for each batch
F ′ obtained by Alg. 1, s can break F ′ into several subsets with
different sizes and send the requests to users in each subset
simultaneously, without observation. Alternatively, Alg.1 can
be modified to execute BATCHSELECT with different input
k, randomly pick in a range of [kmin, kmax]. Thus for the
same set of F obtained by Alg. 1, we can have different
patterns for attack. Therefore, we are interested in analyzing
the relationship between different patterns. Due to the space
limit, we omit the following proof.

Theorem 5. Let π∗s be an optimal adaptive sequential strategy
with length K, and π the adaptive batch strategy selecting m
batches of varying sizes, we have:

f(π) ≥ (1− e−(1−1/e)2)f(π∗s)

V. EXPERIMENTAL EVALUATIONS

Prior work has established the utility of AReST as a tool
for measuring the vulnerability of OSNs to reconnaissance
attacks [3]. We extend AReST to the Max-Crawling problem,
terming this variant M-AReST, to enable direct comparison to
PM -AReST. In this section, we show that in realistic settings
attacks conducted with PM -AReST are significantly more
dangerous. To further support this, we explore the practical
performance of our batch algorithm and show that it scales

20032000706

(a) Enron Email (b) Slashdot (c) Facebook (d) Twitter (e) Twitter, retries allowed.

Fig. 4: Benefit Q as a function of friend requests sent K.

Network Nodes Edges

US Pol. Books [24] 105 441

Facebook 4k 88k

Enron Email 37k 184k

Slashdot 77k 905k

Twitter 81k 1.77M

TABLE I: Networks used in simulations. All networks are
from SNAP [25] unless otherwise noted.

very well with both graph size and available compute power.
Further, we experiment with an extended model that allows
recovery from failed friend requests and show that this closes
the gap between M-AReST and PM -AReST. To confirm that
our results generalize, we run on a variety of networks (see
Table I).

To decide the value of k, we note that the threat of detection
forms a natural limit on the batch size used. Boshmaf et al.
[2] elected to submit no more than 25 friend requests per day
on Facebook after observing the detection patterns in a pilot
trial. Later, Yang et al. [23] found that ”accounts sending more
than 20 invites per [hour] are Sybils”. Their data additionally
shows that the 95th percentile normal user sends fewer than
5 invites per hour. These lead us to a firm upper limit of 25
on the batch size, assuming a time interval of one day. With
shorter intervals, smaller batch sizes will be necessary. Even
with the one-day interval, the advances in detection since [2]
would seem to encourage smaller batch sizes in general. We
therefore focus our experiments on the k = 1 to k = 15 range.

PM -AReST is implemented in Rust2 and run, with M-
AReST, on a server that can support up to 36 simultane-
ous threads. To focus on the general performance of PM -
AReST, we fix the costs at uniform values. To ensure reliable
comparison to M-AReST, we adopt the same benefit model:
Bf (u) = 1 if u ∈ T , 0 otherwise. Bfof (u) = 0.5 if
u ∈ T , 0 otherwise. Bi(u, v) = 2|{u,v}∩T |/M , where M is
the maximum expected degree of any node in the network.
Unless stated otherwise, each simulation is repeated 100 times
and the results averaged.

A. Algorithm Performance

To begin, we show that PM -AReST performs similarly to
M-AReST on Max-Crawling. Fig. 4 shows that although there
is a gap in performance between M-AReST and PM -AReST,
the latter remains competitive, even when the batch size is

2https://www.rust-lang.org

allowed to vary (Fig. 7). From Fig. 5, it is clear that this
performance gap is largely due to the difference in friend
benefit between M-AReST and PM -AReST. This is somewhat
stymied by PM -AReST’s larger FoF benefit, though the gap
is still significant.

(a) k = 15 (b) k = 15, retries allowed

Fig. 5: Breakdown of benefit by source on Twitter. Lightly-
shaded regions indicate that M-AReST reached greater benefit
than PM -AReST. Brown regions indicate the opposite.

The question remains: is this a result of the BATCHSELECT

algorithm or an inherent property of any batch-based solution?
We run M-AReST, PM -AReST with BATCHSELECT, and
PM -AReST with the Discretized MIP from sec. IV-B. A
comparison is shown in Fig. 6. The small US Political Books
network is used due to the exorbitant running time and mem-
ory consumption of solving the MIP, which is compounded by
the fact that sampling must be repeated before each batch to
collect only samples that are consistent with the current partial
realization. The MIP is implemented and solved with CPLEX.
In the end, the optimal batch selection routine does only
marginally better than BATCHSELECT, leading us to conclude
that PM -AReST is a near-optimal adaptive batch algorithm.

Fig. 6: BATCHSELECT vs.
Exact MIP Solution (1000
samples for each batch) on
the US Pol. Books dataset.

Fig. 7: Performance on Face-
book when k is allowed to
vary each step on [5, 15].

20042001707

Threads Enron Email Facebook Slashdot Twitter

5 0.92 0.89 0.93 0.98
10 0.86 0.80 0.86 0.97
15 0.79 0.70 0.80 0.95
20 0.73 0.61 0.74 0.94
25 0.70 0.57 0.71 0.93
30 0.67 0.52 0.68 0.93

TABLE II: Mean fraction of available compute power utilized
by PM -AReST with K = 300 and k = 15.

When we enable retrying rejected requests, the gap between
M-AReST and PM -AReST is dramatically reduced, as shown
in Fig. 4e. Note that M-AReST is treated as having a batch
size of 1 for this process, and that it performed no better than
shown in Fig. 4d. From Figs. 4e & 5b, we can reasonably
ascertain that the loss of benefit relative to M-AReST arises
primarily from ambitious node selection within a batch, and
that the simple act of allowing recovery from these failed
requests nearly eliminates the problem.

B. Efficiency & Scalability of PM -AReST

Batch Size Enron Email Facebook Slashdot Twitter

M-AReST 11.90 3.46 16.80 477.73

5 30.22 8.67 35.22 900.13
10 114.93 30.70 133.48 2069.02
15 1678.79 391.95 1876.44 8629.69

TABLE III: Mean compute time in seconds across all threads
for PM -AReST with K = 300.

While the practical limitations of a real-world socialbot
constrain the cost of computing the batches to reasonable
levels, larger batches still come at a noticeable cost. Table
III shows the mean compute time necessary to complete a
simulation of PM -AReST with K = 300 (chosen as each
k ∈ {5, 10, 15} evenly divides 300).

However, these values are tempered by the fact that PM -
AReST parallelizes extremely well, as shown in Table II. On
smaller networks (e.g. Facebook), the CPU utilization drops
towards 50% as available compute power outstrips demand.
However, on even a medium-sized network such as Twitter,
the utilization remains above 90%.

C. Real-Time Network Vulnerability
Li et al. introduced the Reconnaissance Resistance Score

(RRS), the expected number of friend requests required to
reach a given benefit threshold Q, as a metric of network
vulnerability to the reconnaissance attacks. The intuition is
that the number of friend requests corresponds roughly to the
amount of time a socialbot employing AReST would take
to infiltrate a network. However, when requests are made
sequentially as in AReST the delay introduced by waiting
for user responses will dominate the computation time in
real-world scenarios. The PM -AReST algorithm addresses this
problem by sending requests in batches.

To illustrate the difference between these approaches, we
extend RRS from the expected number of friend requests to
the expected time (RT-RRS). Table IV shows the values of both
metrics. From this, it is clear that the RRS values are similar

between M-AReST and PM -AReST. However, from the RT-
RRS values we can conclude that even when the expected
response time for a friend request is a mere 5 minutes, PM -
AReST would infiltrate the network an order of magnitude
faster than M-AReST.

No Delay Enron Email Facebook Slashdot Twitter

M-AReST 1.0 × 10−1 2.0 × 10−2 1.6 × 10−1 2.2
k = 5 3.4× 10−1 5.8× 10−2 5.5× 10−1 6.3
k = 10 9.0× 10−1 1.5× 10−1 1.5 1.2× 101

k = 15 1.2× 101 1.6 1.9× 101 6.5× 101

5 minutes Enron Email Facebook Slashdot Twitter

M-AReST 6.4× 102 3.7× 102 8.3× 102 1.0× 103

k = 5 1.5× 102 8.5× 101 2.0× 102 2.4× 102

k = 10 7.7× 101 4.1× 101 9.8× 101 1.3 × 102

k = 15 6.1 × 101 2.9 × 101 8.3 × 101 1.4× 102

1 hour Enron Email Facebook Slashdot Twitter

M-AReST 7.7× 103 4.4× 103 9.9× 103 1.2× 104

k = 5 1.8× 103 1.0× 103 2.4× 103 2.8× 103

k = 10 9.1× 102 4.9× 102 1.2× 103 1.4× 103

k = 15 6.0 × 102 3.3 × 102 7.8 × 102 9.8 × 102

1 day Enron Email Facebook Slashdot Twitter

M-AReST 1.8× 105 1.1× 105 2.4× 105 2.9× 105

k = 5 4.4× 104 2.4× 104 5.7× 104 6.8× 104

k = 10 2.2× 104 1.2× 104 2.8× 104 3.3× 104

k = 15 1.4 × 104 7.8 × 103 1.8 × 104 2.2 × 104

TABLE IV: Exepected Real-Time Reconnaissance Resistance
Scores (in seconds-per-benefit) under increasing user response
delays. These values are computed by adding the delay d
between each logged batch step to take into account the
increasing running time required to compute larger batches.

VI. CONCLUSION

In this paper, we investigate an adaptive and parallel strat-
egy, of which attackers can simultaneously send multiple
friend requests in batch and recover from failed requests by
retrying in later batches. We introduce Max-Crawling, and
show its inapproximability of (1−1/e+ε). We first design our
core algorithm PM -AReST which has an approximation ratio
of (1 − e−(1−1/e)) and next provide a near-optimal solution
with an approximation ratio of (1−1/e). We also establish the

gap bound of (1−e−(1−1/e)2) between batch strategies versus
the optimal sequential one. Extensive experiments not only
confirm the performance of our algorithm, but also provide
new insights towards privacy protection under reconnaissance
attacks.

ACKNOWLEDGMENT

This work is supported in part by the NSF grant #CCF-
1422116 and DTRA HDTRA1-14-1-0055.

REFERENCES

[1] E. Novak and Q. Li, “A survey of security and privacy in online social
networks,” College of William and Mary Computer Science Technical
Report, 2012.

[2] Y. Boshmaf, I. Muslukhov, K. Beznosov, and M. Ripeanu, “The Social-
bot Network: When Bots Socialize for Fame and Money,” in Proceed-
ings of the 27th Annual Computer Security Applications Conference, ser.
ACSAC ’11. ACM, 2011, pp. 93–102.

20052002708

[3] X. Li, J. D. Smith, T. N. Dinh, and M. T. Thai, “Privacy issues in light of
reconnaissance attacks with incomplete information,” in Proceedings of
the 2016 IEEE/WIC/ACM International Conference on Web Intelligence.
IEEE/WIC/ACM, 2016.

[4] H. T. Nguyen and T. N. Dinh, “Targeted Cyber-attacks: Unveiling Target
Reconnaissance Strategy via Social Networks,” in Proceedings of the
IEEE Int Conf. on Computer Com., Security and Privacy in BigData
Workshop, ser. INFOCOM BigSecurity 2016, 2016.

[5] I. Jeun, Y. Lee, and D. Won, “A Practical Study on Advanced Persistent
Threats,” in Computer Applications for Security, Control and System En-
gineering, ser. Communications in Computer and Information Science.
Springer Berlin Heidelberg, 2012, no. 339, pp. 144–152.

[6] T. Ryan and G. Mauch, “Getting in bed with robin sage,” in Black Hat
Conference, 2010.

[7] A. Elyashar, M. Fire, D. Kagan, and Y. Elovici, “Homing socialbots:
intrusion on a specific organization’s employee using socialbots,” in Pro-
ceedings of the 2013 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining. ACM, 2013, pp. 1358–1365.

[8] Y. Boshmaf, K. Beznosov, and M. Ripeanu, “Graph-based sybil detection
in social and information systems,” in Advances in Social Networks
Analysis and Mining (ASONAM), 2013 IEEE/ACM International Con-
ference on. IEEE, 2013, pp. 466–473.

[9] A. Paradise, A. Shabtai, and R. Puzis, “Hunting Organization-Targeted
Socialbots,” in Proceedings of the 2015 IEEE/ACM International Con-
ference on Advances in Social Networks Analysis and Mining 2015, ser.
ASONAM ’15. New York, NY, USA: ACM, 2015, pp. 537–540.

[10] T. N. Dinh, Y. Xuan, M. T. Thai, P. M. Pardalos, and T. Znati, “On
New Approaches of Assessing Network Vulnerability: Hardness and
Approximation,” IEEE/ACM Transactions on Networking, vol. 20, no. 2,
pp. 609–619, 2012.

[11] M. A. Alim, N. P. Nguyen, T. N. Dinh, and M. T. Thai, “Structural
Vulnerability Analysis of Overlapping Communities in Complex Net-
works,” in Proceedings of the 2014 IEEE/WIC/ACM International Joint
Conferences on Web Intelligence (WI) and Intelligent Agent Technologies
(IAT) - Volume 01, ser. WI-IAT ’14. IEEE Computer Society, 2014,
pp. 5–12.

[12] S. Neumayer, G. Zussman, R. Cohen, and E. Modiano, “Assessing
the vulnerability of the fiber infrastructure to disasters,” Networking,
IEEE/ACM Transactions on, vol. 19, no. 6, pp. 1610–1623, 2011.

[13] N. P. Nguyen, T. N. Dinh, Y. Shen, and M. T. Thai, “Dynamic social
community detection and its applications,” PloS one, vol. 9, no. 4, p.
e91431, 2014.

[14] Y. Shen, N. P. Nguyen, Y. Xuan, and M. T. Thai, “On the discovery of
critical links and nodes for assessing network vulnerability,” IEEE/ACM
Transactions on Networking (TON), vol. 21, no. 3, pp. 963–973, 2013.

[15] N. P. Nguyen, Y. Xuan, and M. T. Thai, “A novel method for worm
containment on dynamic social networks,” in Military Communications
Conference, 2010-MILCOM 2010. IEEE, 2010, pp. 2180–2185.

[16] T. N. Dinh and M. T. Thai, “Network under joint node and link
attacks: Vulnerability assessment methods and analysis,” IEEE/ACM
Transactions on Networking, vol. 23, no. 3, pp. 1001–1011, 2015.

[17] M. Fire, L. Tenenboim, O. Lesser, R. Puzis, L. Rokach, and Y. Elovici,
“Link prediction in social networks using computationally efficient
topological features,” in Privacy, Security, Risk and Trust (PASSAT)
and 2011 IEEE Third Inernational Conference on Social Computing
(SocialCom), 2011 IEEE Third International Conference on. IEEE,
2011, pp. 73–80.

[18] M. Fire, R. Puzis, and Y. Elovici, “Link prediction in highly fractional
data sets,” in Handbook of computational approaches to counterterror-
ism. Springer, 2013, pp. 283–300.

[19] L. Backstrom and J. Leskovec, “Supervised random walks: predicting
and recommending links in social networks,” in Proceedings of the
fourth ACM international conference on Web search and data mining.
ACM, 2011, pp. 635–644.

[20] U. Feige, “A threshold of ln n for approximating set cover,” Journal of
the ACM (JACM), vol. 45, no. 4, pp. 634–652, 1998.

[21] D. Golovin and A. Krause, “Adaptive submodularity: Theory and
applications in active learning and stochastic optimization,” Journal of
Artificial Intelligence Research, vol. 42, pp. 427–486, 2011.

[22] A. J. Kleywegt, A. Shapiro, and T. Homem-de Mello, “The sample
average approximation method for stochastic discrete optimization,”
SIAM Journal on Optimization, vol. 12, no. 2, pp. 479–502, 2002.

[23] Z. Yang, C. Wilson, X. Wang, T. Gao, B. Y. Zhao, and Y. Dai,
“Uncovering social network sybils in the wild,” ACM Transactions on
Knowledge Discovery from Data (TKDD), vol. 8, no. 1, p. 2, 2014.

[24] V. Krebs, “Books about US politics,” unpublished,
compiled by Mark Newman. Retrieved from http://www-
personal.umich.edu/ mejn/netdata/.

[25] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

20062003709

