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Abstract—A reconnaissance attack, in which attackers lure
targets into becoming their friends in order to extract victims’
sensitive information for sale or use in future attacks, is one
of the most dangerous attacks in social networks. The core of
this attack lies in intelligently sending friend requests to a small
subset of users, called Critical Friending Set (CFS), so that the
attacker can evade current defense mechanisms.

Motivated by the above, we present a new paradigm to
measure OSN vulnerability in light of reconnaissance attacks.
Specifically, we introduce a new optimization problem, namely
Min-Friending, which identifies a minimum CFS to friend in
order to obtain at least Q benefit, in terms of personal infor-
mation. A significant challenge of this problem is that network
information (i.e. who friends with whom) is generally unknown
to attackers. In this paper, we show that Min-Friending is
inapproximable within a factor of (1 − o(1)) lnQ and present
an adaptive algorithm which has a tight performance bound of
(1+lnQ) using adaptive stochastic optimization. The key feature
of our solution lies in the adaptive method, where partial network
topology is revealed during each successful friend request. Thus
the decision of sending each friend request is made taking into
account observation about the outcomes of past decisions.

Index Terms—Target Reconnaissance Attacks; Social Networks
Analysis; Adaptive Algorithms; Incomplete Topology.

I. INTRODUCTION

The centralization of human interaction online into a few
enormous Online Social Networks (OSNs) has created a
rich repository of personal information that criminals seek
to harvest. During the last two decades, we have witnessed
the growth of a variety of attacks, most of which follow a
conventional method of befriending target users [1]. After
gaining access to their social circles, the attackers can extract
sensitive information that may be exploited for a number of
purposes including spear phishing and account compromise
via security questions [2]. Therefore, studying such threats
against privacy issues is of great importance in aiding the
development of new forms of protection as well as in raising
users awareness of the online threats.

Recently, a social engineering attack has emerged enabling
automated infiltration of social networks [2]. In this recon-
naissance attack, attackers attempt to approach their targets by
sending friend requests to multiple users in the target’s social
circle. Only when attackers acquire enough mutual friends
with the target do they attempt to lure the target in accepting
their friend request. When compared to sending friend requests
to the target immediately, where the attacker has no mutual
friend with the target, this attack guarantees a much higher

success rate [3]. One special feature of this attack is that it
can avoid detection by the social network provider for two
reasons: 1) Attackers carefully select certain friends of the
target to approach without sending too many friend requests at
once, and 2) This attack does not create a large sub-graphs that
could be detected by existing methods such as Sybil defenses
[4].

Motivated by the above discussion, we present a new
paradigm to measure the OSN vulnerability in light of recon-
naissance attacks. Although quantitative analysis of network
vulnerability can be addressed from a variety of perspectives,
an intuitive measure is the minimum number of users that
attackers need to friend with in order to maximally collecting
private information of target sets. Obviously, if this number
is small compared to the benefit gain from collecting those
information, one can conclude that the network is vulnerable to
attacks, whereas if this number is large, then such a network is
more robust with respect to reconnaissance attacks. Identifying
the set of users to friend, called a critical friending set (CFS),
is useful from both attack and defense perspectives. In the
former, the attacker identifies an optimal set of users to friend,
whereas in the latter the defender has an opportunity to protect
this set and potentially interfere with attacks in order to protect
the targets’ privacy.

The realization of this study, however, encounters several
challenges. First of all, the topological information of social
networks between the attacker and the target is generally un-
available. Since only two-hop topology is available by default
in closed OSNs such as Facebook, connections are gradually
revealed as the attacker acquires new friends. Furthermore,
the reconnaissance attack is still in its infancy, based only
on simulation and case studies without theoretical analysis.
Additionally, the huge number of OSN users and amount of
data available on OSNs pose a substantial challenge to mine
the critical friending set with incomplete topology. Finally, the
variety of potential social responses to friend requests make it
difficult to design an efficient reconnaissance attack, and thus
challenging to identify the CFS.

In this paper, we hope to make the first step towards privacy
protection by introducing a new optimization problem, called
Adaptive Minimum Critical Friending Set (Min-Friending).
The problem asks us to find a minimum number of users to
friend with in order to obtain at least Q benefits, in terms of
personal information, which will be formally defined later. The
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key feature of this problem lies in the adaptive solution, where
the partial network topology is revealed during each successful
friend request. That is, the decision of sending friend request
is made, taking into account the outcomes of past decisions.
Our contributions are summarized as follows:

• We prove Min-Friending cannot be approximated
within the ratio of (1 − o(1)) lnQ unless NP ⊂
DTIME(nO(loglogn)). That is, no-one can design an
algorithm which can guarantee its solution is within
(1 − o(1)) lnQ factor from the optimal solution under
all instances.

• We design an efficient heuristic, named AReST, to Min-
Friending. Using adaptive stochastic optimization, we
show that AReST has a tight performance ratio of
(1 + lnQ) in some cases.

• We have conducted extensive experimental evaluations
showing that AReST outperforms several alternate meth-
ods. Further, we find that the effectiveness of infiltration
has strong dependencies on the network topology and
user behavior in addition to the attacker’s choice of target.

Related Work. Reconnaissance attacks on social networks
may be simple attempts to collect personally identifiable
information, but have shown to be very crucial [5]. Ryan &
Mauch showed that fake profiles can be effectively used to
befriend members of the NSA, military intelligence agencies,
and Global 500 corporations [3]. These fake profiles can be
automated to form socialbots [2], which can then be used
to automatically infiltrate organizations [6], [7]. Furthermore,
reconnaissance attacks preclude the use of Sybil defenses,
which have a significant body of work [4] (and references
therein). Therefore, it urgently calls for radically new models
and analytical techniques to assess OSNs against these attacks.

The only work that is relevant to defending against these
attacks is in [8], by monitoring a subset of users within an
organization, and evaluated the cost to the organization by sim-
ulating an attacker on topologies taken from social networks.
However, this and much of the related work are based on
heuristics built on known sociological properties. Instead, we
provide a better defense strategy with a guarantee performance
bound of (1+ln(Q)). Additionally, in the literature the attacker
is usually assumed to have knowledge of the network topology.
We advance the state of the art by relaxing this to the case of
incomplete topology, where the attacker possesses only partial
knowledge of the edges on the network, which matches the
reality of infiltration on closed networks such as Facebook.

Further, assessing network vulnerability to infiltration and
reconnaissance attacks has not been addressed. The vulnera-
bility of networks due to malicious actors or external disasters
has been characterized in a number of ways [9]–[11] (and
references therein). However, the differences between these
destructive attacks and reconnaissance attacks precludes ap-
plying these vulnerability measurements directly. Where prior
work is concerned with the ability of an attacker to disrupt
a network in term of network connectivity for example, we
instead look at the ability of an attacker to extract information
from it, thereby forming a new research direction.

Organization. The rest of the paper is organized as follows.
Section II presents the social network models and our problem

definition. The inapproximablity of Min-Friending is proven
in Section III. The AReST algorithm and its theoretical
performance analysis are introduced in Section IV. Section V
presents our experimental evaluation and Section VI concludes
the paper.

II. NETWORK MODEL AND PROBLEM DEFINITION

A. Reconnaissance Insights

In order to solve Min-Friending, we first need to under-
stand reconnaissance attacks. To generalize our problem, we
consider a target set of users T that an attacker want to collect
information from. T could be a set of employees in a targeted
organization, one individual with a high profile (|T | = 1), or
the set of all users in a network. For simplicity, we assume
that there is a single attacker s who is an online user in the
same networking environment. This can be a socialbot or a
fake account created by the attacker. The solution proposed in
this paper can be easily extended to handle multiple attackers.

There are privacy settings in OSNs that allow account own-
ers to specify who can see what in their accounts. For example,
in Facebook, users can specify who are able to see their friends
list based on three categories: Public (everybody), Friends
(only whom you are connected with) and Only Me (nobody
else but me). Whereas, LinkedIn only has two options, i.e.,
Only you or Your connections (Friends). Most of the time,
the default privacy setting is Friends.

Conceptually, the reconnaissance attack works as follows.
Attacker s first achieves a master-list of target users T through
some public channels, e.g., organizations website or the OSNs
themselves which make public a certain amount of personal
information. This was made even easier after popular social
networks, e.g., Facebook, began forcing users to use their
original name for their accounts. Because of these privacy
settings, the only way s can gather the information of t ∈ T ,
assuming t has privacy setting to “Friends”, is friending t. To
successfully friend t, s needs to achieve the following: 1) s
needs to mimic a normal user, and thus needs to have a few
friends initially. This can be easily done by sending friend
requests to users that have a high number of friends as they
tend to accept all friend requests [2], [6]. 2) Since s and t
usually have no mutual friends, the probability of t accepting
s’s friend request is very low. And thus s should attempt to
friend t’s friends first, which in turn means, s should send
friend requests to friends of friends of t, and so on.

However, s cannot send too many friend requests as he will
easily get detected by any network monitoring service/manager
(e.g. by employing anomaly detection). The best strategy for
s is to mimic normal user behavior by sending friend requests
to a small number of users, observing the response and then
sending to another set of users. Once a user v accepts the
friend request of s, s can collect all v’s information, and all
the friends of v becomes visible of s. This strategy of repeating
the process of making decisions subject to previous decisions
and observing new results is called an adaptive strategy.

Based on the above discussion, the central concern of any
reconnaissance attack is who s should select in each decision
making step to minimize the number of friend requests while
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successfully gather information about T . Solving this problem
is equivalent to solve our Min-Friending problem.

Two fundamental challenges in solving Min-Friending are
as follows. First of all, the attacker’s knowledge of the network
topology (who is friends with whom) is usually incomplete
due to privacy settings. The problem becomes much more
challenging when the probability of accepting the friend
request from s adaptively changes since the number of mutual
friends of s and targeted users is dynamically increasing.

B. Network Model

From the aforementioned insights, we abstract an OSN as a
directed graph G = (V,E) where V = {v1, v2, . . . , vn, s}
is the set of n users and attacker s, who initially has no
connections to other users. E is the set of m directed edges
where each edge (u, v) ∈ E represents the friendship between
u and v. Note that due to the privacy settings, the friendship
information (network topology) is incomplete. Instead, s can
estimate these friendship probabilities based on link prediction
methods [12]–[14] which may combine both the publicly
observable connections and users public profiles. Therefore,
we model this by letting each edge e ∈ E exist with some
probability pe ∈ [0, 1]. Once v accepts the friend request of s
and all of its friends are visible to s, then puv = 1 iff u is v’s
friend. Else puv = 0.

Friend Request Acceptance Model. Let accept(u) denote
the probability that u accepts the friend request from s. This
function accept(u) is varied due to the social behaviors of
users. For example, when u has a very high number of
friends in his circle, accept(u) tends towards 1 [6]. Boshmaf
et al. found that increasing the number of mutual friends
dramatically increased the friend acceptance rate on Facebook,
which they explain as a result of the Triadic Closure principle
[2]. We fit their data to a degree-1 polynomial with a natural
log term. Figure 1 shows the original data and the estimated
function. Based on this fitting, we use this as the friend request
acceptance model in our paper, which is defined as follows:

accept(u) = ρ1 log(E [|N(u) ∩N(s)|] + 1) + ρ0

with ρ1 = 0.22805837 and ρ0 = 0.18014571. N(.) denotes
the set of neighbors. In a more general sense, this formula
incorporates the willingness of a user to accept a new, un-
known friend (ρ0) and how much sharing mutual friends
improves that willingness (ρ1). Given the limited amount of
data available learning the distribution of per-user weights is
currently infeasible, though we conduct experiments in the
special case of each user u having independent ρ0(u) weights.

Information Benefit Model. In order to quantify the benefit
that s achieves by gathering the information from the target
set T , each node u is associated with a benefit Bfof (u) ∈ R

+

when u becomes a friend of friend of s, i.e., 2 hops away
from s. Each node u is also associated with a benefit Bf (u) ≥
Bfof (u), Bf (u) ∈ R

+ when u becomes a friend of s. Note
that when u is both friend and a friend of friend of s, only
the friend benefit Bf (s) is in effect. Moreover, when each
edge (u, v) ∈ E is revealed, (i.e.the attacker learns about the
existence of (u, v)), the attacker gains an information benefit
Bi(u, v) ∈ R

+. The existence of edge (u, v) is revealed only

Fig. 1: The friend acceptance rate from the experiments of
Boshmaf et al. [2] as a function of the number of mutual
friends, with a logarithmic function fit to the data.

when either node u or v becomes a friend of s. At this point,
puv = 1.

C. Problem Definitions and Formulations
Based on the above model, the goal of attacker s is to gain

the greatest total benefit with the minimum number of friend
requests. Accordingly, we study the following problem:

Definition 1 (Adaptive Minimum Critical Friending
Set (Min-Friending)). Given a social network
G = (V,E, p,B, accept) where V is the set of user
accounts, E is a set of possible friendships between users,
each edge e ∈ E exists with a probability pe ∈ [0, 1], a target
set T ⊆ V , and a threshold Q ∈ Z

+. The benefit function
B and acceptance probability function accept(.) are defined
earlier. The problem asks us to find a set of friending nodes
F ⊂ V with minimum size so as when s successfully friends
with F , the total expected benefit gain is greater than Q.

Note that finding F is equivalent to finding an adaptive
attack strategy π, in which s will friend with u ∈ F iteratively.
Each time s becomes a friend of u, the network topology
G will be updated to reveal all edges incident with u. As
|F | is minimized, the number of friend request steps is also
minimized.

Since G is partially unknown to s and friend requests sent
from s to u may fail, we use adaptive stochastic optimization
to tackle our problem. We begin by introducing notations. For
each node u ∈ V , let Xu ∈ {0, 1, ?} denote the state of u
where 1 indicates that u accepts the friend request from s, 0
indicates that u rejects the friend request, and ? represents an
unknown, i.e., s has not sent a request to u yet. Initially, the
states of all u should be ?. Likewise, for each edge (u, v) ∈ E,
define Yuv ∈ {0, 1, ?}. 1 means the edge (u, v) exists (revealed
when s friends with u and v is u’s friend), 0 indicates edge
(u, v) is not present (revealed when s friends with u and we
learn for certain that v is not a friend of u), and ? means
unknown, i.e. u rejects the friend request from s, or s has not
sent a friend request to u yet, or u has the privacy setting to
himself only (not friend of friend). Let Ω be the state of all
possible states of G and φ = {Xv}v∈V ∪ {Yuv}(u,v)∈E → Ω
be a possible state, called a realization. Thus we call φ(u, e)
is the state of node u and edge e under realization φ. Without
abusing the notation, we use φ(u) and φ(e) to denote the state
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of node u and edge e under φ respectively. We require each
realization to be consistent. That is, each node and edge must
be in only one of the states {0, 1, ?}. Clearly there are many
possible realizations which follow a probability distribution
P [φ]. We denote Φ as a random realization and P [φ] = P [Φ =
φ] over all realizations.

We will consider the problem where s sequentially sends a
friend request to u, sees its state Φ(u, e) for all e incident to
u (ie, see whether u accepts the friend request, if so reveal all
its neighbors), pick the next user to friend, see its state, and so
on. We use the notation F (π, φ) be a set of node selected by
strategy π under realization φ. After each friend request, our
observations thus far can be represented as a partial realization
ω. We use dom(ω) to refer to the domain of ω, ie., the set
of nodes and edges observed in ω. A partial realization ω is
consistent with a realization φ if they are equal everywhere
in the domain of ω, written as φ ∼ ω. If ω and ω′ are both
consistent with some φ and dom(ω) ⊆ dom(ω′), we say ω is
a subrealization of ω′.

Let π be an adaptive attack strategy of s. The total benefit
gain from this strategy π under realization φ can be formulated
as follows.

f(π, φ) =
∑

u∈Nf (π,φ)

Bf (u) +
∑

v∈Nfof (π,φ)

Bfof (v)

+
∑

(u,v)∈Ni(π,φ)

Bi(u, v) (1)

where Nf (π, φ) = {u|u ∈ N(π, φ), φ(u) = 1},
Nfof (π, φ) = {v|∃u ∈ N(π, φ) : φ(u, v) = 1}\Nf (π, φ),
and Ni(π, φ) = {(u, v)|u ∈ Nf (π, φ), φ(u, v) = 1}.

Therefore, the Min-Friending problem can be stated for-
mally as:

min E[F (π,Φ)] (2)

s.t. E[f(F (π,Φ),Φ)] ≥ Q

III. INAPPROXIMABILITY

Instead of proving that Min-Friending is NP-hard, we prove
a stronger theorem, showing the inapproximability of Min-
Friending.

Theorem 1. The Min-Friending problem cannot be ap-
proximated within a factor (1 − o(1)) lnQ unless NP ⊂
DTIME(nO(loglogn))

Proof. Let Π = (S,U ,K) be an instance of the set-cover
problem in which U = {e1, e2, . . . , en} is the set of n elements
and S = {S1, S2, . . . , Sm} is the collection of m subsets of
U . The set cover problem asks if there are k subsets which
cover at least K ≤ n items in U . We construct an instance
Π′ = G(V,E, p,B, accept,Q) of the Min-Friending problem
as follows.

• For each element ei ∈ U , we include into V a vertex
vi. Similarly, we put into V a vertex uj for each subset
Sj ∈ S .

• For each pair of element ei and subset Sj , we connect
uj and vi if ei ∈ Sj . For all edges (uj , vi) ∈ E, we set
pujvi

= 1.

v1 v2 v3 vn U

u1 u2 um S

s

. . .

. . .

Fig. 2: An instance Π′ of Min-Friending after the attacker s
friends u1 and um (corresponding to S1 and Sm).

• For benefit B, we set Bfof (vi) = 1 and Bf (vi) = 0
for each vi ∈ V that corresponds to ei ∈ U . And we
set Bf (uj) = Bfof (uj) = 0 for all uj , associated with
subset Sj , and Bi(uj , vi) = 0 for all edges in the graph.

• For accept(.), set accept(uj) = 1 ∀uj , set accept(vi) =
ρ1 log(E [|N(v) ∩N(s)|] + 1) + ρ0 ∀vi.

• Finally, set Q = K and the target set T = V .

So the Min-Friending problem asks us if there exists a
CFS of size q such that the total benefit is at least Q. The
construction is illustrated in Fig. 2.

Since Bf (vi) = 0, there is no incentive to friend vi. Thus
attacker s will friend with uj . This friend request to uj is
always successful as accept(uj) = 1, s. In order to have
Q = K benefit, s needs to have at least K vi in his two-
hop neighbors. Then the users uj that s chooses to friend
with are corresponding to the k sets Sj of Π. Clearly if
we have an approximation algorithm with an approximation
factor α(Q) for Min-Friending, then we also have an α(K)
approximation algorithm for the set cover problem. Thus, due
to the inapproximability of set cover [15], the Min-Friending
problem cannot be approximated within a factor (1−o(1)) lnQ
unless NP has nO(log logn) deterministic time algorithms.

IV. ADAPTIVE RECONNAISSANCE STRATEGIES

In this section, we present our solution to Min-
Friending, namely Adaptive Reconnaissance Strategy algo-
rithm (AReST), followed by the theoretical analysis.

A. Algorithm Description
At an abstract level, the Adaptive Reconnaissance Strategy

algorithm (AReST) has two main phases: Selection and Feed-
back. At the Selection phase, AReST will select a node u for
s to friend so as to increase the potential function (which will
be discussed later) the most. After selecting u, a friend request
is sent. If u accepts the friend request, AReST executes the
Feedback phase, which will (1) update the network topology
with more exact information on pe ; and (2) update the
accept(v) for all v ∈ N(u). If u rejects the friend request,
AReST will continue the first phase to select another node.
These two phases will be iteratively executed until the total
expected benefit exceeds Q.

The main challenge of the first phase is to define an efficient
potential function. As the friend request acceptance probability
is changing after each successful friend request, the potential
function must account for the likelihood of increasing the
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Algorithm 1: Adaptive Reconnaissance Strategies
(AReST)

Input: Graph G = (V,E, p,B, accept), and Q ∈ Z
+

Output: An ordered set of nodes F ⊂ V for s to friend
with.

1 F ← ∅;ω ← ∅
2 while E[f(F )] < Q do
3 foreach u ∈ V \F do
4 Δ(u|ω) = accept(u)(P1 + P2)

5 Select u∗ ∈ argmaxu Δ(u|ω)
6 Set F ← F ∪ {u∗}
7 Send a friend request to u∗
8 Feedback: Update ω with new observed information

of pu∗v and accept(v) for all v ∈ N(u∗)
9 Return F

acceptance probability in a later iteration in addition to the
gain defined by the benefit function B. Let F denote the set
of s’ friends at this current stages ω. In order to select a node
u at the next step, we define the potential function as follows:

Δ(u|ω) = accept(u)(P1 + P2)

where P1 and P2 represent the gain in increasing the accep-
tance probability for later stages and the gain in increasing the
benefit function B, respectively. Mathematically, we have:

P1 =
1

|N(u)|
∑

v∈N(u)

puv ×ΔPu(s, v)×ΔuvB

where ΔPu(s, v) denotes the gain in the acceptance probabil-
ity when u becomes a friend of s. ΔPu(s, v) can be calculated
based on the definition of accept(.) function: ΔPu(s, v) =
ρ1 log(1 + 1/E [|N(u) ∩N(s)|]). In the special cases of u
placing low value on mutual friends or u having many friends,
this tends to 0. ΔuvB represents the benefit gain assuming
s adds u as a friend, and then add v as a friend. Thus
ΔuvB = f(ω ∪ {u, v})− f(ω ∪ {u}) and

P2 =
∑

ω(u)=1

Bf (u)+puv

⎛
⎝ ∑

v∈N(u)

Bfof (v) +
∑

(u,v)∈E

Bi(u, v)

⎞
⎠

Algorithm AReST is depicted in Algorithm 1.

B. Performance Analysis
We are going to analyze the performance of AResT where

ΔPu(s, v) = ρ1 log(1 + 1/E [|N(u) ∩N(s)|]) = 0. This
relates to u placing low value on mutual friends or u having
many friends, and thus their friend acceptance probility de-
pends on ρ0(u). We show that AReST has an approximation
ratio of (1+lnQ). As shown in Theorem 1, this ratio is tight.

Note that AReST calculates Δ(u|ω) for all u ∈ V \F and
chooses u∗ with the maximal gain over all realization. Thus
in this case, the expected marginal gain of u conditioned on
having partial realization ω is defined as follows:

Δ(u|ω) = E[f(dom(ω) ∪ {u},Φ)− f(dom(ω),Φ)|Φ ∼ ω]

Lemma 1. The function f of the Min-Friending problem is
strongly adaptive monotonicity.

Proof. Recall that a function f(.) is strongly adaptive mono-
tone with respect to the distribution P (φ) if the following
condition holds [16]. For all ω, all v /∈ dom(ω), and all
possible states o of node v such that P [Φ(v) = o|Φ ∼ ω] > 0,
we have:

E[f(dom(ω),Φ)|Φ ∼ ω]

≤ E[f(dom(ω) ∪ {v},Φ)|Φ ∼ ω,Φ(v) = o] (3)

Consider a fixed ω, v /∈ dom(ω), and status o. Let A(ω) be
a set of nodes and edges that can be reached from s after
selecting dom(ω) and observing ω. Clearly, for all paths from
s to u ∈ A(ω) consisting of ω(e) = 1. Therefore, every path
from any u ∈ A(ω) to any v ∈ V \A(ω) must consisting at
least one ω(e) �= 1 or ω(w) �= 1 for some w on the path. Thus
we have f(A(ω)) = E[f(dom(ω),Φ)|Φ ∼ ω].

With a similar argument, we have f(A(ω ∪ {v})) =
E[f(dom(ω) ∪ {u},Φ)|Φ ∼ ω,Φ(u) = o]. Note that ω ⊆ ω′
implies A(ω) ⊆ A(ω′). Since f is a monotone function by
definition, we have f(A(ω)) ≤ f(A(ω′)). Thus we obtain
E[f(dom(ω),Φ)|Φ ∼ ω] ≤ E[f(dom(ω) ∪ {v},Φ)|Φ ∼
ω,Φ(v) = o]. This completes the proof.

Lemma 2. The function f of the Min-Friending problem is
adaptive submodular.

Proof. Recall that a function f(.) is adaptive submodular
with respect to the distribution P [φ] of all realizations if the
conditional expected marginal gain of any fixed node does
not increase as more nodes are selected and their states are
observed. Formally, f is adaptive submodular w.r.t. P [φ] if
for all ω and ω′ such that ω ⊆ ω′ and for all v ∈ V \dom(ω′),
we have:

Δ(v|ω) ≥ Δ(v|ω′) (4)

Consider two fixed partial realizations ω and ω′ where
ω ⊆ ω′ and a node v ∈ V \dom(ω′), we need to prove that
Δ(v|ω) ≥ Δ(v|ω′). We first prove the following claim:

Given ω ⊆ ω′ and define a coupled distribution μ over pairs
of realization φ ∼ ω, φ′ ∼ ω′ such that φ(v) = φ′(v) for all
v /∈ dom(ω′). For all (φ, φ′) in support of μ, we have:

Δ(v|ω, φ ∼ ω) ≥ Δ(v|ω′, φ′ ∼ ω′)

where Δ(v|ω, φ) = f(dom(ω) ∪ {v}, φ)− f(dom(ω), φ).
Define A(ω) and A(ω′) as in the proof of Lemma 1. We

have:

Δ(v|ω, φ) = f(dom(ω) ∪ {v}, φ)− f(dom(ω), φ)

= f(A(ω) ∪ {(v, φ(v))})− f(A(ω))

≥ f(A(ω′) ∪ {(v, φ′(v))})− f(A(ω′))
= f(dom(ω′) ∪ {v}, φ)− f(dom(ω′), φ′)
= Δ(v|ω, φ ∼ ω)
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Having proven the above claim, we can straightforwardly
finish our proof. Since ω ⊆ ω′, we have:

Δ(v|ω) = E[f(dom(ω) ∪ {v},Φ)− f(dom(ω),Φ)|Φ ∼ ω]

=
∑
(φ,φ′)

μ(φ, φ′)Δ(v|ω, φ)

≥
∑
(φ,φ′)

μ(φ, φ′)Δ(v|ω′, φ′)

= Δ(v|ω′)

Theorem 2. The AReST algorithm has an approximation ratio
of (1 + lnQ).

Proof. According to [16], if f is strongly adaptive monotonic-
ity, adaptive submodular, and self-certifying, the the greedy
algorithm to the Min-Friending problem returns a (1 + lnQ)-
approximation. Therefore, the only thing left we need to prove
is that f is self-certifying, which is defined as follows. An
instance (f, P (φ)) is self-certifying if for all φ, φ′, and ω such
that φ ∼ ω and φ′ ∼ ω, we have f(dom(ω), φ) = f(V, φ) iff
f(dom(ω), φ′) = f(E,ω′).

Clearly, we have f(V, φ) = min{Q, f(V )} = Q. We have
shown that f(dom(ω), φ) = f(A(ω)) for every φ ∼ ω. It
follows that f(dom(ω), φ) = f(dom(ω), φ′) for all ω and
φ, φ′ ∼ ω. Therefore, we obtain f(dom(ω), φ) = Q iff
f(dom(ω), φ′) = Q, which completes the proof.

V. EXPERIMENTAL EVALUATIONS

In this section, we evaluate the resilience of several net-
works (shown in Table I) to reconnaissance attacks. We
describe our experimental setup in Section V-A, then evaluate
AReST in relation to several simple alternatives in Section
V-B. We then measure the resistance of each network to
reconnaissance attacks and discuss the impact of user behavior
in Section V-C.

A. Experiment Setup

We evaluate AReST by simulating it on a set of networks
taken from the Stanford Large Network Dataset Collection1.
We compare against three alternate algorithms with multiple
choices for accept(u) and multiple kinds of structure in the
target set. The alternate algorithms we use to select friends
are 1) random selection, 2) greedily choosing the node with
highest degree, and 3) greedily choosing the node with highest
PageRank.

In our experiments, the benefit functions were fixed as
Bf (u) = tu, Bfof (u) = tu/2, and Bi(u, v) = t∗/M , where
tu = 1 iff u is targeted, 0 otherwise; t∗ is 1 when neither u,
or v is targeted, 2 when either is, and 4 when both are; and
M = maxv∈V E [deg(v)] is the maximum expected degree of
any node in V .

1https://snap.stanford.edu/data/

Network Nodes Edges
Facebook 4k 88k

Enron Email 37k 184k

Slashdot 77k 905k

Twitter 81k 1.77M

TABLE I: The networks used in our simulations.

1) Choice of Acceptance Function: As mentioned previ-
ously, the exact form of the function accept(u) is not known.
Therefore, we run our experiments with several acceptance
functions: constant (accept(u) = ρ0(u) ∈ [0, 1)), expected
fraction of shared neighbors (ESN; eqn. 5), and the expected
triadic closure (ETC) function defined in section II.

accept(u) = E

[
N(u) ∩N(s)

N(u) ∪N(s)

]
(5)

We additionally model the commonly-used bootstrapping
strategy in the ESN and ETC settings. This strategy prioritizes
high-degree users early in the attack because they have been
observed to have significantly higher acceptance rates. This
is useful for evading automated detection by increasing the
proportion of friend requests accepted. We model this with
the function

di(u) =

(
E [deg(u)]

M

)5

where M is the maximum expected degree defined previ-
ously.

2) Choice of Target Set: In a real-world scenario, the
adversary would know the target set they wished to attack. For
our simulations, we model several different possible structures
the target set could possess.

Single User. At one end of the spectrum, an attacker may
only be interested in information about a single target user.
We model this by randomly selecting a single user from the
graph to be the target user.

Random Sample. The attacker may also have a set of users
that are related outside the social network, but do not have
any connection in the topology of the OSN. We model this by
randomly sampling without replacement a set of users from
the social network. In our experiments, we sample 100 users
uniformly from the network.

Stochastic Breadth-First Search. The attacker’s target set
may also be strongly related by the topology of the OSN. We
model this by randomly selecting a single user from the graph,
then conducting a stochastic BFS from this user. The stochastic
BFS operates in the same manner as a normal BFS with the
following change: when the BFS algorithm would traverse an
edge, we first flip a weighted coin to see if the edge exists in
our stochastic graph and only traverse it if the edge does exist.
This coin flip is independent of the edge reveals done during
our algorithm, which models an attacker targeting a group of
users on the graph but having access to only noisy data before
running the Min-Friending algorithm. In our experiments, we
explore 100 nodes in each SBFS run.

All Users. The final setting we consider is T = V ,
which models the scenario where the attacker is interested
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(a) Enron Email (b) Slashdot
(c) Facebook (d) Twitter

Fig. 3: Mean number of friend requests sent before reaching benefit threshold Q on each dataset using the ETC acceptance

function and SBFS target setting.

in extracting as much information as possible about the graph
as a whole instead of any individual part of it.

B. Algorithm Comparison

To compare the effectiveness of these algorithms, we simu-
late them on each combination of dataset, acceptance function,
and target set structure 500 times and average the results. To
conserve space, we do not plot each combination. Figure 3
shows the time taken to reach a given benefit threshold Q for
each algorithm on each dataset with fixed settings of accept(u)
and target set structure. From this, it is clear that our algorithm
outperforms each of the alternate algorithms. The difference in
performance is noticeably larger on the Facebook and Twitter
networks than the Enron-Email and Slashdot networks. We
note that Facebook and Twitter are more representative of
what are commonly considered Online Social Networks, while
Enron-Email is a communication network and Slashdot has
social connections as an optional feature on a site otherwise
focused on news aggregation. Figure 6 shows that of the
algorithms considered, AReST gets the most benefit from
friending users within the target set. The others do not make
many friends within the target set, instead gaining benefit from
revealing edges on the network.

From figure 4, we can see that the acceptance function and
target structure have significant impact on the time to reach Q.
When T = V , the attacker reaches Q almost instantly, while
for T = {u}, it takes many friend requests. Some of this
is doubtless due to the difference in size between the target
sets. However, for the Random Sample and SBFS settings the
sizes are the same. When a disconnected group of users is
targeted, AReST does not perform as well as when the targets
are closely connected. Figure 5 shows that AReST prioritizes
friend requests that are likely to be accepted. The drop in
acceptance rate shown in the ESN case is a result of exhausting
the supply of high-degree users. Under ESN, each mutual
friend is only a small marginal gain in acceptance rate, which
causes the attacker to become trapped in a state where there
are no highly likely friend requests to send. The impact of the
acceptance function shows the importance of accurate user
modeling in the study of social networks. Future work should
incorporate empirical models of user behavior to ensure that
any simulated results reflect real-world performance.

(a) Acceptance Function (b) Target Structure

Fig. 4: Performance of AReST on Twitter as we vary
acceptance function and target structure. Q̂ is the maximum
expected benefit for the target setting.

Fig. 5: Mean acceptance
probability of the node tar-
geted at each step of the
AReST algorithm.

Fig. 6: Fraction of tar-
get group friended under
the ETC acceptance and
Stochastic BFS targeting.

C. Resistance to Reconnaissance

We can get a qualitative sense of how resistance various
networks are to attack from figure 3. Facebook is the least
vulnerable, because at every point the minimum time taken to
reach a given benefit threshold Q is greater than any of the
other networks in this experiment. The Enron-Email network
is the most vulnerable for the opposite reason: it requires the
least time to reach any benefit threshold. We quantify this
with an intuitive metric termed Reconnaissance Resistance
Score: mean number of friend requests to get one unit of
benefit. Vulnerable networks require fewer requests per point
of benefit than resistant networks. This metric depends both
on the benefit function used and the algorithm that is used
to crawl the network. We addressed the former problem by
keeping the benefit function consistent between experiments.
For the latter, we use the best performing algorithm (AReST)
to give a worst-case vulnerability assessment. Table II details
the resistance levels of each network against each combination
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of acceptance function and target set.

From this data, we can see that both the acceptance function
and target structure play a significant role in determining the
resistance of a network. Across all networks, reconnaissance
on the network as a whole is the easiest, while reconnaissance
of a single user is most difficult. We can see from the
results of the random sample (RS) targets and the SBFS
targets that structure does play a role in difficulty: under
the constant acceptance function RS is typically easier than
SBFS. However, when the acceptance function depends on
local topology, SBFS becomes easier by a large margin in
most cases. From Table III, we can see that the topology of the
network does impact the difficulty of reconnaissance attacks.
Note that network size does not well-explain either the mean
or standard deviation, as the Facebook network (the smallest,
see Table I) has a mean resistance score five times as large as
the Enron Email network (the second smallest). We leave the
exploration of what topological features cause this to future
work.

Enron Email Constant ESN ETC

Single User 32.34 156.01 29.67
Random Sample 7.31 72.26 10.81
Stochastic BFS 9.87 38.03 9.69
All Users 0.09 0.45 0.09

Slashdot Constant ESN ETC

Single User 35.76 549.08 39.88
Random Sample 7.94 218.883 16.25
Stochastic BFS 10.23 78.95 10.20
All Users 0.06 0.87 0.06

Facebook Constant ESN ETC

Single User 36.72 1159.22 54.24
Random Sample 6.87 455.327 13.69
Stochastic BFS 11.97 219.52 14.60
All Users 0.40 13.15 0.68

Twitter Constant ESN ETC

Single User 110.62 8941.19 227.06
Random Sample 8.69 2454.52 25.56
Stochastic BFS 12.554 697.05 12.33
All Users 0.05 3.75 0.1

TABLE II: Reconnaissance Resistance Score (mean number
of friend requests required to earn one unit of benefit) for
each combination of settings on each network. Larger numbers
indicate higher resistance.

Min Mean Max Std. Dev.

Enron Email 0.09 30.55 156.01 44.82
Slashdot 0.06 80.68 549.08 159.81

Facebook 0.40 165.53 1159.22 340.53
Twitter 0.51 1041.08 8941.20 2585.17

TABLE III: Statistics on resistance scores over all settings
for each network.

VI. CONCLUSION

In this paper, we present a new paradigm to quantify
the OSN vulnerability in the eyes of reconnaissance attacks.
Specifically, we introduce a new optimization problem, namely
Min-Friending, which identifies a minimum CFS to friend in
order to obtain at least Q benefit. We show that Min-Friending

is inapproximable within a factor of (1−o(1)) lnQ and present
an adaptive algorithm which has a tight performance bound of
(1 + lnQ) using adaptive stochastic optimization. The key
feature of our solution lies in the adaptive method, where
partial network topology is revealed during each successful
friend request. Extensive experiments not only confirm the
performance of our algorithm, but also provide new insights
into the impact of user behavior and the importance of network
topology when defending against reconnaissance attacks.
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