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Abstract—Opportunistic networks enable mobile devices to communicate with each other through routes that are built dynamically,

while messages are en route between the sender and the destination(s). The social structure and interaction of users of such devices

dictate the performance of routing protocols in those networks. Community structures, commonly exhibited by social networks, is also

observed in the encounter patterns in opportunistic networks and has an astounding impact in designing forwarding algorithms for such

types of networks. In this paper, we explore the structural vulnerability of social-based forwarding and routing methods in opportunistic

networks. In particular, we introduce Community Vulnerability Assessment (CVA), a new problem on assessing the performance

reliability of opportunistic routing strategies in Delay Tolerant Networks (DTN) from a community structure point of view. Given a positive

number k, CVA aims to find out the kmost vulnerable devices in the network whose non-participation (due to out-of-service or

permanent out-of-range) transforms the current network community structure to a totally different one. As the first study in this

direction, we analyze and provide key insights into the separation of network communities, evaluated via the Normalized Mutual

Information (NMI). Based on these findings, we suggest an approximation algorithm for the special case when k ¼ 1, and a heuristic,

genEdge, for the general case. To certify the effectiveness of our proposed approaches, we first test them on synthesized data with

known community structures, and then we show the impact of node removal on community structures in real social networks. Finally we

evaluate the performance via different forwarding and routing strategies in multiple real-world DTN traces. Our results indicate that, in

many forwarding and routing methods, the nonparticipation of only some important devices is significant enough to degrade the entire

network’s performance.

Index Terms—Community structure, vulnerability assessment, routing and forwarding, delay tolerant network

Ç

1 INTRODUCTION

MOBILE opportunistic networks are characterized by
intermittent and non-deterministic connectivity, often

due to interruptible wireless links, sparse network deploy-
ment and/or nodal mobility. Such opportunistic networking
has been discussed in the context of delay/disruption-toler-
ant networks, sporadically connected sensor networks, vehic-
ular networks, peer-to-peer mobile social networks, and 5G
networks. These networks do not depend on any infrastruc-
ture but, instead, exploit opportunistic connections between
mobile devices to enable device-to-device communication. In
this paper, we focus on disruption or delay tolerant networks
(DTN) which have recently drawn a great attention due to
their wide application in pervasive environments such as
military operations, space communication and dynamic wire-
less sensor deployments [1]. In general, DTNs are partitioned
wireless ad-hoc networks with the notable characteristic of
intermittent connectivity [1]. Due to this intermittent

connectivity, DTNs display unstable network structures, are
lack of instantaneous end-to-end connections and thus, shall
never be fully connected at any point in time. In addition,
they often incur a large transmission delay between partici-
pating devices together with a probability of unsuccessful
transmission. These characteristics limit the use of traditional
message forwarding protocols [2] since they rely on the estab-
lishment of a complete end-to-end route from the source to
the destination.

Many forwarding and routing methods have been pro-
posed for DTNs in the literature (see [1] and references
therein). Nowadays, since wireless devices (such as smart
phones, PDAs, etc) are usually carried by people, and
because people have a tendency to move and communicate
in groups, social-based forwarding and routing strategies
exploring social interactions and centrality have emerged as
potential solutions for this matter [1]. Particularly, commu-
nity-aware approaches such as Label [3], Bubble-Rap [4],
Social-based multicasting [5], and Friendship-based routing
[6] have been shown to be very efficient and are among the
best methods for DTNs. Here, a group or community in
DTNs can be visualized as a group of frequently interacted
wireless devices with less connectivity to other groups. Devi-
ces in the same community have higher chances to encounter
each other to transfer carried messages. Therefore, the
knowledge of the community structure could help the rout-
ing protocols to wisely choose better forwarding relays
which can bring the message closer to the final destination,
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and hence, could significantly improve the chances of mes-
sage delivery. Community-based forwarding and routing
techniques in DTNs, as a result, rely on this knowledge as
the heart of their decision-making process [1].

Although a lot of works have shown the effectiveness of
community-aware forwarding schemes in DTNs, none
of them really explored the structural vulnerability of these
routing methods. In particular, the impact analysis of the
stability of community structures on the performance meas-
ures of DTN routing in terms of different metrics have so
far been an untrodden area. During the network operation,
it is possible that some important wireless devices can
potentially be out of service due to energy exhaustion, or
they can be permanently out of communication range due
to the intermittent connectivity in DTNs. The nonparticipa-
tion (or failure in service) of these important devices can
incur a major structural change in the network topology,
and consequently, can lead to a significant transformation
of the network community structure. This undesirable reac-
tion challenges the performance of community-based for-
warding methods because forwarding routes now may not
be feasible (if the missing devices were bridge nodes), or
may take too many more steps for the message to be deliv-
ered (if the destination’s community is loosely connected
from the source). Those consequences shall degrade the
message delivery rate and introduce an even longer trans-
mission delay in the resulting DTN. Therefore, identifying
key devices that are crucial to the network community
structure is an extremely important task in maintaining the
desired performance of community-aware routing strate-
gies in DTNs as well as development of more secure and
reliable forwarding and routing techniques. To the best of
our knowledge, this vulnerability on community structure
has not been widely addressed in the literature.

Exploring the structural vulnerability of network com-
munity structure has considerable significance. For instance,
in DTNs the awareness of this vulnerability can help in
designing a forwarding algorithm that does not overload
those crucial devices by overflowing the limited queue
capacity (if they happen to be the highly ranked ones in a
community), or in designing an effective backup plan when
some of them may fail at the same time. Not only in oppor-
tunistic networks does this vulnerability assessment come
into use but also in other real world applications this has
considerable impact. For instance, in worm containment
application in online social networks (OSNs), this knowl-
edge can provide helpful insights into the protection of
those sensitive nodes (if they are indeed high influential
users) once worms spread out in the network. However,
under a minor structural change when a node is excluded
from a community, this particular community can either
stay intact if the removed node is less important, or can be
broken down into smaller subcommunities which can fur-
ther be merged to other communities if the current node is
of great importance to the community. This unpredictable
transformation of network communities makes their struc-
tural vulnerability assessment an extremely complicated yet
challenging problem.

As a first study on this research direction, in this paper, we
take the initial step on understanding how the failures of cru-
cial devices in DTNs affect the structure of its communities.

As mobile devices together with their connections and inter-
actions can be expressed under graph theory using nodes/
vertices and edges, we have utilized the graph theoretic
approach to identify the critical nodes in the underlying
graph removal of which causes maximal change of the net-
work communities. Specifically, given the input network, the
community detection algorithm A and a positive number k,
we formulate the Community Vulnerability Assessment (CVA)
problemwhich aims to find a set S of k nodes whose removal
maximally transforms the current network community struc-
ture to a totally different one, evaluated via the Normalized
Mutual Information (NMI)measure [7]. Our empirical results
indicate that, in many forwarding and routing methods, the
failure of only a small number of important devices is signifi-
cant enough to degrade the performance of the entire net-
work. The main contributions of this paper pertain to
answering the following questions:

� How vulnerable are the social-based forwarding
strategies in DTNs?

� How the performance of social-based routing and
forwarding schemes are impacted if the community
structure is changed?

� What is the role of important (hub and bridge nodes)
devices in community-based routing schemes?

The rest of this paper is structured as follows. We formu-
late the problem for assessing vulnerability of social-based
forwarding and routing strategies inDTNs froma community
structure point of view in Section 2. In Section 3 we analyze
potential conditions that can possibly lead to the minimiza-
tion of NMI on community structures. We suggest an approx-
imation algorithm for the case k ¼ 1, and propose genEdge, a
heuristic for CVA problem when k > 1 in Section 4. We con-
duct experiments on both synthesized data with known
community structures along with real world social network
data, and finally on different forwarding and routing strate-
gies in multiple real-world DTN traces in Section 5 to show
the structural vulnerability of these schemes. Section 6
discusses literature review on vulnerability assessment of
DTN routing and finally Section 7 concludes the paper.

2 PROBLEM FORMULATION

Graph notations. LetG ¼ ðV;EÞ be an undirected unweighted
graph representing the input network. Necessary terms
related to graph structure are described in Table 1.

Community structure. Denote by A the community detec-
tion algorithm on G, by X ¼ fX1; X2; . . . ; XcXg and Y ¼
fY1; Y2; . . . ; YcY g the two community structures of cX and cY
communities detected by A before and after the removal of a
set S of k nodes in G, respectively. Mathematically,X and Y
are represented as X ¼ AðGÞ and Y ¼ AðG½V nS�Þ, where
G½V nS� is the subgraph induced by G on V nS. For any
i ¼ 1; . . . ; cX and j ¼ 1; . . . ; cY , let xi ¼ jXij, yj ¼ jYjj,
nij ¼ jXi \ Yjj and li be the number of removed (lost) nodes

in Xi, respectively. Finally, let �x ¼ PcX
i¼1 xi; �y ¼ PcY

j¼1 yj;

and �n ¼ PcX
i¼1

PcY
j¼1 nij in this order be the total size of com-

munities in X, Y , and the total number of common nodes
shared betweenX and Y .

NMI. In order to evaluate how much the network com-
munity structure changes after the removal of important
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nodes, we use Normalized Mutual Information [7]. Basi-
cally, given two community structures A and B, NMIðA;BÞ
is 1 if A and B are identical and is 0 if they are totally sepa-
rated, and the higher NMIðA;BÞ score the more similar A
and B are believed to be. Thus, it is a well-suited metric
dedicated for certifying the quality of detected community
structures, and the effectiveness of this widely-accepted
measure has also been extensively verified in the literature
[8]. More details about NMI will be elaborated in our analy-
sis in Section 3. Finally, the Community structure Vulnera-
bility Assessment (CVA) problem is formulated as follows:

Definition 1 (CVA). Given a mobile network represented by a
graph G ¼ ðV;EÞ, a specific community detection algorithm
A, and a positive integer k � n, we seek for a subset S � V
such that

S ¼ argmin
S0�V;jS0 j¼k

fNMIXðS0Þg;

where NMIXðS0Þ ¼ NMIðX;AðG½V nS0�ÞÞ for any subset
S0 � V .

Specifically, CVA problem seeks for a subset S � V of k
nodes whose removal results in the maximum difference
between the original community structure X and the new
community structure Y detected by A on G½V nS�. We call S
the node vulnerability set of G since its removal maximally
transforms network communities of G to different
structures.

The above formulation of CVA problem requires the
community detection algorithm A as an input parameter.
Because there is not yet a universal agreement or accepted
definition of a network community, this input is necessary
in the sense that different algorithms with different objec-
tive functions might favor different sets of nodes, and thus,

a good solution set for one community detection algorithm
may not be good for the others. Nevertheless, a node selec-
tion strategy that relies more on the input network and less
on the community detection algorithm is always of desire.

3 ANALYSIS OF NMI MEASURE

In this section, we first derive some important properties of
NMI measure, and then investigate possible conditions on
sizes and the number of communities that potentially lead
to the minimization of NMIðX;Y Þ in both disjoint and
overlapped community structures. We stress that these
conditions are by no means universal or exhaustive since
some of them might not hold true simultaneously. Indeed,
what we hope for is these conditions would provide us
key insights into the selection of important nodes to maxi-
mally separate X and Y .

3.1 Formulation

To evaluate NMIðX;Y Þ with X ¼ fX1; X2; . . . ; XcXg and
Y ¼ fY1; Y2; . . . ; YcY g, we consider community labels Xi

and Yj, where Xi and Yj indicate the community labels of a
node t in X and Y , respectively. We can also assume that
the labelsXi and Yj are values of two random “variables” X

and Y [7] (here we reuse notations X and Y to denote the
random variables), with joint distributions P ðXi; YjÞ ¼ P ðX
¼ Xi;Y ¼ YiÞ ¼ nij=ðn� kÞ; and individual distribution
P ðXiÞ ¼ xi=n;P ðYjÞ ¼ yj=ðn� kÞ: Using these notations, the
entropies (or uncertainties) HðXÞ and HðY Þ of X and Y [9]

are formulated as: HðXÞ ¼ �PcX
i¼1 P ðXiÞlogP ðXiÞ ¼ �PcX

i¼1
xi
n log

xi
n ; and similarly, HðY Þ ¼ �PcY

j¼1 P ðYjÞ logP ðYjÞ
¼ 1

n�k

�
�y log ðn� kÞ �PcY

j¼1 yj log yj
�
: Note that in CVA

problem, X can be found based on A and G, and as a result,
xi’s andHðXÞ can also be inferred from these input parame-
ters. Therefore, we consider them as constants in this paper.

The Mutual Information IðX;Y Þ [9] of X and Y is:

IðX;Y Þ ¼ PcX
i¼1

PcY
j¼1 P ðXi; YjÞ log P ðXi;YjÞ

P ðXiÞP ðYjÞ: IðX;Y Þ is sym-

metric and tells us how much we know about variable (or
structure) Y if we already know about variable X, and vice
versa. However, as indicated in [7], [8], Mutual Informa-
tion itself is not ideal as a global similarity metric since
any subpartition of a given community structure X would
result in the same mutual information with X, even though
they can possibly be very different from each other. The
authors in [7] introduce NMI which can overcome that lim-
itation. Formally, NMI of two random variables X and Y is

defined as NMIðX;Y Þ ¼ 2IðX;Y Þ
HðXÞþHðY Þ. Particularly, NMIðX;

Y Þ is written as

2
PcX

i¼1

PcY
j¼1 nij log

nijn

xiyj

ðn� kÞHðXÞ þ �y log ðn� kÞ �PcY
j¼1 yj log yj

: (1)

3.2 Properties

We derive some important properties of NMI measure in
terms of the set of excluded nodes. Intuitively, one expects
that the larger the set L of excluded nodes the lower the
NMIXðLÞ score would be. However, we show that this is not
the case in general, i.e., there exists a specific network in
which the removal of more nodes results in a higherNMIXðÞ

TABLE 1
Summary of Notations

Symbol Description

G Input network
V Set of nodes (mobile devices)
E Set of edges (relationship between devices)
n Number of nodes
m Number of edges
C A single community
nC Number of nodes in C
mC Number of internal edges in C
dC Maximum degree of a node in C
NðuÞ Set of all neighbors of node u
du Degree of node u in G
dCu Degree of node u in C

X Set of communities before node removal
cX Number of communities inX
Y Set of communities after node removal
cY Number of communities in Y
xi Number of nodes in communityXi

yj Number of nodes in community Yj

nij Number of common nodes betweenXi and Yj

li Number of removed nodes from communityXi

�x Total size of communities inX
�y Total size of communities in Y
�n Total common nodes betweenX and Y
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score. As a consequence,NMIXðÞ function is not submodular
in terms of the set of excluded nodes. Note that hereafter we
consider equation (1) without the constant factor 2.

Lemma 1. There is a graph G ¼ ðV;EÞ in which there are subsets
L � T � V such that NMIXðT Þ � NMIXðLÞ (here, L and T
are sets of excluded nodes).

Theorem 1 (below) generalizes Lemma 1 and realizes the
nonsubmodularity of NMIXðÞ in terms of community
assignments. Here, given two community assignments A
and B, we write A � B if every community defined by A is
a subcommunity defined by B. The proofs for the following
theorem along with the above lemma are presented in
Appendix A , which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TMC.2016.2524571.

Theorem 1. Given community assignments A � B, there
is s =2 A;B such that NMIXðAþ sÞ �NMIXðAÞ <
NMIXðBþ sÞ �NMIXðBÞ: This implies that NMIXðÞ is
not a submodular function.

3.3 Minimizing NMIðX; Y Þ in a Nonoverlapped
Community Structure

In a disjoint community structure, we have Xi \Xi0 ¼ ;,
[cX
i¼1Xi ¼ V , Yj \ Yj0 ¼ ;, and [cY

j¼1Yj ¼ V nS for i; i0 ¼ 1; . . . ;

cX and j; j0 ¼ 1; . . . ; cY . Therefore: �x ¼ n, �y ¼ ðn� kÞ,PcX
i¼1 nij ¼ yj,

PcY
j¼1 nij ¼ xi � li, and �n ¼ P

ij nij ¼
ðn� kÞ: (2)

3.3.1 Minimizing NMI within a Community

We first investigate the behavior of NMIðX; Y Þ in a special
case where only one specific community of X is affected by
the removal of set S of k nodes while other communities
stay intact. We can assume that X1 is the targeted commu-
nity which is further divided into p smaller subcommunities
of sizes s1; s2; . . . ; sp satisfying

Pp
j¼1 sj ¼ x1. In this

case, HðY Þ ¼ HðXÞ þ x1

�
log ðn�kÞ

n�k � log n
x1

n

�
�Pp

j¼1 sj log sj; and

IðX;Y Þ ¼ PcY
j¼1

xj
n�k log

n
xj
¼ n�k

n HðXÞ. Thus, NMIðX;Y Þ is

minimized when
Pp

j¼1 sj log sj is minimized. Since function

s log s is strictly convex for any s > 0, we can apply

Jensen’s inequality [9] and get 1
p

Pp
j¼1 sj log sj �

Pp

j¼1
sj

p

log

Pp

j¼1
sj

p ¼ x1
p log x1

p ; where equality holds when all sj’s

are equal to each other.
It reveals from this inequality that, in order to further

minimize the RHS quantity, one can try to break X1 into as
many smaller communities of the relatively same size as possible
(i.e., to enlarge p as much as possible while ensuring si’s are
all equal). This observation makes sense since a new struc-
ture of X1 with all singleton communities will incurPp

j¼1 sj log sj ¼ 0, and hence, will maximize HðY Þ and in

turn will minimize NMIðX;Y Þ. However, since the new
structure of X1 depends on the community detection algo-
rithm A, the all-singleton communities scenario might not
always be the case. Will this crucial observation hold true in
a general disjoint community structure? We tend to lean
over the affirmative answer through the analysis in the fol-
lowing section.

3.3.2 Minimizing NMI in a Disjoint Structure

In general, the equalities in ð2Þ simplify equation (1) to

PcX
i¼1

PcY
j¼1 nij log

nijn

xiyj

ðn� kÞHðXÞ þ ðn� kÞlog ðn� kÞ �PcY
j¼1 yj log yj

:

In order to minimize the above ratio, one would seek for
the conditions in which the numerator ofNMIðX;Y Þ is min-
imized while its denominator is also maximized. To maxi-

mize the latter quantity, we need to minimize
PcY

j¼1 yj log yj.

Now, applying Jensen’s inequality gives 1
cY

PcY
j¼1 yj log yj

� �y
cY
log �y

cY
¼ n�k

cY
log n�k

cY
, and thus

PcY
j¼1 yj log yj can attain

its minimum at ðn� kÞlog n�k
cY

where equality holds when

all yj’s are equal to each other.
As n and k are input parameters, log n�k

cY
can further be

minimized when cY is as large as possible, while requiring
yj’s to be equal to each other. Mathematically, this can be
achieved when Y contains exactly cY ¼ ðn� kÞ singleton
communities. However, since our problem is community
detection algorithm dependent, this inequality advises that,
in order to minimize NMIðX;Y Þ measure, the new commu-
nity structure Y should contain as many communities of rel-
atively the same size as possible.

To minimize the numerator of NMIðX;Y Þ, we write

IðX;Y Þ ¼ 1
n�k ð

P
ij nij log

nijn

yj
� P

ij nij logxiÞ. Next, apply-

ing Log Sum Theorem [9] to the first summand, we get

IðX; Y Þ � 1
n�k ð�n log n��n

cX �y � P
ij nij logxiÞ ¼ log n

cX
� 1

n�k

P
i

ðxi � liÞ logxi, since �n ¼ �y ¼ n� k and
PcY

j¼1 nij ¼ xi � li;

8i ¼ 1; . . . ; cX , where li is the number of deleted (or lost)

nodes in community Xi, and li’s satisfy
PcX

i¼1 li ¼ k. The
equality holds when nij=yj is a constant, say g � 0, for all
i ¼ 1; . . . ; cX; j ¼ 1; . . . ; cY . If we assume that this is the

case, then
PcY

j¼1 nij ¼ g
PcY

j¼1 yj ¼ gðn� kÞ, which in turn

implies n� k ¼ P
ij nij ¼ gcXðn� kÞ. Hence, g ¼ 1=cX and

thus, li ¼ xi � ðn� kÞ=cX.
Therefore, to minimize the second summand, the equation

li ¼ xi � ðn� kÞ=cX advises thatwe shouldputmore focus on
(i.e., removemore nodes in) big-sized communitiesXi ofX to
break it into smaller modules. This breaking down of big-
sized communities partially supports the prior observation
that communities of Y should have relatively the same size.
Note that in this analysis, we have assumed that nij=yj is a
constant for all pair of i and j. In practice, this might not
always be the case since real communities can be distributed
differently based on the underlying detection algorithm.Nev-
ertheless, we find this observation helpful as it suggests a gen-
eral direction for selecting important nodes in the network.

3.4 Minimizing NMIðX; Y Þ in an Overlapped
Community Structure

The minimization of NMIðX; Y Þ measure is much more
complicated when network communities can overlap with

each other. In particular, the conditions [cX
i¼1Xi ¼ V and

[cY
j¼1Yj ¼ V nS still hold in this case; however, Xi \Xi0 and

Yj \ Yj0 might not be empty for some i; i0 ¼ 1; . . . ; cX and

j; j0 ¼ 1; . . . ; cY . These facts indicate that �x ¼ PcX
i¼1 xi � n,

�y ¼ PcY
j¼1 yj � n� k and �n ¼ P

ij nij � n� k.
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Our analysis strategy in this case is similar to the prior
one as we also strive for maximizing the denominator while
minimizing the numerator of NMIðX;Y Þ (eq. (1)). Because
�n � n� k, the minimization of the top term IðX;Y Þ no lon-
ger depends only on xi’s. One way to work around this
issue is to investigate the relative correlation between the
total community size �y and the number of communities cY .

Let aA ¼ �y
cY

be the ratio between these two quantities, or

in other words, the averaged community size. Using this
notation, the denominator of NMIðX;Y Þ is evaluated

as: �y log ðn� kÞ �PcY
j¼1 yj log yj � �yðlog ðn� kÞ � log ð�y=cY Þ

cY
Þ ¼

�y log ðn� kÞ � aA logaA, with equality holding when all yj’s
are equal to each other. To further maximize this denomina-
tor, we need �y to be as large as possible while keeping aA as
small as possible, i.e., the new community structure Y
should contain more and more communities so as to
increase cY as well as to lower down aA.

Due to the dependence on the specific detection algo-
rithm A, this optimization on the correlation between �y and
cY might not be globally achieved. However, a coarse analy-
sis between �y and cY can relatively be conducted in the fol-
lowing sense: if we assume that �y is within a constant factor
of the total number of actual nodes ðn� kÞ, i.e., �y � a0ðn�
kÞ for some constant a0 > 1, we can then increase the value
of the RHS by breaking as many communities as possible
while retaining similar size (i.e., enlarge cY and keep all yj’s
the same), which helps to reduce the impact of aA logaA.
This observation, though relative, agrees with what we
achieved in the case of disjoint community structure. In an
unfortunate case where �y is not known to be within any con-
stant factor of ðn� kÞ, the observation might not hold since
both �y and cY can be arbitrary large and thus, aA logaA
could still be relatively small.

Next, applying Log Sum Theorem on the numerator
yields IðX; Y Þ ¼ P

ij nij log
nijn

xiyj
� �n log n��n

�x�y ;

with equality holding when
nijn

xiyj
is a constant for all

i ¼ 1; . . . ; cX and j ¼ 1; . . . ; cY . Thus, one can try to mini-
mize IðX;Y Þ by deleting nodes in such a way that �n is maxi-

mized and �y is minimized while making sure that
nijn

xiyj
is a

constant. As a result, this minimization of IðX;Y Þ is a multi-
ple-objective optimization problem which may not have a
feasible solution. However, if we assume that the later con-

dition is imposed, i.e.,
nijn

xiyj
¼ bA for some constant bA > 0,

then nij ¼ bAxiyj
n , and thus �n ¼ bA

n
�x�y. This reduces the

above inequality to IðX; Y Þ � �x
nbA�y logbAn: The RHS of

the inequality advises that, in order to minimize IðX;Y Þ, the
total size of network communities should not be too large while
the overlapping ratio of every community should be equal to each
other and be as small as possible. This is a different criterion
from the disjoint community structure’s point of view.

4 SOLUTIONS TO CVA

In the following paragraphs, we consider the scenario
where maximizing the internal density [10] is the objec-
tive function for finding network communities, i.e., com-
munities of G are assumed to have optimized internal
densities. In this connection, we first prove the computa-
tional complexity of the CVA problem by showing its

NP-completeness. Then, we present an approximation
algorithm in the special case k ¼ 1, and subsequently
propose genEdge, a heuristic algorithm for CVA problem
that is independent of the underlying community detec-
tion algorithm A. Our target strategy will try to break
larger communities to as many small ones as possible
while looking for those to have the relatively same size
with small overlapping ratios.

4.1 NP-Completeness of CVA
We show the NP-completeness of the CVA problem by
reducing the decision version of it from the well-known
maximum vertex coverage problem [11].

The decision version of CVA:

Definition 2 (CVAD). Given a mobile network represented by a
graph G ¼ ðV;EÞ, a specific community detection algorithm
A, and a positive integer k � n, CVAD asks that whether there
exists a subset S � V; jSj ¼ k such that NMIXðSÞ � a, where
NMIXðSÞ ¼ NMIðX;AðG½V nS�ÞÞ.
As both the community detection algorithm A and the

calculation of NMIXðSÞ takes polynomial time with a given
S � V , it is clear that a solution S 	 V of CVAD can be veri-
fied in polynomial time. Thus, CVAD is in NP.

To prove the NP hardness of CVAD, we reduce it from
the maximum vertex coverage problem on bipartite graphs
(MVC-B), which is proved to be a NP-complete [11] prob-
lem. The decision version of this problem is as follows.

Definition 3 (MVC-B). Given a bipartite graph G ¼ ðV;EÞ;
V ¼ VL [ VR; VL \ VR ¼ ; and positive integers b; c, the ver-
tex cover problem asks if there exists a subset of vertices S � V
with size b that at least c edges are incident to nodes in S.

Proof. Given an instance of MVC-B with bipartite graph
G ¼ ðV;EÞ; V ¼ VL [ VR; VL \ VR ¼ ; and positive inte-
gers b; c. Now we construct the CVA instance
G0 ¼ ðV 0; E0Þ by connecting VL; VR to cliques KL;KR,
respectively. We create an edge between all fðu; vÞ ju 2
KL; v 2 VLg and all fðu; vÞju 2 KR; v 2 VRg. We choose
the size of KL;KR in a way that when at least c edges are
removed from E, A will detect two communities
KL [ VL;KR [ VR (and exclude the removed vertices)
and one community otherwise. Let k ¼ b and

a ¼ max
SL�VL;SR�VR;jSLjþjSRj¼b

NMIðAðG0Þ; Y 0Þ; (2)

where

Y 0 ¼ fKL [ VLnSL;KR \ VRnSRg: (3)

Assume we have a solution S; jSj ¼ b to MVC-B. Then
at least c edges in E are incident to vertices in S. If we
remove all vertices in S, by construction, AðG0½V 0nS�Þ
will output two communities, KL [ VLnS0

L and KR[
VRnS0

R. Then we have

NMIðAðG0Þ;AðG0½V 0nS�ÞÞ � a (4)

as a is the maximum NMI value for communities in the
form of fKL [ VLnSL;KR \ VRnSRg. Therefore, we have a
solution S; jSj ¼ b ¼ k for CVAD.
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Now assume we have a solution S; jSj ¼ k to CVAD.
As NMIðAðG0Þ;AðG0½V 0nS�ÞÞ � a, AðG0½V 0nS�Þ must con-
tain two communities. By construction, number of edges
removed from E is at least c. If S � V , we directly obtain
a solution for MVC-B. If 9v 2 S; v =2 V , we can always
find a vertex u 2 V; u =2 S and update S to S0 ¼ S [
fugnfvgwhile keeping the number of edges incident to S
greater than c. Therefore, we have a solution S0; jS0j ¼ k ¼
b for MVC-B.

Since CVAD has a solution if and only if MVC-B has a
solution, CVAD is NP-complete and so is CVA. tu

4.2 An Approximation Algorithm for the Special
Case k ¼ 1

We analyze the special case when there is only one node to be
excluded from the current network. Note that this case, or the
casewhere k is a constant number, can theoretically be solved
for optimality by iteratively visiting all k-tubes of nodes, and
then selecting the one resulting to the lowest NMI score in
comparison to the original structure. However, this brute-
force searching approach is computationally intractable

requiringOðnk 
 timeðAÞÞ time as shown in the previous sec-
tion. Thus, our goal is to provide an alternative approach that
takes less time for finding themost important node.

The intuition behind our algorithms for this case is as fol-
lows: since the targeted node u belongs to some community
Xt of X, its exclusion can possibly break Xt into smaller
subcommunities which can further be merged with existing
communities. Per our analysis in the previous section, the
more number of new as well as merged communities
we have, the lower NMI measure the new community struc-
ture shall potentially be. Therefore, our strategy emphasizes
on selecting node that can break a community of X into
many more subcommunities of relatively the same size as
possible. By proceeding in this way, we can prove that the
obtained NMI score is at most the number of newly formed
subcommunities times the optimal NMI score. The proce-
dure is described in Algorithm 1.

Algorithm 1. A Solution for CVA Problem when k ¼ 1

Input: Network G ¼ ðV;EÞ, the community detection algo-
rithm A, set of communitiesX ¼ fX1; . . . ; XcXg;
Output: The targeted node u;
1: Run A on all communitiesXi’s ofX.
2: Choose community Xt of X having the most number of su-

bcommunities. If there is a tie, choose Xt ¼ C having the
smallest size difference between its subcommunitiesP

Xts ;Xtl2C jXts �Xtl j.
3: Choose the node u that is adjacent to most subcommunities

inXt.

4.2.1 Analysis

Let u be the node identified by Algorithm 1, Xt be the
community u belongs to, nt be the number of subcom-
munities resulted from the exclusion of u from Xt, and
Y be the new community structure detected by A on
G½V nfug�. Denote by u� the optimal solution whose
removal results in the lowest NMI score. We have the
following connection

Theorem 2. If nt � 2, the exclusion of u from G will result in
NMIXðfugÞ � minf1; nt 
NMIXðfu�gÞg.

Proof. (Concise) SupposeXt is broken into two or more sub-
communities. Let P1, P2 be sets of subcommunities that
are not merged and are merged with other existing com-

munities, respectively. We have IðX; Y Þ ¼ 1
n�1

�ðn� 1Þ
logn�HðXÞ þP

P2
sp2 log

sp2
xp2þsp2

�
and HðY Þ ¼ 1

n�1

�ðn�
1Þlog ðn� 1Þ þP

P2ðxp2 þ sp2Þlog ðxp2 þ sp2Þ
�
.

Therefore,

NMIXðfu�gÞ ¼
A1 þ

P
P2

sp2 log
sp2

xp2þsp2

C1 þ
P

P2ðxp2 þ sp2Þlog ðxp2 þ sp2Þ
:

where A1 ¼ ðn� 1Þlogn�HðXÞ and C1 ¼ ðn� 1ÞH
ðXÞ þ ðn� 1Þlog ðn� 1Þ. As we optimally minimize both
terms of NMIXðfugÞ, we will have the NMI measure that
is theoretically smaller than those incurred by any other
node u0 2 V . This implies

NMIXðfu�gÞ �
A1 þ xt log

xt
xp2þxt

C1 þ ðxp2 þ xtÞ log ðxp2 þ xtÞ :

One can show that

NMIXðfugÞ � nt 

A1 þ xt log

xt
xp2þxt

C1 þ ðxp2 þ xtÞ log ðxp2 þ xtÞ
� nt 
NMIXðfu�gÞ

and thus, the conclusion follows. tu

4.3 genEdge: A Heuristic for CVA

We present genEdge, an algorithm for CVA problem that is
independent of the underlying community detection algo-
rithm A. Our strategy will try to break larger communities
to as many small ones as possible while looking for those
having relatively same size with a small overlapping ratio.

4.3.1 Intuitions

The idea of our strategy is based on the following intuition:
since communities inX are optimized for their internal den-
sity, they are likely to contain strong substructures that are
tightly connected which form the cores of these communi-
ties. As a result, the removal of crucial nodes in a core might
potentially break the community into smaller modules.
Moreover, as nodes in a core are tightly connected, there
should be some edges that generate them, i.e., nodes in the
core are incident to both endpoints of this edge. Inspired by
this intuition, our strategy works towards the identification
of these generating edges of a community, and then seek for
the minimum set of generating edges that composes the
original communities.

Let CðCÞ ¼ 2mC
nCðnC�1Þ be the internal density of any C � V ,

and tðCÞ ¼ nC ðnC�1Þ
2

� 2
nC ðnC�1Þ be the threshold function on the

internal density of C. There are several reasons for using the
internal density as the objective function compared to other
functions which are worth noting down. First and foremost,
internal density facilitates the fundamental concept of a
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network community even with community overlap. Second,
internal density functions tðCÞ andCðCÞ locally process the
candidate community C only and neither require any pre-
defined thresholds or user-input parameters. Third, CðCÞ
and tðCÞ are increasing functions and closely approach C’s
full number of connections, i.e., the number of edges in a cli-
que of size jCj. That makes the internal density function a
powerful tool for detecting local communities, i.e., densely
connected parts of the network.

For any nodes u; v 2 C, if edge ðu; vÞ is not in E, we call it
a missing edge in C. In addition, we call an edge in C
“negative” if it is incident to a missing edge in C, and
“positive” otherwise. We define the concept of generating
edges of C as follows.

Definition 4 (Generating edge). For any edge ðu; vÞ in C, if
C ¼ ðC \NðuÞ \NðvÞÞ [ fu; vg and CðCÞ � tðCÞ, we call
ðu; vÞ a generating edge of C. We further call C a local core
generated by ðu; vÞ and write genðu; vÞ ¼ C.

For any community C of G, a set L � E is called a
“generating edge set” of a C if [ðu;vÞ2Lgenðu; vÞ ¼ C. Since C

can be generated by different generating edge sets and we
are constrained on the node budget, we would intuitively
seek for the generating edge set of minimal cardinality.

Definition 5 (The Minimum Generating Edge Set). Given a
community C of G, the MGES problem seeks for a generating
edge set L� of C with the smallest cardinality.

Fig. 1 illustrates this idea of cores and generating edges
on a hypothetical community C. C1 and C2 are two cores of
C since CðCiÞ � tðCiÞ for both i ¼ 1; 2. The cores are
marked with dotted lines in Fig. 1b. The edges ðu; vÞ and
ðs; tÞ are the generating edges of C1 and C2 respectively as
can be seen marked in red in Fig. 1b. fðu; vÞ; ðs; tÞg com-
prises the MGES of C.

The cores generated by edges in a MGES of a community
C of G are tightly connected and they all together compose
C. As a result, if we delete an endpoint of every edge in a
MGES, C will be broken into smaller modules with the num-
ber of modules is at least the number of edges in a MGES
(Lemma 2). Since our goal is to break the current community
structure X into as many new communities as possible, the
removal of crucial nodes defined by edges in a MGES will be
a good heuristic for this purpose. But first and foremost, we
need to characterize all MGESs in the current community
structure X based only on the input network G. Lemma 3
realizes the location of the generating edge(s) of a local core
in a communityC: they have to be adjacent to nodes with the
highest degree inC. Based on this result, we present in Algo-
rithm 2 a procedure that can correctly find the MGES of a
given communityC (Theorem 3).

Lemma 2. Let L� be a MGES of a community C. The removal of
an endpoint in every edge of L� will break C into at least jL�j
subcommunities.

Proof. See Appendix B, available in the online supplemental
material. tu

Lemma 3. Let C be a subset of V , U ¼ fu 2 CjdCu is maximum in
Cg and NEðUÞ ¼ fðu; vÞju 2 U or v 2 U but not bothg.
Then, jNEðUÞ \ L�j � 1.

Proof. After each reconstruction in step 3 of Algorithm 2, let
u be the node with the highest indegree in C. After step 2,
all negative edges are deleted since they do not contribute
to the actual generating set L�. As such, edges incident to
u are not negative. This in turn implies that they are candi-
dates for generating edges. Now, iterate through all edges
incident to u and choose the one that generates the big-
gest-sized core. This edgewill be in the listL�. tu

Theorem 3. Let dC be the maximum in-degree of a node in C.
Algorithm 2 takes OðdC jCjÞ time in the worst case scenario
and returns an optimal solution for MGES problem.

Proof. Since every time Lemma 3 makes sure that at least
one edge should be added to L� and the procedure termi-
nates when no edges are left, the algorithm will
terminate. Moreover, it is verifiable that Algorithm 2
takes time at most the number of edges in C, which is
OðdC jCjÞ. Also, due to the intense internal density of a
core, every time an edge is added into L�, that edge actu-
ally generates the largest core possible. The proof follows
from this fact, Lemma 3 and the exhaustive property of
Algorithm 2. tu

Algorithm 2. An Optimal Algorithm for Finding the
MGES

Input: Network G ¼ ðV;EÞ and a community C 2 X;
Output: Minimum generating edge set L� of C;
1: Mark all nodes as “unassigned” and L� ¼ ;.
2: Remove all negative edges in C. If any edge(s) survives,

they are candidate for generating edges in their correspo-
nding communities, include them to L�, go to step 3. Else,
go to step 4.

3: Reconstruct local cores based on generating edges found in
step 2. Mark all nodes in those communities as “assigned”.
Discard generating edges in L� that fall into any newly con-
structed communities. Return if all edges are assigned.

4: Find the set U as in Lemma 3. Find the edge in NEðUÞ that
can generate a local community having the largest size.
Include this edge to L� and mark all nodes in the new local
community as “assigned”. Ties are broken randomly.
Return if all edges are assigned.

5: If there are still unassigned nodes, say the set I � C,
construct G0 ¼ G½ðI [NðIÞÞ \ C�. Go back to step 2.

With the optimal solution ofMGES taken into account, we
next suggest a heuristic for selecting important nodes follow-
ing the guidelines suggested in Section 3. In particular, our
proposed heuristic, genEdge, as described in Algorithm 3,

Fig. 1. Example of minimum generating edge set identified by genEdge.
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selects nodes in a greedymanner, starting from communities
that have large-size MGESs. Moreover, in the MGES of each
community C, we give priority to nodes that are incident to
more generating edges since their removal will break C into
more subcommunities.

Algorithm 3. genEdge - A Node Selection Strategy for
CVA Based on Generating Edges

Input: Network G ¼ ðV;EÞ,X ¼ AðGÞ;
Output: A set S � V of k nodes;
1: Use Algorithm 2 to find L�

Xi
for all communitiesXi’s inX.

2: Sort all communitiesXi’s inX by their sizes of MGESs.
3: Sort all nodes in G by the number of generating edges that

they are incident to in Xi. If there is a tie, sort them by their
degrees in G.

4: Return top k nodes from step 3.

Although we have considered internal density as the
objective function for identifying communities, our proposed
method can easily be extended for other community detec-
tion schemes as well. For instance, the definition of the gener-
ating edge can be adapted to consider other well-known
objective functions for identifying the local cores of a commu-
nity. The rest of the subroutines remains unchanged and can
be applied as they are once the minimum generating edge set
is identified using the adapted definition of generating edges.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of genEdge in
identifying the most critical nodes removal of which results
in maximum change of the community structure as mea-
sured by NMI. On top of that, we not only evaluate how the
community structures are changed drastically in real world
social network traces, but also we show the impact it puts
effectively on the performance of social based routing and
forwarding schemes in real world DTNs. In order to certify
the performance of our approach on tackling CVA, we com-
pare the results obtained by the following methods: high
degree centrality (higDeg) selects top k nodes in G with the
highest degrees, betweenness centrality (betweeness) selects
top k nodes in G with the highest betweennesses (where the
betweenness of a node u is the number of shortest paths
in G that passes through u), generating edges (genEdge) -
our strategy described in Algorithm 3, and finally, node
importance (nodeImp) [12] selects top k nodes by their
importance to the community structure. It has been
shown in literature that these selection strategies are well

representative approaches for identifying important/crucial
nodes in a network [12]. We first examine the effect of the
underlying community detection methods by comparing
results obtained by AFOCS [10], Blondel [13] and OSLOM
[14] algorithms to the embedded ground truths. In particu-
lar, we set X to be the ground truth community structure
and when S is removed from the network, NMIðX; Y Þ is
reported, where Y ¼ AFOCSðG½V nS�Þ, Y ¼ BlondelðG½V
nS�Þ and Y ¼ OSLOMðG½V nS�Þ, respectively. These meth-
ods have been empirically certified in the literature to be the
best algorithms for finding non-overlapping and overlap-
ping community structure [8]. Verifying our strategy on
synthesized networks with known community structure not
only certifies its performance but also provides us the confi-
dence to its behavior when applied to real-word traces.

5.1 Performance of genEdge

Setup. We use the well-known LFR overlapping benchmark
[8] to generate test networks. The number of nodes are
n ¼ 2;500 and 5;000, the mixing parameter m ¼ 0:15, the
community sizes cmin ¼ 10 and cmax ¼ 50 for n ¼ 2;500 and
cmin ¼ 30 and cmax ¼ 100 for n ¼ 5;000. On these small net-
works, the number of removed nodes k is varied from 1 to
50. At every time k nodes are removed from the network,
the network community structure is reidentified and com-
pared to the original embedded one (or the ground truth).
The overlapping threshold b in AFOCS is set at 0.7. All tests
are averaged on 1,000 runs for consistency.

Results. We first evaluate the performance of the node
selection strategies in terms of NMI score. Because the
ground truth communities are given a priori, a comparison
through NMI scores among these strategies as well as
among detection algorithms is therefore valid, and the
lower NMI score a strategy obtains the more effective it
seems to be. In addition, the higher the remaining NMI val-
ues a detection algorithm obtains after node removal, the
more resilient to node vulnerability it appears to be. The
quality of node selection for n ¼ 2;500 and n ¼ 5;000 are
reported in Figs. 2 and 3, respectively for different methods.
In general, NMI values tend to drop down quickly as more
nodes are removed from the network when n ¼ 2;500; how-
ever, they do degrade much slowly in networks with
n ¼ 5;000. The first observation revealed in those figures is
that our approach appears to achieve the best (lowest) NMI
scores on almost all test cases. On average, in networks with
2,500 nodes, genEdge is 22 percent better than both higDeg
and betweenness, and is 12 percent better than nodeImp.

Fig. 2. Performance of node selection strategies on synthesized networks with n ¼ 2;500 nodes.
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We observe nearly same trend in networks with n ¼ 5;000
nodes in which genEdge outperforms other methods.

The second observationwe obtain fromFigs. 2 and 3 is that
the top-of-the-list nodes seems to be essential to the network
community structure. The removal of the topmost node only
from the network brings the NMI scores to as low as 0.70
(0.80) for AFOCS in Figs. 2a, 3a, and to 0.7 for OSLOM algo-
rithm in Figs. 2b, 3b, and to 0.58(0.6) for Blondel algorithm in
Figs. 2c, 3c in networks with 2,500 (5,000) nodes. Further-
more, the top 30 nodes are also observed to be vital to the net-
work community structure since their removal brings the
NMI scores down to 0.5 in n ¼ 2;500 nodes (Figs. 2b, 2c) - the
threshold where the community structure become stochastic
and fuzzy to recognize. In networks with n ¼ 5;000 nodes,
the removal of 50 nodes only brings the NMI measure down
to 0.6, however, the generally decreasing trend suggests that
excluding 90-100 nodes from the network will degrade the
NMImeasure to the stochastic threshold.

Finally, the last observation inferred from Figs. 2 and 3 is
that, various community detection algorithms behave dif-
ferently under disparate node removal strategies. Among
the three community detection algorithms, AFOCS algo-
rithm obtains the highest remaining NMI values when the
same number of nodes is removed from the networks. Over-
all, genEdge consistently outperforms all other methods in
bringing the NMI measure to lower values for all the com-
munity detection algorithms compared to other node selec-
tion methods. In other words, genEdgewas able to detect the
crucial nodes that are important for the community struc-
tures irrespective of the detection algorithm.

5.1.1 Comparison with Optimal Algorithm

CVA is a NP-complete problem as proven in Section 4.1
which means there is no efficient algorithm to find the opti-
mal solution especially for large-scale data sets. Computa-
tional complexity increases exponentially with the problem
instance size. Consequently, to get an idea of the comparative

performance of the node identification methods used in this
paper, we generated a network of n ¼ 100 nodes using LFR
benchmark setting the mixing parameter m ¼ 0:15, the com-
munity sizes cmin ¼ 5 and cmax ¼ 10. We ran the brute force
exhaustive algorithm on that synthesized network and
removed k ¼ 1; . . . ; 5 nodes to compare other methods with
this oracle. However, even for k as small as 5, this algorithm
took exponentially longer time as reported in Table 2. For
larger value of k, we could not obtain any result for the opti-
mal one even after 6 days of running the program. On the
other hand, interestingly, all the node selection methods per-
form quite well in this small network in terms of minimizing
the NMI. In particular, genEdge achieves very close perfor-
mance with compared to the optimal one as shown in Fig. 4.
For k ¼ 1 and k ¼ 5, genEdge reduces the NMI to 0:85 and
0:67which are within 96:3 and 89 percent, respectively, of the
optimal one. This experiment suggests, once again, genEdge
achieves comparative performance without incurring any
significant computational complexity. Due to space con-
straint, we only report the results for the Blondel community
detection algorithm while stressing that the trend is similar
for other community detection algorithms. These experi-
ments were performed on an Intel(R) Xeon(R) W350 CPU
with 24 GB-memory running theWindows operating system.

5.2 Performance of genEdge on Real Social
Networks

In this section, we show the empirical results of our node
selection strategy on real-world social traces including the

Fig. 3. Performance of node selection strategies on synthesized networks with n ¼ 5;000 nodes.

TABLE 2
Computational Complexity of Different Methods

k higDeg betweeness genEdge nodeImp optimal

1 3 8 4 3 86
2 6 15 8 6 239
3 8 21 13 10 4,994
4 11 27 16 12 209,669
5 13 32 20 15 518,400

All time in seconds.
Fig. 4. Performance of node selection strategies on synthesized network
with n ¼ 100 nodes.
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Reality mining cellular dataset [15], Facebook [16] and Four-
square [17] social networks. The overview of these datasets is
summarized in Table 3. Here, we only report the results we
obtain for AFOCS community detection algorithm as the
results fromBlondel andOSLOM are almost similar in trend.

5.2.1 Setup

Reality Mining dataset is provided by the MIT Media Lab.
This dataset contains communication, proximity, location,
call, and activity information from 100 students at MIT
over the course of the 2004-2005 academic year. Each
node signifies a student and an edge between two nodes
denotes the communication between the two students
representing the nodes. Facebook dataset contains friend-
ship information (i.e., who is friend with whom and wall
posts) among New Orleans regional network on Face-
book, spanning from September 2006 to January 2009. To
collect the information, the authors created several Face-
book accounts, connected each to the regional network,
started crawling from a single user and visited all friends
in a breath-first-search fashion. This network contains
63,731 nodes each representing a Facebook user and the
edge between two nodes signifies their friendship. A
node removal from Facebook can be interpreted as the
closure of that account which can be triggered by the user
through deactivating or deleting it or by the authorities
for regulatory and compliance issues. It is interesting to
see how the removal of Facebook user can impact the
Facebook communities.

Foursquare dataset contains location and activities of
44,832 users on Foursquare social network on May 2011 -
July 2011. To collect the data, we created several Foursquare
accounts, joined the network, started crawling from a single
user and visited all friends also in a breadth-first-search
fashion. An edge between two nodes denotes their friend-
ship in the network. Similar to Facebook network, a node
removal can be viewed as the closing of that account by the
user himself or by the respective authorities.

5.2.2 Results

On Reality Mining dataset, we set k ¼ 1:::20 and report
result in Fig. 5a. It reveals from this figure that community
structure in this dataset is extremely vulnerable to node
attacks since the removal of only 2 nodes, found by genEdge
is enough to make the new community structure signifi-
cantly different from the original one as it brings down the
NMI values to 0.4. In comparison with other node selection
methods, genEdge still performs excellently and is about 14
- 17 percent better than the others. We note that the first
node identified by genEdge is indeed crucial to the commu-
nity structure of this network since it immediately brings
down NMI score to 0.5 while the other does not seem to dis-
cover this important node. Furthermore, when too many
nodes are removed from the network, the network does not
seem to contain communities any more or the community
structure becomes extremely fuzzy as NMI values converge
down to around 0.2. This is understandable since this data-
set is of small size with a very high average node degree.

On larger networks of Facebook and Foursquare, we
set k from 50 nodes to 1,000 nodes (only 2.1 and 1.5 per-
cent number of nodes of Foursquare and Facebook net-
works, respectively) with a 50-node increment at a time.
The numerical results are reported in Figs. 5b and 5c,
respectively. In general, NMI values of all methods
degrade quickly on Foursquare network, and tend to
decrease slower on Facebook network. As more nodes
are excluded from the network, genEdge still achieves the
best performance on both networks with significantly
lower NMI values than the other methods. Specifically,
on Foursquare with high average degree and internal
community density, the removal of nodes incident to the
most generating edges in genEdge significantly leads to
the separation of network community structure as NMI
scores drop down to 0.2 for genEdge. On Facebook net-
work, the similarity between the original and new com-
munity structure seems to retain fairly high even when
all 1,000 nodes are removed, whereas the new structure
of Foursquare network is at the edge of stochastic thresh-
old as can be seen from the small NMI measure of
around 0.2. This implies that community structure in
Foursquare network is also extremely vulnerable to node
removal, while the mature Facebook network does not
seem to suffer much. One possible reason for this is since
Facebook contains a giant community with low average
degree, it therefore requires much more effort in order to
break that giant community apart.

TABLE 3
Statistics of social traces

Data n m Average
Degree

Maximum
Community Size

Reality 100 3,100 62 35
Facebook 63,731 1.5 M 23.50 33,425
Foursquare 44,832 1.1 M 49.13 30,381

Fig. 5. NMI scores on reality mining data, foursquare and facebook networks obtained by AFOCS.
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The better performance of genEdge along with the struc-
tural vulnerability of network communities encourages us
to further investigate how the node removal would impact
the performance of social-aware routing and forwarding
methods in real-world DTN traces, which we accomplish in
the next section.

5.3 Impact of genEdge on Community-Based DTN
Routing Protocols

In this section, we determine the impact of important node
removal on the routing and forwarding of real world DTN
traces and present the empirical results on them including
the Reality Mining data [15] and the Haggle project [18].
Identified critical nodes in DTNs henceforth can be used to
develop more secure and reliable networks in terms of effi-
cient opportunistic routing and forwarding. For instance,
the awareness of this vulnerability can help in designing a
forwarding algorithm that does not overload those crucial
devices by flooding the limited resources (e.g., queue capac-
ity), or in designing an effective backup plan when some of
them may fail at the same time.

In order to test how the performance of different for-
warding and routing algorithms is impacted due to struc-
tural vulnerability of communities through CVA, we pick
popular social-based routing strategies: Bubble-Rap [4] (a
community-based), SimBetTS [19] (a community-centrality
based) and Epidemic [20] (the baseline flooding) as for-
warding and routing algorithms.

Epidemic routing ensures delivery of messages among
mobile devices in DTNs using a random pair-wise exchange
of messages. In this approach, messages are stored locally
and, are forwarded or replicated to the encountered nodes
whenever an opportunity occurs. It serves as an excellent
baseline for comparison of routing and forwarding methods
in DTNs.

SimBetTS is a routing method where the routing problem
has been cast as an information flow problem in a social net-
work. It forwards messages only to the nodes with a higher
likelihood of meeting the destination. This scheme relies on
the centrality measures of individual devices which are
based on a node’s past social interactions. It achieves com-
parable delivery performance with Epidemic Routing, but
with significantly reduced overhead.

Bubble-rap scheme focuses on two specific aspects of a
network: community and centrality. Within a community,
some devices are more important, and interact with more
devices than others (i.e., have high centrality); these devices
are called hubs. Exploiting this kind of community informa-
tion to select forwarding paths and relays to the destination
is the main idea behind this approach.

To detect network communities, we choose AFOCS,
OSLOM and Blondel algorithms due to their superior perfor-
mance [8]. However, we only depict the results for AFOCS
and OSLOM in this section due to space constraint. Never-
theless, the outcomes from Blondel adhere to the general
trend we observe for the other two community detection
methods. In order to observe behavior of different node
selection approaches, similar to what we did in synthesized
networks, we compare genEdge to the following methods:
high degree centrality, betweenness centrality, and node
importance (nodeImp). The references for all methods can
be found in Table 4.

5.3.1 Setup

The number of excluded nodes k is from 1 . . . 20 for Reality
dataset and is from 1 . . . 50 for Haggle dataset. In each experi-
ment, 500message sending requests are randomly generated
and distributed in different time points. To control the for-
warding process, we use hop-limit, time-to-live, and max-
copies parameters. A message cannot be forwarded more
than hop-limit hops in the network or exist in the process
longer than time-to-live; it will be automatically discarded
once the limits are reached. Moreover, the maximum num-
ber of same messages a device can forward to the others is
restricted by max-copies. Results are averaged over several
runs of the experiments for consistency. Description of data-
sets can be found in the provided references.

For each set of datasets, we report the average number of
duplicated messages (or the overhead) that the system gen-
erates as well as the average ratio of message delivery. The
orange straight line in each plot represents the original value
attained by the forwarding and routing simulation without
any node removed. Due to page limit, we exclude the graphs
of the delivery latency of all routing algorithms in this sec-
tion. Nonetheless, similar to the increased number copies
and reduced delivery ration, the delay latency also increases
as important nodes are removed from the network.

5.3.2 Results

While we expect the performance of SimBetTS to deteriorate
upon the removal of important nodes, we anticipate the per-
formance of Bubble-Rap to deteriorate more quickly,
because of the reliance of the protocol on the community
structure since Bubble-Rap resorts on the knowledge of the
community structure to route the messages.

The results on Haggle dataset are presented in Figs. 6, 7, 8,
and 9. As revealed through these figures, the nodes or devices
identified by genEdge method have great impact on the per-
formance of forwarding and routing algorithms in this data-
set. In general, the successful message delivery ratios attained
by genEdge are the lowest among all of the node selection
methods. In particular, the average delivery ratios of genEdge
is about 10-15 percent lower than higDeg, betweenness and
nodeImpwithAFOCS community detection algorithm, and is
about 5-7 percent lower than the other methods when
OSLOM is the underlying community detection technique.
Moreover, in comparison with the delivery ratio attained by
the original system, the delivery ratios attained by genEdge is
significantly lower than those obtained by the unaltered sys-
tem. These results indicate that those nodes and devices
selected by these methods are not only crucial to the network
community structure but also play a vital role in maintaining
the reliability of the network performance.

TABLE 4
Experimental Datasets and Methods

Data Community
detection Alg.

Routing
Alg.

Node selection
Alg.

Haggle [18] AFOCS [10] Epidemic [20] high Degree
Reality [15] OSLOM [14] Bubble-Rap [4] betweenness

– Blondel [13] SimBetTS [19] nodeImp [12]
– – – genEdge
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In terms of the number of duplicated messages, the
exclusion of nodes selected by genEdge introduces a signifi-
cant number of duplicated messages into the system. In a
general trend, the number of duplicate messages introduced
by genEdge is the highest one among all forwarding and
routing strategies, and is much more than the uninterrupted
system in cases of both AFOCS and OSLOM. In particular,
the number of duplicated messages introduced by genEdge

is about 1:05 � 1:3 times more than higDeg, betweenness
and nodeImp on average in all test cases. This can be
explained further by, again, the node selection strategy of
genEdge when breaking the core of each community in the
network, thus better separating the forwarding route from
the source to the destination.

In a fairly large DTN as Haggle (around 5,000 partici-
pants), we observed that the average delivery ratio and the

Fig. 7. Average ratio of message delivery on haggle dataset with AFOCS.

Fig. 8. Average number of duplicate messages on haggle dataset with OSLOM.

Fig. 9. Average ratio of message delivery on haggle dataset with OSLOM.

Fig. 6. Average number of duplicate messages on Haggle dataset with AFOCS.
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number of duplicated messages do not strictly increase
when more and more nodes are excluded from the net-
works. This can be explained by the merging of network
communities: when crucial nodes leave the networks, their
communities can be broken into smaller subcommunities
(due to lesser internal interactions) and might be merged to
other communities. This combination process could possi-
bly bridge some pairs of sources and destinations, thus
increasing the chances of message delivery.

The results on Reality dataset are depicted in Figs. 10, 11,
12, and 13, the empirical results again confirm the superiority
of genEdge over other node selection methods. In a big pic-
ture, the results obtained by genEdge are the best ones among
four node selection methods. This also shows the vulnerabil-
ity of community-based routing schemes specially when the
critical nodes identified by genEdge are removed. In this
medium-size dataset (100 participants), the decreasing trend
of the message delivery can be visualized clearly. The reason
is due to the strength of each community in this network:
since participants are students in the same institution, they

retain in their communities and do not appear to change their
community much. As a result, the more nodes are removed
the lower the number of deliveredmessages.

Each of the empirical results as shown in all of the figures
also confirms that, community-based routing and forwarding
in opportunistic networks are vulnerable to node removals
regardless of the scheme through which these nodes are cho-
sen and can adversely impact the whole network perfor-
mance if not safeguarded properly. Knowledge of these
critical nodes would enable devising resilient protocols by
protecting vulnerable deviceswhich in turnwould help these
networks frommalfunctioning in case of targeted attacks.

6 RELATED WORK

Our work involves two major areas of networking research:
community structure analysis and structural network vul-
nerability assessment.

The literature on community structure and its detection
can be found in an excellent survey [8]. Assessing the

Fig. 10. Average number of duplicate messages on reality dataset with AFOCS.

Fig. 11. Average ratio of message delivery on reality dataset with AFOCS.

Fig. 12. Average number of duplicate messages on reality dataset with OSLOM.
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vulnerability of network community structure, however, has
so far been an untrodden area. The first attempt on this
research direction [21] has suggested potential conditions for
the transformation of the network community structure, and
has proposed multiple heuristic algorithms based on the
modularity contribution of communities in the network.
These approaches, while are efficient in analyzing disjoint
structures, face nonnegligible limitations when applied to
real networks displaying overlapping community structures.
As a result, the need for an effective algorithm that can assess
the vulnerability of the general network structures is of
desire. Although the authors in [22] discuss the overlapping
community structure vulnerability, they do not explore the
vulnerability of community based routing in opportunistic
networks limiting the scope only to online social networks.

Alim et al. [23] introduce the concept of broken community
and analyze the vulnerability of communities in the context of
arbitrary community detection algorithms. However, their
goal is focused on identifying critical edges which will break
maximum number of communities. Aside from that, a large
body ofwork has been devoted to find the node roles within a
community by a link-based technique together with a modifi-
cation of node degree [24], by using the spectrum of the graph
[12]. However, none of these approaches discusses how the
community structure would change in the removal or failure
of those important nodes, especially in terms ofNMImeasure.

On the assessment of network vulnerability, existing stud-
ies mainly focus on assessing the centrality measurements
[25], including degree, betweenness and closeness centrali-
ties, average shortest path length [26]. A good survey about
network vulnerability assessment can be found in the work
of Grubesic et al. [25]. However, there is an evenmore crucial
risk that could dramatically affect the normal network func-
tionality that has not been addressed so far: the transformation
or restructure of the network community structure. Due to its
vital role in the network, any significant restructure or trans-
formation of the community structure, resulted from impor-
tant node removal, can potentially change the entire network
organization and consequently lead to a malfunction or
unpredictable disruption of the whole network function.

7 CONCLUSION

In this work, we have studied the structural vulnerability
of social-aware routing and forwarding schemes in opportu-
nistic networks. In order to assess system fragility from com-
munity structure point of view, we have proposed the CVA
problem, analyzed the minimization of NMI measure and

provided key insights into the selection of nodes that are cru-
cial to the community structure. We have suggested an
approximation algorithm for the case k ¼ 1 and also pre-
sented genEdge, a heuristic for CVA problem when k > 1,
based on the concept ofminimumgenerating edge set. To cer-
tify the effectiveness of the suggested algorithms, we have
tested themon synthesized networkswith known community
structures and the performance of genEdge on these networks
sets out the corner stone of deploying it on real-work social
and DTN traces. We have shown that community-based for-
warding and routing methods in DTNs are really sensitive to
the change of network communities, the nonparticipation of
only some important devices is significant enough to degrade
the performance of the entire network.
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