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Abstract Near infrared (NIR) spectroscopy is a rapid, non-destructive technology to pre-
dict a variety of wood properties and provides great opportunities to optimize manufacturing
processes through the realization of in-line assessment of forest products. In this paper, a
novel multivariate regression procedure, the hybrid model of principal component regres-
sion (PCR) and partial least squares (PLS), is proposed to develop more accurate prediction
models for high-dimensional NIR spectral data. To integrate the merits of PCR and PLS,
both principal components defined in PCR and latent variables in PLS are utilized in hybrid
models by a common iterative procedure under the constraint that they should keep orthog-
onal to each other. In addition, we propose the modified sequential forward floating search
method, originated in feature selection for classification problems, in order to overcome
difficulties of searching the vast number of possible hybrid models. The effectiveness and
efficiency of hybrid models are substantiated by experiments with three real-life datasets of
forest products. The proposed hybrid approach can be applied in a wide range of applications
with high-dimensional spectral data.
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1 Introduction

Real-time measurements of material properties in hardwood lumbers have great potential
to be used for improving manufacturing processes. For example, rapid on-line measure-
ments of the shrinkage of the lumbers can allow the sorting of them into more uniform
groups, resulting in better use of the lumbers in the subsequent processing steps. One of
the most promising ways for such real-time implementation of assessing the wood proper-
ties in manufacturing environment is near infrared (NIR) spectroscopy because it is a rapid,
nondestructive, and relatively inexpensive technology. In particular, NIR spectroscopy has
been shown to be an effective method to characterize a variety of material properties in the
food, pharmaceutical and petroleum processing industries. For reviewing its potential for
assessing the wood properties, refer to So et al. (2004).

NIR spectroscopy of wood involves measuring the surface diffuse reflection of elec-
tromagnetic radiation usually from 700 to 2500 nm. Prediction of wood properties can
be stated as a multivariate regression problem in which the predictor variables are sam-
pled NIR spectra and the response variables are the wood properties. It often results
in ill-posed or ill-conditioned problems where the number of predictors greatly exceeds
the number of observations. Several regression models have been developed for predic-
tion with ill-posed data. Principal components regression (PCR) and partial least squares
(PLS) are two of the most popular multivariate regression tools (Massy 1965; Wold 1966;
Wentzell and Vega Montoto 2003). The relative strengths of these two approaches are often
discussed and debated, but no clear conclusion has been reached. PLS is generally regarded
as being superior to PCR in prediction. However, a few case studies have shown that PCR
gave better prediction results than PLS did (Vigneau et al. 1996). Furthermore, no theoreti-
cal studies suggested that one method should predict better than another (Wentzell and Vega
Montoto 2003). PCR and PLS have their own unique strength and weakness although they
are very similar in some regards. Specifically, PCR can avoid overfitting ill-posed data by
dramatically reducing the multicollinearity of the data (Massy 1965). On the other hand, the
dimensionality reduction effect of PLS is less prominent, but the PLS model empirically has
better discriminant ability than PCR (Kemsley 1996).

We propose hybrid models of PCR and PLS in order to combine their merits to develop
more accurate regression models for predicting the wood properties based on the NIR spec-
tral data. The key of hybrid models is that the linear transformed vector could be either a
principal component (PC) or a latent variable (LV) (Fang et al. 2006). All the PCs and LVs
are computed by a common iterative procedure under the constraint that they should keep
orthogonal to each other. The ill-conditioned problems most likely benefit from a hybrid
approach because in hybrid models, PCs can greatly decrease the multicollinearity of the
data and at the same time LVs utilize the information from response variables. The optimal
sequence of PCs and LVs for the hybrid model may be chosen from a vast number of can-
didates, which makes exhaustive search infeasible. In order to overcome this problem, the
sequential forward floating search (SFFS) (Pudil et al. 1994a, 1994b) originally developed
for feature selection is extended in this paper. The float search algorithm is one of the well-
known heuristics, which guarantees the near optimal solution without any exhaustive search
(Pudil et al. 1994a, 1994b). The modified SFFS method seems particularly effective since
the optimal hybrid models with different number of components show small difference in
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combination and the SFFS just searches the next optimal model in the neighborhood space
of the current optimal one.

The remainder of this paper is organized as follows. In Sect. 2, we briefly review the
PCR and PLS methods. In Sect. 3, hybrid models of PCR and PLS are introduced and the
algorithm for building the optimal hybrid model is also given. We compare the performance
of hybrid models with PCR and PLS using three real-life examples in Sect. 4. The conclusion
and areas for further research are included in Sect. 5.

2 PCR and PLS regression

This section gives an overview of these two techniques in the same framework. Only sin-
gle response regression problems are considered in this paper. Given a training set of data
(x1, y1), . . . , (xn, yn), xi ∈ R1×m, yi ∈ R, the prediction problem is to construct some func-
tion f such that f (xi ) approximately equals yi and the function generalizes well on future
data. Each data point xi is represented as the ith row in the data matrix X. The ith response
is denoted by yi . Assuming that both xi and yi have been scaled to have means 0, n de-
notes the number of points, and m denotes the dimensionality of the data, so X ∈ Rn×m and
y ∈ Rn×1.

2.1 Principal component regression

PCR consists of two steps. The first is to construct a linear projection mapping of the data
using standard principal component analysis (PCA). PCs are usually computed by the sin-
gular value decomposition on X, but its spirits come from the following ideas. The ith PC
wi can be derived by the objective function (1):

max
wi

var(Xiwi ) s.t. wT
i wi = 1 (1)

where Xi represents the residual after (i − 1) times. The optimal solution for wi can be
easily constructed using the first order optimality conditions (Hastie et al. 2001; Bennett
and Embrechts 2003). The residual Xi is updated by (2):

Xi+1 = Xi − titT
i Xi (2)

where ti = Xiwi

‖Xiwi‖ denotes the ith PC scores (the projected data on the ith principal compo-

nent). Letting X1 = X, then wi can be calculated iteratively until the remaining components
are deemed to be from noise or not to contain useful information.

The second step of PCR is to find the final regression coefficients S by minimizing the
least squares error between the projected data T, the score matrix whose columns are t, and
the response y:

S = (TTT)−1TTy (3)

In PCR, selecting a lower dimensional subspace for the mapping restricts the set of possible
regression functions, thus limiting the capacity of the resulting function from overfitting the
data. Therefore, PCR can perform well in ill-posed problems. Especially, when selecting the
first principal components, PCR can greatly decrease the multicollinearity of the ill-posed
data (Hastie et al. 2001; Bennett and Embrechts 2003).
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2.2 Partial least squares regression

PLS is a supervised technique and performs a linear mapping of the data into the so called
latent variables. Latent variables play, in PLS, the role that principal components play in
PCR. The only difference of PLS (single response PLS model) from PCA is the objective
function (4) by which the ith latent variable wi is computed (note that the ith PC wi is
derived by the objective function (1)):

max
wi

cov(Xiwi ,y) s.t. wT
i wi = 1 (4)

where Xi represent the residual after (i − 1) times. The residual Xi is updated by the same
way with PCA:

Xi+1 = Xi − titT
i Xi (5)

where ti denotes the ith LV scores (the projected data on the ith latent variable). Let X1 = X
and y1 = y, then the final regression function can be built in the same way with PCA.

Similar to PCR development, PLS also builds a mapping of the data to a p (<m) dimen-
sional space and thus limits the capacity of the resulting function from overfitting the data.
Unlike PCR, PLS utilizes both the input and the response data, X and y respectively, to form
the mapping to a lower dimensional space.

3 Hybrid models of PCR and PLS

3.1 Illustration of hybrid models

Section 2 has shown that both PCR and PLS can be formulated in a similar iterative way.
The difference between them only lies in the objective functions. If both objective functions
are involved in a common iterative procedure, the properties of both PCR and PLS can be
combined. Thus, the idea of constructing hybrid models of PCR and PLS consists of two
steps. The first is to calculate PC and LV alternatively in iterative steps. In this way, the
orthogonal decomposition is mixed with PCs and LVs. Based on the orthogonal decomposi-
tion, the original input data are mapped into a new subspace. The second step is to make the
final regression function by minimizing the least-squares error between the projected data
and the response y, as in the second step of both PCR and PLS. The key of hybrid models
lies in that the projected vector in every orthogonal decomposition could be either a prin-
cipal component or a latent variable. Like PCR and PLS, when the number of components
in a hybrid model reaches the number of original predictor variables, the hybrid model is
equivalent to the ordinary least-square (OLS) regression technique.

As shown in Fig. 1, for the 3-dimensional data (dots), PCR sequentially calculates the
first three principal components PC1, PC2 and PC3. By contrast, a hybrid model of PLS and
PCR may not calculate PC2 after getting PC1, but in the space orthogonal to PC1, the first
latent variable LV2 may be calculated (the number 2 indicates that the computation is in the
second iterative step).

It has been shown that a hybrid model of PCR and PLS is generated by a combination
of PCs and LVs. Different combinations create different hybrid models. Here a sequence is
used to denote a hybrid model. For example, the sequence PC1-LV2 represents the hybrid
models illustrated by Fig. 1. The number following PC or LV means how many iterative
steps (components) have already been calculated.
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Fig. 1 A possible hybrid model
with PC1 LV2

Fig. 2 Two-class data in the 3-d
space

Fig. 3 The two-class data
projected into 2-d PCs space

3.2 A conceptual example

Figure 2 is a two-class data (red and blue dots) simulated in 3-dimensional space. Since
the data in each class seems to be distributed around a straight line, the data tend to be
ill-conditioned. Now the regression function (here for a classification problem) can be con-
structed using 2 variables. Figure 3 shows the data in a 2-d PCs space. Although PC1 and
PC2 keep most variance of the original data, neither of them is able to separate the data into 2
classes correctly. Figure 4 shows the data in a 2-d LVs space. We can see that both LV1 and
LV2 have good discriminating ability. However, the projected data seem very “crowded”.
In this case, the projected data matrix T could be ill-conditioned.

Figure 5 shows the data in a 2-d hybrid model space. We can see that LV1 can make
the projected data well separated and beyond that, PC2 keeps much variance of the data. It
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Fig. 4 The two-class data
projected into 2-d LVs space

Fig. 5 The two-class data
projected into a hybrid model
space (LV1 PC2)

Table 1 Condition numbers for
the original data and projected
data

Original PCA PLS Hybrid

Condition number 31.435 1.7021 9.6286 3.2464

can be seen from these plots that hybrid models benefit from both advantages of PCA and
PLS. The data projected in this way can produce a stable predictive model for a regression
or classification with improved accuracy.

The condition numbers of the original and projected data in various cases are presented
in Table 1. The original data have a large condition number and PCA can reduce it to the
greatest extent while its discriminant ability is limited. The hybrid model seems to keep
a good compromise between dimensionality reduction and discrimination by producing a
relatively low condition number compared to the PLS case.

3.3 Basic algorithm

Now, we focus on the choice of the sequence of PCs and LVs. If the number of predictor
variables to retain is k, there could be 2k different hybrid models. Note that among all pos-
sible combinations of PCs and LVs, the pure PCR or PLS models are also included, such as
the combination of PC1-PC2-PC3 or LV1-LV2-LV3 in the case of k = 3. Prediction models
are created using the training data. The performance of each model can be then evaluated
by comparing the root mean square error (RMSE) of prediction for the validation data. One
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effective way to choose the optimal hybrid model is based on minimum cross validation
(CV) error (Stone 1977). The idea behind CV is to recycle data by switching the roles of
training and test samples. Based on the sample data available, different CV methods can be
selected, including hold-out, k-fold, and leave-one-out cross validation (LOOCV). In this
study, we employ a LOOCV method, which gives proper measure when there are limited
samples. The LOOCV involves using a single observation from the original sample as the
validation data, and the remaining observations as the training data. This is repeated such
that each observation in the sample is used once as the validation data. The test sets are
mutually exclusive and they effectively cover the entire data set.

In order to evaluate the predictive performance of every hybrid model, each different
combination of components would be denoted by a different integral value, called the de-
terminant, of a sequence. In this study, a binary numeral system is used to calculate the
determinant. In a combination sequence, PC and LV are replaced by 0 and 1, respectively.
Thus, every sequence can be represented by a binary number bkbk−1bk−2 . . . b2b1, where
bi ∈ {0,1}. The determinant of a sequence is computed by converting the binary number to
a decimal number. For example, the sequence LV1-PC2-LV3 is denoted by (101)2 and thus
its determinant is 5.

Below is the algorithm of constructing the optimal hybrid model of PCR and PLS. For
convenience of presentation, hold-out cross validation is adopted in this algorithm flow. The
only parameter of the algorithm is k, the number of components to retain.

Algorithm

Input: training input X and response y, validation input V and response z
Output: the optimal hybrid regression model

1. For j = 0 to (2k − 1) {
2. bkbk−1bk−2 . . . b2b1 = (j)2

/* convert j to a binary string
3. For i = 1 to k {
4. If bi = 0

Then (wi , ti ) = PCA(Xi)

/* calculate the first PC wi and scores ti based on the training input residual Xi

Xi+1 = Xi − titT
i Xi

/* update the training input residual
Else (wi , ti ) = PLS(Xi,y)

/* calculate the first LV wi and scores ti based on the training input residual Xi

and response y
Xi+1 = Xi − titT

i Xi

/* update the training input residual
}

5. S = (TTT)−1TTy
/* construct the least-square regression model based on the training projected data T

and response y
6. Calculate the test projected data Q. Note that the test data V has to be projected into

the subspace w using the same mapping as the training data did
7. error = ‖z − Qw‖

/* using the model calculated by step 5 to calculate the error rate on the test data
}

8. Choose the optimal regression model with the minimum error rate
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3.4 Model selection

In ill-posed problems, only few components contain most variance of data. The possible
maximum number of components (denoted by D) could be small. In these cases, all the
(2D+1 − 2) possible combinations of PCs and LVs are actually examined for choosing the
optimal model. However, in some other cases (although they are unusual), when D is large,
there are too many possible hybrid models. It can be regarded as a combinatorial optimiza-
tion problem. Some heuristics can be used for solving this kind of problems, such as genetic
algorithm, simulated annealing algorithm and ant colony optimization. However, these tech-
niques fail to provide a stable solution in the sense that the solution depends on the initial
values and some other parameters. In this paper, the SFFS algorithm in feature selection has
been extended to choose the best hybrid model.

Floating search is originally developed for feature selection problems. It has been proven
that floating search can provide a near-optimal solution to a combinatorial feature selection
problem at an affordable computational cost (Jain and Zongker 1997). The model selection
problem here is different from feature selection in the classification problem. In feature se-
lection for the classification, the order of features chosen does not matter at all as long as the
same features have been chosen, but in case of model selection for hybrid models, different
combinations of components produce different regression models. Thus, the original SFFS
algorithm for feature selection in the classification has to be modified to suit for the model
selection of hybrid models. Below is the modified SFFS (MSFFS) algorithm.

Modified SFFS algorithm

Input: X and Y

Output: Bk = {bkbk−1bk−2 . . . b2b1|bj ∈ {PCj ,LVj }}
Initialization:

B0 := �; j = 0; Xj = X; Y j = Y ;
Termination:
Stop when j equals the number of components required
For j = 1 : k /* (If k is large, one can begin with j = 10 after using exhaustive search to get

an optimal hybrid model B10) */
Step 1 (Inclusion)

b+ := arg max
b∈{PCj ,LVj }

LOORMSE(Bj + b) /* choose either PC or LV */

Bj+1 := Bj + b+; j := j + 1;
Update Xj based on the algorithm in Sect. 3.3
Step 2 (Conditional exclusion)

b− := arg max
b∈{PCi ,LVi }

LOORMSE(Bj − b)

If LOORMSE(Bj − b−) > LOORMSE(Bj−1) then
Bj−1 := Bj − b−; j := j − 1;

go to Step 2
else
Update Xj based on the algorithm in Sect. 3
go to Step 1;
end for
(LOORMSE is a function to evaluate the LOOCV RMSE (root mean squared error) of the

selected model.)
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The search process for finding the best k components starts with the best sequence of
the (k − 1) components previously found. Then, the algorithm has two steps: (1) inclusion;
(2) conditional exclusion. The first step is essentially a greedy choice in the sense that the
component with a minimum error rate is chosen. However, such choice may have severe
drawback of being trapped into a local optimal. As a remedy, the second step looks back
at the previous choice to see if there are other better combinations. The search process is
repeated until no improvement is made in the model. The MSFFS may be particularly ef-
fective because the optimal models with different k seem not to have much difference in
solution structures (combinations). The MSFFS searches the solution in the neighborhood
space, which means that two consecutive solutions can be different in the two last com-
ponents. Therefore, it is highly possible that the MSFFS can quickly find the next optimal
solution based on the current one. However, an open question is that there is no theoretical
bound on the computational cost of the algorithms due to their heuristic nature although the
solution from the SFFS algorithm is near optimal (Pudil et al. 1994a).

In practice, for a given maximum value D, MSFFS searches among all the possible
hybrid models with different k below D, which are then compared to determine the best k.
This becomes possible because of the high efficiency of the SFFS algorithm. A common
“best possible” value of k for hybrid models is expected to be between those of PCR and
PLS. The best k for PCR and PLS can be chosen to be the number of components that gives
a minimum LOOCV RMSE. Then, one way to specify D in practice could be to take the
maximum of them.

4 Real-life examples

This section presents three real-life examples to evaluate the proposed model. In this section,
we utilize two forest-related datasets and one public dataset.

4.1 Prediction of wood dimensional stability

Variations in wood dimensional stability (tendency to shrink and swell) can be particularly
challenging for manufacturers that produce glued assemblies, such as laminated veneer lum-
ber, plywood or parallel strand lumber. The dimensional stability of wood has known to be
affected by density, extractive content, and so on. We have investigated the efficiency of
NIR spectroscopy for predicting the shrinkage of woods. In this study, fifty-seven samples
were obtained from mahogany, which is used in many applications, including as laminated
components of musical instrument bodies. Two separate NIR spectra were collected for each
wood sample (total 57 × 2 = 114 spectral data). The dimension of each observation is 2151
and the total number of observations is 114. The shrinkage, gravity, and extractive values
for each of the samples are treated as the 3 response variables (see Taylor et al. 2008 for
detailed description of the problem and data sets).

Table 2 shows the prediction errors of five methods, namely PCR, PLS, MSFFS hybrid
model, optimal hybrid model, and a random selection of the sequence, for each response
and the comparison results for the hybrid models using either the MSFFS or a random cho-
sen sequence in order to provide insight into the quality of the proposed heuristic for model
selection. In this experiment, each PC (or LV) was added one by one to the correspond-
ing regression model until no improvement is made in the LOOCV RMSE in order to find
the best number of components for PCR and PLS. Then, the maximum number of compo-
nent D for the hybrid models took the larger one of the two. Exhaustive search was done to
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Table 2 Prediction results for Mahogany data

Response PCR PLS MSFFS Random Optimal Improvement of

hybrid selection hybrid model accuracy

model hybrid (HM) of hybrid model (%)

model

k LOOCV k LOOCV k LOOCV k LOOCV k LOOCV HM HM

RMSE RMSE RMSE RMSE RMSE vs. PCR vs. PLS

Shrinkage 9 0.5830 9 0.5368 9 0.5830 6 0.6284 9 0.5348 8.27% 0.37%

Gravity 9 0.4021 8 0.4222 7 0.4599 5 0.4886 9 0.4021 0.00% 4.76%

Extractives 9 0.6295 7 0.6412 9 0.6339 7 0.7120 9 0.6263 0.51% 2.32%

Table 3 Optimal hybrid models with different k for shrinkage and extractives

k Shrinkage Extractives

2 LV1LV2 LV1LV2

3 LV1LV2LV3 LV1LV2LV3

4 LV1LV2LV3LV4 LV1PC2LV3LV4

5 LV1LV2LV3LV4 LV5 LV1PC2PC3LV4PC5

6 LV1LV2LV3LV4 LV5LV6 LV1PC2PC3LV4PC5LV6

7 LV1LV2PC3LV4LV5LV6PC7 LV1PC2LV3LV4PC5LV6PC7

8 LV1LV2PC3LV4LV5LV6PC7LV8 LV1PC2LV3LV4PC5LV6PC7LV8

9 LV1LV2PC3LV4LV5LV6PC7LV8LV9 LV1PC2LV3LV4PC5LV6PC7LV8PC9

10 LV1LV2PC3LV4LV5LV6PC7LV8LV9LV10 LV1PC2LV3LV4PC5LV6PC7LV8PC9LV10

find an optimal hybrid model among all possible sequences of length up to D. For random
selection, a combination of components was chosen uniformly among all those sequences.
We also provides the relative performance of the optimal hybrid model against those of the
conventional methods, which is calculated by

(RMSEPCR/PLS − RMSEoptimal)

RMSEPCR/PLS
× 100(%).

The optimal hybrid model always produces the best prediction results compared to PCR
and PLS. Note that there is no further improvement in the performance by taking advantage
of the hybrid model in case of predicting the gravity. Table 3 contains the optimal hybrid
models with different values of k ranging from 2 to 10. It can be seen that the structures
of some optimal models with different k are quite similar. For example, the optimal model
with k = 8 for shrinkage content is the optimal model with k = 7 being added a LV. This
interesting pattern is also found frequently in other cases for both shrinkage content and
extractive content and then suggests that the MSFFS can produce near-optimal solution
because the searching space in SFFS is always the neighborhood of the current optimal
hybrid model. The performance of the MSFFS hybrid model slightly falls short of those of
PCR and PLS, but it is much better than when the model chosen by the random sequence.
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Table 4 Prediction results for gas oil dataset

Response PCR PLS MSFFS Random Optimal Improvement of

hybrid selection hybrid model accuracy

model hybrid (HM) of hybrid model (%)

model

k LOOCV k LOOCV k LOOCV k LOOCV k LOOCV HM HM

RMSE RMSE RMSE RMSE RMSE vs. PCR vs. PLS

y1 10 0.1185 6 0.0976 7 0.0976 5 0.1071 9 0.0951 16.75% 2.56%

y2 10 0.1304 6 0.1088 10 0.1112 4 0.1253 9 0.1081 17.10% 0.64%

y3 10 0.1961 10 0.1551 9 0.1643 8 0.1646 10 0.1551 20.91% 0.00%

y4 8 0.1673 4 0.1738 7 0.1652 9 0.1866 8 0.1634 2.33% 5.98%

4.2 Gas oil example

The dataset in this example comes from the Wentzell group at Dalhousie University.1 It con-
sists of 115 samples from three subsets for which the UV spectra over 572 channels have
been obtained. The dimension of each observation is 572 and the number of observations
115. The data contains 4 response variables, or the concentrations of the 4 components in
each sample.

Table 4 illustrates that the optimal hybrid model produces the best prediction results
compared to PCR and PLS. For some responses, the optimal model outperforms the PCR
even with fewer components. Note that the MSFFS algorithm produces the near optimal
solution without exhaustive search and this leads to the performance comparable to those
of PCR and PLS. As expected, the MSFFS hybrid model produces better prediction results
than the model chosen by a random sequence.

4.3 Chemical contents prediction in biomass

The accurate on-line prediction of ash and char contents in biomass is crucial in bio-energy
manufacturing processes before any processing, such as gasification or fermentation. We
collected a total of eighteen biomass samples from three different trees for different wood
species (see Labbé et al. 2008 for the detailed description of experiments). Using the stan-
dard methods popular in the industry, the measurements for ash and char content were
performed in triplicates for each of the eighteen biomass samples. The NIR spectra were
recorded using an Analytical Spectral Devices (ASD) Field Spectrometer at 1-nm interval
from 350 to 2500 nm. Three spectra per samples were recorded, and so, in total, 54 spectra
(observations) were collected for the whole biomass set. The dimension of each observation
is 538. The data contain two response variables, ash and char contents in each sample.

From Table 5, we can see that the optimal hybrid model is equivalent to the PLS models
over all responses. Here, we have an example in which the corresponding optimal hybrid
model may result in either a pure PLS or a pure PCR model. The MSFFS hybrid model
gives better accuracy than PCR with equal or fewer components, but it performs slightly,
worse than PLS.

1http://myweb.dal.ca/pdwentze/downloads.html

http://myweb.dal.ca/pdwentze/downloads.html
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Table 5 Prediction results for biomass data

Response PCR PLS MSFFS Random Optimal Improvement of

hybrid selection hybrid model accuracy

model hybrid (HM) of hybrid model (%)

model

k LOOCV k LOOCV k LOOCV k LOOCV k LOOCV HM HM

RMSE RMSE RMSE RMSE RMSE vs. PCR vs. PLS

Ash 10 0.0958 10 0.0594 10 0.0760 7 0.0881 10 0.0593 38.00% 0.00%

Char 10 0.2063 10 0.1637 8 0.1992 9 0.2005 10 0.1637 20.65% 0.00%

5 Conclusion and future work

A new multivariate regression procedure, the hybrid model of PCR and PLS, is proposed
for developing more accurate prediction models by benefiting from both advantages of PCR
and PLS. The MSFFS algorithm overcomes the difficulties of searching the vast number of
possible hybrid models. The experimental results presented have shown great potential for
the improvement of prediction accuracy for the ill-conditioned data.

Future research includes creating nonlinear hybrid models based on the kernel func-
tion (Schölkopf et al. 1998). Kernel PCR and kernel PLS have been proposed recently and
achieve good prediction results (Rosipal and Trejo 2001). Thus, it is expected that the kernel
hybrid models of PCR and PLS could function well in nonlinear cases.
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