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Abstract—For short distance traveling in crowded urban areas,
bike share services is becoming popular owing to the flexibility
and convenience. To expand the service coverage, one of the
key tasks is to seek new service ports, which requires to well
understand the underlying features of the existing service ports.
In this paper, we propose a new model, named for Efficient
and Semantic Location Embedding (ESLE)1, which carries both
geospatial and semantic information of the geo-locations. To
generate ESLE, we first train a multi-label model with a deep
Convolutional Neural Network (CNN) by feeding the static map-
tile images and then extract location embedding vectors from
the model. Compared to most recent relevant literature, ESLE
is not only much cheaper in computation, but also easier to
interpret via a systematic semantic analysis. Finally, we apply
ESLE to seek new service ports for NTT DOCOMO’s bike share
services operated in Japan. The initial results demonstrate the
effectiveness of ESLE, and provide a few insights that might be
difficult to discover by using the conventional approaches.

I. INTRODUCTION

Recognized as one of the most powerful engines of the
technology revolution for the next decade, deep learning has
stimulated a variety of new technologies and enriched busi-
ness opportunities. Using deep learning, recently user/device
location-based services and applications have attracted much
attention, such as user location recommendation, trajectory
prediction, and transportation. Particularly, the past a few years
have witnessed the expanding of bike share services in the
dense population area of many cities all over the world, because
it provides a solution to the “last mile” problem on top of the
conventional transportation infrastructure. To expand the bike
share service system, how to seek new service ports in a wider
area has readily become a key business task.

The location of a service port, indicated by a pair of latitude
and longitude, is merely a single point on earth. While usually
little interest arises for a point with Lebesgue measure zero in
area, what makes the location more informative is its nearby
environment that involves natural geographical information and
human activities. These information can be somewhat carried by
a geographical image within a certain range from the location

*Chenwei Wang is the corresponding author.
1The source code of this model can be found at github.com/ywang4/ELSE-

Efficient-and-Semantic-Location-Embedding.

of interest. While such an image is represented by pixels from
thousands to millions scale (e.g., a (224 × 224) image has
50,176 pixels per channel), processing such an image could
be very computational heavy especially in many time-sensitive
and storage-sensitive applications. To efficiently utilize the
environment information, representation learning for location
embedding (with dimension reduction) has been investigated
to resolve the high-dimension challenge. In addition, due to
the countless number of location points on earth, a model
with sufficient scalability is highly desired. In this paper, we
consider the bike share services provided by NTT DOCOMO,
Inc. to the public in Japan. We are interested in the question:
How to design an efficient and semantic location embedding
model and leverage it to seek new ports of NTT DOCOMO’s
bike share services?

A. Related Work

The transformation from high-dimensional data to low-
dimensional location representation is referred to as location
embedding. On this avenue, there are a number of interesting
models and results in the recent literature. In [1], GPS2Vec
was proposed to transform GPS vector representations to 2000-
dimensional vocabulary-based semantic feature vectors. They
employed a multi-layer perception neural network (MLPNN)
to supervise-learning the feature vectors, which were extracted
from Flickr, Twitter, Foursquare. However, the semantic
contexts of the collected data could be highly noisy and
inaccurate. In [2], a Siamese-like embedding model was
trained by using map-tile images and Google Street View
images. Also, [3] used convolutional autoencoder and Principal
Component Analysis (PCA) [4] to generate location embedding
from street view images, which do not contain semantic
information. Alternatively, a semi-supervised learning approach
was developed to train location embedding [5]–[7]. Moreover,
they all chose the triplet loss as the loss function, which was
successfully employed in face recognition [8] to penalize the
map-tile images if they are not similar to the anchor in each
triplet. Per the definition of “similar”, [5], [7] both assumed that
physically-closed (far away) neighbors have similar (dissimilar)
semantics and representations. However, for map-tile images,
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this assumption might be flawed. For example, in the urban
dense area, the geospatial information could significantly vary,
even when two locations are near to one another. For another
example, the similarity was defined by POI similarity in [6].
Particularly, they proposed a two-stage framework incorporating
both street view imagery and point-of-interest (POI) data
to learn neighborhood embedding, and thus the similarity
definition is more reasonable. However, in all of [5]–[7], the
triplet-loss-based models have relatively high complexity in
both space and time, which are at least O(N2), where N is
the number of map-tile images in the dataset. Considering the
scalability of the model to a very large area, i.e., N is very
large, all their models are weak in efficiency.

Regarding the prediction of new service ports for bike share
business, many works also provided a variety of interesting and
insightful approaches, such as [9]–[12]. However, to the best
of our knowledge, location embedding has not been applied.

B. The Contribution

To overcome the complexity challenge (of the triplet loss)
for scalability, we need to develop a more efficient approach for
location embedding. Also, to avoid the assumption of the map-
tile image similarity made in [5], [7], we need a new approach
to re-define the similarity. Although the POI information used
in [6] seems promising, it does not fully rely on the map-tile
images. Instead, we need to understand the underlying features
of the map-tile images.

Per the second issue, let us re-think of what can be used
for describing a location. Clearly, three types of messages –
map-tile image, meta information, POI information – could
be explored. Specifically, the map-tile image itself includes
geospatial information, such as shape, color, size, etc. of
the objects in the image; the meta information describes the
objects in the image with numerical numbers, such as the
number of roads, buildings, parks. This is typically used when
one visualizes the similarity between images; and the POI
information labels the functions of the objects with words or
phrases. Albeit all the three types of messages are differently
structured, they all describe something in the same area and
do not exclude one from another. Recognizing this connection,
in this paper we propose to use the meta information to label
the map-tile images, which was not used in [1], [2], [5]–[7].

Next, back to the first issue, intuitively, a well-designed
location embedding should: (1) contain a certain amount of
geospatial information of the image; (2) preserve a certain
amount of semantic information; (3) encode similar (dissimilar)
geographical images to similar (dissimilar) embedding vectors,
where the similarity between two vectors can be characterized
by some metrics, such as the Euclidean distance or the cosine
similarity score; (4) carry more amount of information as the
number of dimensions increases. In this work, we propose a new
approach to create location embedding, named for Efficient
and Semantic Location Embedding (ESLE). Specifically,
we train a CNN [13] with map-tile images as the input.
Unlike [5], [7], we do not consider the actual distance between
the locations. Instead, we formulate a supervised multi-label

classification problem by using the meta information. Such
an approach not only enables to more efficiently extract the
underlying features of the map-tile images but also reduces
the complexity of both space and time to O(N). This is
because once the hyper-parameters of the model are fixed the
running time and memory in needs are both linear in N , unlike
the interplay among the components in the triplet. Therefore,
compared to the semi-supervised learning approaches described
in [2], [5]–[7], our model is more efficient and interpretable.

Finally, we apply the obtained ESLE to analyze the data
collected from NTT DOCOMO’s bike share services. In
particular, we first transform the locations of the existing service
ports to numerical vectors. Then we analyze their underlying
features and use them to seek new service ports. Based on our
initial results of a variety of experiments and statistical analysis,
our ESLE is able to better extract semantic/POI information,
suggesting ESLE’s potential as a universal tool for general
location-based tasks.

II. DATA DESCRIPTION

Three categories of datasets are used in this work: map-tile
images, meta information, and POI information. In this section,
we introduce each dataset in the following.

A. Map Tile Images

Using the OpenStreetMap map server under zoom level 16
[14], we collect a total of 1,666,168 locations in Japan in
the form of (lat, lon). For each location, a map-tile image
centered at that location is collected, and its actual coverage
is automatically adjusted to 500 meters along latitude and
longitude, so that these 1,666,168 map-tile images together
cover the entire land territory of Japan. After a closer look, we
find that a total of 743,458 of those map-tile images do not
have pixel value variation, indicating either sea only or green
land only. Without information variation, they do not provide
much information for training a model, and thus we sample
only 1,000 images for sea and another 1,000 for green lands.
Finally, the resulting number of map-tile images of interest
reduces to 924,710, which is referred to as M for brevity
throughout the paper.

Besides the map-tile images setM over entire Japan, we also
consider a subset of M to perform a number of experiments
of interest. In particular, we consider the area with longitude
range (139.003125, 139.996875) and latitude range (35.335417,
35.997917) that covers a actual range of 89.44km× 72.88km
on earth. Within this particular regime, there are a total of
25,600 map-tile images out of M. For brevity, we denote this
subset as M1.

B. Metadata and Meta Label

Using the OpenStreetMap Overpass API, we collect metadata
describing semantic information of each map-tile image. Specif-
ically, we consider 14 classes of meta information identified
in the tuple (buildings, highway, peak, water, river, railway,
rail station, park, playground, road, airport, trail, farmland,
grassland). After parsing the data returned from the API, we
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retrieve the count number of each class for each image. The
resulting 14-dimensional count vector for each image is called
”metadata”.

Investigation of the metadata reveals that the data distribu-
tions significantly differ among the 14 classes. Moreover, when
we compare if two map-tile images are alike from the geospatial
and semantic perspectives, the specific count number for most
classes might not be crucial. Instead, whether the class exists
is more relevant. Recognizing this fact, we use binary number
1/0 to label the of existence/non-existence of the 12 classes,
i.e., all classes excluding building and road, in the image. For
building and road, due to their relatively much wider range of
metadata than the other 12 classes, we use 3 non-overlapping
sub-classes to cover each of them, where the sub-classes are
defined by comparing the metadata against pre-determined
thresholds. Specifically, the class “building” is redefined to be
3 classes “building less”, “building some”, “building more”
for the count number to fall into the intervals [0, 3), [3, 60],
(60,∞), respectively; similarly, the class “road” is redefined
to be 3 classes “road less”, “road some”, “road more”, based
on if the count number falls into the intervals [0, 15), [15, 30],
(30,∞), respectively. The values of the thresholds are carefully
chosen so that the resulting sub-classes are relatively balanced.
To summarize, with the definition above, we create 18 binary
labels for the resulting 18 classes for each image. Such a
18-dimensional binary vector for each image is referred to as
”meta label” throughout this work. In Fig. 1, we provide two
examples for visualization.

(a) labeling 1 for classes of build-
ings more, highway, water, river,
railway, rail station, park, play-
ground, road more, airport, grass-
land, and labeling 0 for the others

(b) labeling 1 for classes of build-
ings less, highway, water, river,
railway, park, road some, trail,
farmland, and labeling 0 for the
others

Fig. 1: Examples of Map Tile Images and Their Labels

C. POI Information

POI is another category of information of interest in location-
based applications. In this work, for each map-tile image, we
collect all the POI names under the key of “amenity” after
parsing the output of the OpenStreetMap Overpass API to
JSON files. After counting how many number of each POI
name, e.g., restaurants, convenience stores, post offices, etc.,
appears in one image, we obtain the counting numbers of each
POI name for each image. Note that the POI names for each

map-tile image could significantly differ. Therefore, for the
map-tile datasets, we collect all the POI names for all the
images, and then create a POI count vector for each image,
indicating if each POI name exists or not.

D. Summary of the Notations

For the reader to better understand this work, we summarize
the notation use in the following. We use l to represent a
location tuple (lat, lon), and Ml to represent the the map-tile
image centered at l. Also, we denote by use L the location set
andML the map-tile image set for L. In this work, since ESLE
takes images as input, we use l and Ml interchangeably, and L
and ML (or M by dropping the foot index) interchangeably
when no ambiguity is caused. For a dataset M, we denote by
N = |M| its cardinality. For brevity, we denote by C the set
of the 18 (sub-)classes of meta label data that we introduced.
In addition, we use yn to represent the meta label vector of
the nth image, where the cth element of yn, denoted by yn,c,
is the binary label, where the index n, c are automatically
defined after the data is well collected. Once again, our goal
is to create ESLE, which transforms Ml to a numerical vector
el ∈ RE , where E is the dimension of the embedding vector
space. Note that the transformation is a deterministic mapping
once the model is established. For brevity, we denote this
mapping function as el = f(Ml). Concatenating all el’s into a
compact form produces an N × E embedding matrix E, each
row corresponding to one el.

Except for using the letters l and Ml for a location tuple and
the corresponding map-tile image, we generally use lower case
a and upper case A to denote scalar, and use the bold-fold
a, A to denote vector, matrix, respectively. In addition, A
represents a set, and ‖a‖ denotes the Euclidean norm of a.

III. ESLE EMBEDDING MODELS

In this section, we walk the reader through the methodology
to build the ESLE embedding models and the experiment setup,
followed by the performance evaluation of the model in terms
of the statistical metrics.

A. Methodology

We formulate creating location embedding as a supervised-
learning multi-label classification problem, and the goal is to
learn the semantic labels in the meta label dataset. We employ a
ResNet-based multi-label CNN model, owing to its well-known
capability to learn image features. Specifically, we delete the
last fully-connected layer and SoftMax activation and then add
another two layers. The first layer is a 512×E fully-connected
linear transformation layer followed by SeLu activation [15],
where E is the desired dimension of the location embedding
vector space. Also, since we expect the resulting embedding
vector to have not only the non-negative-valued but real-valued
entries, i.e., to span a larger space volume as to better describe
the feature, SeLu is employed to offset the non-zero centered
effect caused by the more popular Relu function. The second
is an E × C fully-connected linear transformation layer to
match with the C = 18 labels of the meta label data and then
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Models Label Evalutaion
Precision Recall F1-score MCC

Statistical Baseline 0.1615 0.2601 0.2436 0.1309
CNN Baseline 0.3838 0.4776 0.4880 0.0455

ResNet-18 0.6129 0.6659 0.6900 0.6609
ResNet-50 0.6344 0.6908 0.7045 0.6886
ResNet-101 0.6353 0.6918 0.7072 0.6787
ResNet-152 0.6358 0.6795 0.7067 0.6829

TABLE I: Evaluation on 6 models for multi-label prediction

followed by Sigmoid activation, which is used to detect if each
of the C labels exists or not in each map-tile image.

Recall that the meta label yn,c ∈ {0, 1} implies if the cth

label exists in the nth map-tile image, and we denote by
pn,c ∈ [0, 1] the corresponding prediction probability from the
model defined above. We choose the multi-label soft margin
loss [16] as the loss function below:

L = − 1

NC

N∑
n=1

C∑
c=1

[
yn,c log(pn,c)+(1−yn,c) log (1−pn,c)

]
.

(1)
Finally, the E-dimensional embedding vector can be obtained

from the input to the last layer. Feeding a map-tile image
datasetM to the model, we can obtain their embedding matrix
E = f(M).

B. Experimental Setup

We investigate the performance of the model defined in Sec.
III-A on the datasets of our interest and via hyper-parameters
tuning. Specifically, we test ResNet-18, ResNet-50, ResNet-101
and ResNet-152 based multi-label CNN classifier. During the
training, we minimize the loss function defined in (1). Moreover,
we choose the Adam optimizer, and the other parameters
include: batch size = 64, epochs = 20, learning rate = 0.001,
and α = 1.0. Finally, all the experiments are performed on the
AWS p2.xlarge instance.

To show the effectiveness of the ResNet-based CNN model,
we also train a multi-label classifier using a simple 7-layer
CNN structure as the CNN baseline model, which consists of 3
convolutional layers and 4 fully-connected layers. As the image
size at the input is 3× 224× 224, we choose the convolutional
kernels to be with the dimension (9 × 5 × 5), (18 × 5 × 5),
(36× 3× 3) in each layer, each followed by SeLu activation
and a 2× 2 max-pooling layer, and choose the 3 linear layers
with the dimension of 22, 500× 1, 024, 1, 024× 128, 128×E,
each followed by Selu activation. At the end, similar to our
proposed method, we add an E × C linear layer followed by
Sigmoid activation. Aside from these, all the other parameters
remain the same.

C. Results Analysis

Since the meta label data is in-balanced for each label, we
evaluate the obtained location embedding vectors by using
statistical metrics including precision, recall, F1-score [17]
and Matthews correlation coefficient (MCC) [18]. Next, we
perform a number of experiments on the datasets M and/or
M1 for model evaluation.

Test Data Label Evaluation
Precision Recall F1-score MCC

Original Images 0.7415 0.6824 0.6975 0.6665
Rotated Images 0.7372 0.6764 0.6918 0.6601

TABLE II: Evaluation on model robustness via image rotation

Data Percentage Label Evaluation
Used for Training Precision Recall F1-score MCC

7% 0.8979 0.8474 0.8606 0.8488
21% 0.9021 0.8450 0.8625 0.8518
35% 0.9051 0.8570 0.8707 0.8602
49% 0.9071 0.8608 0.8739 0.8635
63% 0.9145 0.8618 0.8782 0.8684
90% 0.9059 0.8586 0.8723 0.8619

TABLE III: Evaluation Results on Multi-Label ResNet-18
Model with Different Size of Training data

Firstly, we consider the four models based on ResNet-18,
ResNet-50, ResNet-101 and ResNet-152 proposed in III-A
and compare them against the CNN baseline model described
in Sec. III-B. We also show the statistical baseline, where
prediction is made on the test data just based on the arithmetic
mean of each label in the training dataset. Since the goal is
to find out the relatively best model, we train the models on
70% of subset M1 and test the models on the other 30% of
M1. As shown in Table I, it can be seen that the ResNet-based
CNN models all significantly outperform the two baselines in
all the four metrics. While the four ResNet-based CNN models
outperform the CNN baseline due to their deeper structures,
it can be seen that among themselves the deeper models such
as ResNet-101 and ResNet-152 do not necessarily perform
better, due to many possible reasons such as the amount of
the data used for training and testing. Thus, considering the
significantly greater amount of time and higher complexity for
training deeper ResNet-based models, we decide to use ResNet-
18 for further experiments. Another unimportant but interesting
observation is the MCC comparison between the two baselines.
While the CNN baseline significantly outperforms the other in
precision, recall and F1-score, a bit surprisingly it is worse in
MCC. An intuition explanation is that the MCC evaluates the
prediction based on the extent of random guess, and it does
not focus on characterizing how well a model learns the label
1. As they both tend to be 0, we do not need to pay much
attention to the baselines in the rest of this paper.

Next, we are interested in the model robustness. In particular,
after we split the dataset M1 into the training set and the test
set, we form a rotated test dataset by clock-wisely rotating
each map-tile image by a random degree uniformly drawn
from {0o, 90o, 180o, 270o}. After training the model using
the training set, we test the model on both the test set and
the rotated test set. If the model is not robust, then the test
performance on the rotated test set should be worse. However, a
bit surprised, as shown in Table II, the result comparison reveals
that there is no significant difference between the performance
of the model on both test sets.

Finally, we explore how much percentage of the data fromM
is needed for training the model to achieve certain satisfactory
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evaluation performance on the test dataset. Towards this task,
we use 90% and the other 10% of M to form the training and
test subsets, respectively. As shown in Table III, we train the
ResNet-18-based CNN model on 7%, 21%, 35%, 49%, 63%
and 90% (i.e., all the training subset) of the entire dataset,
and we test the model on test data subset. Note that from 7%
to 90% in sequence, the dataset used for training the model
is a randomly-drawn subset of the successive dataset, so as
to remove the uncertainty caused by the random selection of
the map-tile images during training. After training the model
for 20 epochs for each experiment, we evaluate the model in
four statistical metrics including precision, recall, F1-score,
and MCC. It turns out generally the more amount of data, the
better model performance, and the option of 63% produces
the relatively best performance for all evaluation metrics. The
option of 90% does not perform better than the 63% option
due to the restriction of the epoch number. In fact, based on
our investigation, more epoch numbers can bring only little
marginal improvement at the cost of much higher complexity.
Thus, for the goal of concept proof and the training efficiency,
we use the 63% option to train the model and to create location
embedding in the rest of this paper.

IV. SEMANTIC ANALYSIS

To further interpret the semantic meaning of ESLE, we
compare ESLE against the well-known Word2Vec for word
embedding. In Word2Vec, we can perform addition and
subtraction operations to explore the semantic relationship
between the words, because word embedding has semantic
information [19]. The additive property comes from the fact
that the word embedding vectors represent the distribution of
the context in which a word appears, and they are linear with
model input and non-linear via softmax with model output.
Thus, linear addition in the word embedding vector space is
related to the production of the probability computed by the
model, which can carry word semantics via probability in the
probability space. In contrast in ESLE, the location embedding
vector represents the distribution of each feature existing in the
map-tile image. The location embedding vector is non-linear
with model input and non-linear via sigmoid with each label
of model output. Linear addition in the location embedding
vector space is related to the Boolean “or” operation of the
model outputs. Thus, the next question is whether our location
embedding generally carries semantic information. To answer
this question, we first examine the addition and subtraction
compositionality via visualizing some examples. Afterwards,
we develop a systematic approach to extract the feature vectors
of the 18 labels defined in Sec. II-B.

A. Addition and Subtraction Compositionality

Take Fig. 2 as an example. We randomly pick 4 map-tile
images (left to the equal sign) and perform element-wise
addition and subtraction on their embedding vectors generated
by ESLE. Then for the resulting two vectors, we search over
all rows of the embedding matrix E, retrieve the 2 nearest
neighbors for each based on the cosine similarity, and show the

Fig. 2: Examples of the vector compositionality via element-
wise addition and subtraction

corresponding map-tile images. In the first row, in the 2 images
on the left-hand side of the first row in Fig. 2, both the minuend
and the subtractor contain many buildings. After the subtraction
operation, the resulting images do not contain or contain very
few buildings; in the second row, in the two images on the
left-hand side of the second row, one addend has freeway and
no green land, and the other addend has much green land and
no freeway. After the addition operation, the resulting two
images contain both freeway and green land. Clearly, for both
addition and subtraction operations, the retrieved images are
quite meaningful and consistent with our interpretation. It can
be seen that the meta information elements on the images on
the right-hand side of the operation are added to (or deleted
from) the images on the left-hand side.

B. Label Feature Vector Visualization

While Fig. 2 can be used for the visualization verification
purpose, it is necessary to consider a more general and universal
approach for verification. Inspired by the face attributes transfer
in [20]–[22], we develop a systematic approach to extract class
feature vector. The main idea is briefly stated as follows:

1) For each of the 18 classes, we form a number of groups in
such a way that each contains two sets of map-tile images
whose meta label vectors only differ in the corresponding
class. For example, for class 1, in a group, the images
in the first set all have meta label vector [1, 0, · · · , 0]
and the images in the other set all have meta label
vector [0, 0, · · · , 0]. Since the weights of all the other
17 classes are all 0, we denote this group by Interfering
Class Weights, ICW = 0; if ICW 6= 0, based on various
possible combinations in M, we readily form all the
other groups for each possible ICW = 1, 2, · · · , 17.

2) We perform the subtraction operation between the em-
bedding vectors of the images in the two sets of each
group, aiming to remove all the other class information.
Thus, the resulting vectors should carry the feature of
the class of interest. Note that in each group, performing
the subtraction operation between every two vectors
(each from one set) would make the computation quite
expensive. Instead, we only perform the operation for
min(C1, C2) times where C1, C2 are the cardinality
of the corresponding two sets, and each time the two
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Fig. 3: Visualization of the C = 18 feature vectors: (a) PCA
for (Interfering Class Weights) ICW = 1, (b) UMAP for ICW
= 1, (c) PCA for ICW = 0, (d) UMAP for ICW = 0.

embedding vectors are randomly selected from their sets,
respectively, and without repetition (or replacement).

3) We analyze the distribution of the resulting feature
vectors for all the 18 classes. To better visualize the
distribution of the E-dimensional vectors, we perform
PCA and Uniform Manifold Approximation and Pro-
jection (UMAP) [23] to obtain their 2-dimensional
representations.

In Fig. 3, we visualize the feature vectors of the C = 18
labels after performing PCA and UMAP for ICW= 1 and
ICW= 0, respectively. Several interesting observations can be
made. First, the clusters for ICW = 0 outperform those for ICW
= 1 due to the class feature entanglement for ICW = 1. That is,
those images with ICW = 1 carry much noise (of other class
features) that cannot be completely removed after performing
subtraction, thus making them harder to separate than ICW
= 0. Second, the number of classes visible for ICW = 0 is
less than that for ICW = 1, as the in-balanced class dataset
excludes all the feature vectors for 4 classes for the group of
ICW = 0. Finally, UMAP separates the clusters better than
PCA, as UMAP considers the local similarity as well. To this
end, the clustering effect can be evaluated by statistical metrics,
such as Calinski and Harabasz (CH) index (we omit it here
due to the absence of any baseline for comparison). Since the
feature vectors are obtained from the embedding vectors via
subtraction operation, we conclude that our location embedding

carries semantic information.

V. APPLICATION OF ESLE TO BIKE SHARE SERVICES

After obtaining the location embedding, it is necessary to
explore if it can help resolve any practical problem, like
Word2Vec for natural language processing. In this section,
we investigate if ESLE sheds light on the problem of seeking
new ports for NTT DOCOMO’s bike share services. There are
3 datasets that we use in this section:

1) The first set D1 consists of the 1,622 locations of the
service ports that NTT DOCOMO had established from
7/3/2015 to 7/22/2019, and the business operation starting
date of each port [24].

2) The second set D2 consists of the 828 locations of the
service ports operated in the Tokyo metropolitan area
from Jan. 1, 2019 to Oct. 31, 2019, and also the hourly
aggregated numbers of the bikes borrowed from and
returned to each port.

3) The third set M2 is a subset of M1 defined in Sec.
II. Specifically, among the 25,600 images of M1, we
exclude any image of the locations within a certain
distance to the existing ports. To expand the services,
this constraint restricts our attention into the areas that
are not too close to any of the existing service ports. As
an example, we choose the distance threshold as 2.3 km,
which is the minimum 10% pair-wise distance between
any two of the existing ports. This process removes 2,766
locations from M1 and the remaining 22,734 map-tile
images form M2.

Before illustrating how to use ESLE to seek new service
ports, we first need to show evidence why it is possible. We
begin with identifying the strong similarities of the existing
service ports in the embedding vector space.

A. Identification of the Existing Ports

Consider the existing 1,622 service ports in D1 in operation.
Although they are broadly distributed over a very wide range
including a number of cities, based on map-tile image obser-
vation they have a lot of attributes in common, such as many
roads, many buildings, close to train stations. This is consistent
with the common sense that bike share services should be
highly desired in places with these attributes. Considering the
distribution of their embedding vectors in the embedding vector
space, we expect their envelops to constitute a subspace with
relatively small volume, i.e., the embedding vectors of the
existing 1,622 ports would be relatively close to one another.
To verify this, we consider the distribution of all the embedding
vectors of those in D1 andM2. In particular, let us investigate
the similarities among the existing ports.

1) The Problem Formulation: We consider the embedding
vectors in dataset D1, where the ports were deployed over 49
months. For brevity, we denote by ED1

(t), t = 0, 1, · · · , 48 the
set of embedding vectors of the corresponding ports deployed in
the tth month. Also, we denote by ED1

(t−) = ∪ti=0ED1
(i) and

ED1
(t+) = ∪48

i=t+1ED1
(i) the embedding vectors of the ports

deployed up to t and after t, respectively. Based on ED1(t
−),
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Fig. 4: Classification performance evaluation based on the data
up to each month since July 2015

we are interested if ED1
(t−) can be well characterized by the

embedding vectors EM2
of M2. While various approaches can

be used for the question above, here we take a simple method
to demonstrate the effectiveness of the embedding vectors.
Specifically, we label the embedding vectors in ED1(t)’s with
1 and those in EM2

with 0. Then we train and test a binary
classifier on ED1

(t−) and EM2
, and evaluate the performance

of the classification results.

2) The Approaches and Evaluation Results: Since |ED1(t
−)|

readily grows from 170 to 1, 622 and the number is not large,
we use Logistic Regression as the classifier. Moreover, the 1/0
labels for ED1

(t−) and EM2
are highly skewed. To deal with it,

for each t ranging from 0 to 47, we uniformly draw |ED1
(t−)|

(location) embedding vectors from EM2 without repetition for
a total of T = 200 samples. Next, for each sample, we further
randomly split the data of each class into training set and testing
set based on 70%/30% splitting. Finally, for each t, we train
T models on the training data of the T samples, and aggregate
the statistical performance metrics on the corresponding test
dataset. In Fig. 4, we show the results of the 6 metrics for
E = 512, including accuracy, precision, recall, F1-score, ROC-
AUC and MCC. It can be seen that they all are relatively stable.
Also, they readily improve and converge with less and less
variance, as more data comes into play over time.

Besides this experiment, we also perform another experiment
of using the T models trained based on ED1(t

−) to score
the probability, i.e., the output of the Sigmoid function, of
the classifier with the vectors ED1

(t+) as the input. The
experimental result shows that the score readily improves from
0.85 to 0.92 and the standard deviation reduces from 0.25 to
0.18 (based on the T = 200 samples), as t increases from 0
to 47. Thus, the existing ports are close to one another in the
embedding vector space, and can be used for picturing the
future new ports.

With this new evidence, we investigate the problem of
seeking new ports in the next two sections.

B. How to Seek New Ports for Business Growth?

Seeking new ports for bike share services is a complicated
business decision-making problem, as analyzing the dynamic
environment information (i.e., traffic flow, human density,
security, and space) and operation performance (i.e., revenue,
cost, profit, and their growth potential) is necessary. On
the other hand, location embedding, geospatial and POI
information, are all highly associated with the same map
environment. Hence, the location embedding, carrying map-tile
image information, could be useful to seek new ports. In this
section, we show how to apply location embedding to this
problem and how to evaluate the recommendation results.

1) The Problem Formulation: Clearly, the task is not a
traditional classification problem, as we do not have labels
for multiple classes regarding the ports. However, we can
still formulate it as a supervise-learning binary classification
problem with the following method. Consider choosing a couple
of ports from M2 as an example. Specifically, we first label
all the 1,622 existing ports with 1, implying they are “good”,
regardless its actual values in business. As shown in Sec. V-A,
they do have strong similarities among themselves. Then we
label the 22,734 candidates inM2 with 0, meaning “not good”,
even if some of them are “good”. From both business operation
and map observations, since only a few candidates would finally
be the target (e.g., selecting even no more than 1, 000 from
the 22,734 “not good” candidates would still leave the other
more than 95% “not good”), we can use a binary classifier to
approximately find the boundary between the 1/0 classes. Thus,
seeking new ports is equivalent to selecting a few “not good”
candidates that are very close to the “good” ports, i.e., finding
out the false negative candidates most close to the ports with
label 1, in the embedding vector space.

2) The Approaches and Evaluation Results: Similar as in
Sec. V-A and for E = 512, we randomly draw 1,622 vectors
from ED2 without repetition, so as to make the data with 1/0
labels balanced. To reduce the uncertainty caused by random
sampling, we independently sample ED2

for T = 100 times.
Also, considering the computation complexity, small data-scale,
and simplicity, we again use logistic regression as the classifier.
Based on our experiments with 70%/30% for train/test splitting,
the resulting accuracy is 0.9055 with the standard deviation
0.0072 over T = 100 samples, suggesting logistic regression
is a very stable model2.

Second, we consider E takes other values of 8, 64, 128,
256, 512, respectively. Intuitively, the larger E, the more
information carried by the embedding vector. However, a larger
E also means more expensive computation and higher risk
of over-fitting. Thus, we evaluate the performance metrics for
all the choices for E. To show the effect of the embedding
vectors, we also provide the results based on using “Metadata”,
“Meta label”, “POI” and the combined of these three. Table IV
demonstrates that E = 512 performs the best.

2We also experiment with other models including SVM, Spectral/K-Means
Clustering, Decision Tree, MLPNN, and even the best of their performance
results is not significantly better.

Authorized licensed use limited to: Santa Clara University. Downloaded on January 05,2022 at 17:55:01 UTC from IEEE Xplore.  Restrictions apply. 



1280

Input Data Accuracy F1 score AUC-ROC
POI 0.8678 0.8652 0.8713

Meta Label 0.8967 0.8967 0.8967
Metadata 0.8839 0.8790 0.8840

Combined† 0.8967 0.8981 0.8985
8-d Emb 0.8790 0.8860 0.8782
64-d Emb 0.8928 0.8958 0.8938

128-d Emb 0.8894 0.8927 0.8904
256-d Emb 0.8872 0.8906 0.8882
512-d Emb 0.9055 0.9055 0.9055

TABLE IV: Bike share port prediction (Combined† denotes
the concatenated use of POI, Meta Label and Metadata)

Models Training
Time Accuracy F1 score AUC-ROC

AutoEncoder 12h 30m 0.7548 0.7625 0.7589
Tile2Vec [7] 1h 42m 0.8868 0.8902 0.8876

ESLE 32m 0.9055 0.9055 0.9055

TABLE V: Bike share prediction comparison among different
embedding models

Next, we compare ESLE against Tile2Vec [7]. Both models
are trained by using 63% of M described in Sec. III-C
and the same parameters introduced in Sec. III-B. As shown
in Table V, ESLE performs the best in all three statistical
metrics, and ESLE saves the amount of the training time,
in minutes per epoch, by 71.43%. In addition, we also
consider a unsupervised-learning model – AntoEncoder [25]
– for performance comparison. Here, we directly employ the
structure of the AutoEncoder developed in [26] but make a few
changes in the parameter values. Specifically, in the decoder,
the number of (input, output) channels is (3, 64) for module
1, (64, 64) for module 2, 3, 4, (64, 512) for module 5. After
that we insert a convolutional layer with 512 (7 × 7) filters
to retrieve the embedding vector. The decoder is like a mirror
of the encoder. As shown in Table V, AutoEncoder performs
much worse than both ESLE and Tile2Vec in all metrics.

3) New Port Recommendation: To this end, given the
embedding size E, we can find out the top-M∗ locations/map-
tile images for recommendation, denoted by RM∗ , which is
a function of P = (E, location embedding, candidate ports,
classification model, M∗). However, if we pick another P ,
we would have another RM∗ . While one can create many
P ’s based on different settings, it is not clear which P
is more efficient than the others. On the other hand, one
cannot expect every location in RM∗ to be promising. To
increase the reliability of the recommendation, we choose
K different P ’s, say P(k) to obtain their corresponding
RM∗(k) = fr(P(k)) for k = 1, 2, · · · ,K. Then we take their
intersection RP̄ = ∩Kk=1RM∗(k) as the final answer.

While each RM∗(k) is with size M∗, it is of interest to see
the cardinality of RP̄ . Consider two extreme cases:
• |RP̄ | is close to M∗: in this case, all RM∗(k)’s are alike,

and thus the embedding mapping function f(·) tends to be
many-to-one mapping and relatively stable regardless of
the input. Thus, it suffices to use the smallest E. However,
as shown in Table IV, location embedding vectors with

M∗ 100 200 400 600 800 1,200 1,600 2,000
|RP̄ | 20 58 140 250 350 575 801 1,060

|RP̄ |/M∗ 0.2 0.29 0.35 0.417 0.438 0.479 0.5 0.53

TABLE VI: The number of map-tile images agreed by all the
four models (the intersection of their top-M∗ list sets)

Fig. 5: The 20 recommended sites for M∗ = 100

larger E is more informative. Thus, we do not expect to
see this extreme.

• |RP̄ | tends to be 0: in this case, every two RM∗(k)’s differ
a lot, implying the intersection RP̄ does not increase the
reliability of the recommendation. Thus, we do not prefer
to see this extreme as well.

Generally, we expect the carnality of a desired recommendation
list RP̄ not to be close to both 0 and M .

In our experiments, we choose K = 4, and the corresponding
P(k)’s are given by: P(1) (embedding vectors with E = 512
only), P(2) (embedding vectors with E = 512, metadata, meta
label), P(3) (embedding vectors with E = 128 only), and P(4)

(embedding vectors with E = 128, metadata, meta label). By
choosing M from 100 to 2,000, we show the |RP̄ | in Table
VI. It can be seen that, first, the relative cardinality of |RP̄ |
compared to M∗ increases when M∗ grows, which implies that
the four sets RM∗(k)’s tend to agree more among themselves;
second, the ratio |RP̄ |/M∗ ranges over (0.2, 0.53), consistent
with our expectation. For example, if we pick M∗ = 100,
then the top-20 location/map-tile images are recommended as
shown in Fig. 5. It can be seen that each image has the features
including railways, a lot of roads, a lot of building, etc., which
are actually very similar to the map-tile images centered at the
existing ports.

4) Evaluation of the Recommendation: Besides visualization
via Fig. 5, can we analytically evaluate RP̄ ? Since the ground
truth is not available before operating the business for a period,
it is very difficult if not impossible. Of course, with more
commercial business operation data, one could make the predict
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POI names 1,622 existing images 20 new images
restaurant 11.9018 16.15

cafe 4.3412 4.85
pub 3.8479 5.85

fast food 2.9636 5.60
vending machine 2.8848 5.05

bench 1.9739 2.00
bar 1.8273 1.30

post box 1.7285 2.00
telephone 1.4309 2.55
parking 1.2352 2.35
toilets 1.1133 1.20
bank 1.0564 3.15

pharmacy 1.0473 3.25
place of worship 1.0170 0.95

dentist 0.8679 2.35
post office 0.7430 0.75

bicycle parking 0.6752 1.15
doctors 0.6230 2.45

drinking water 0.6036 0.45
parking entrance 0.5739 0.45

kindergarten 0.5697 0.60
public building 0.5424 0.25
social facility 0.5309 0.65

police 0.4709 0.95
atm 0.4448 1.45

TABLE VII: The most significantly important 25 POI names
of the existing 1,622 ports and the POI count means over the
existing 1,622 ports and the 20 recommended new ports

with higher confidence, but what evaluation metrics to use is
still not straightforward. To solve these difficulties, we propose
to leverage the POI information, which is not directly used
when we train ESLE and perform binary classification. In
addition, it is reasonable for people to use bike share services
around places such as restaurant, park, bus station, etc., which
essentially belong to POI information. Thus, we compare the
POI information of the 20 recommended ports in Fig. 5 against
those existing 1,622 ports.

From the 20 recommended map-tile images RP̄ and the
map-tile images of the 1,622 existing ports in D1, there are a
total of 204 POI names. After calculating their mean counts
for the 20 recommendation ports and D1 individually, we
form two count mean vectors V1622 and V20 for D1 and RP̄ ,
respectively. A little surprisingly, V1622 and V20 are strongly
dependent. This can be verified via their correlation, entropy,
and KL divergence (i.e., the relative entropy). Specifically,
first, their correlation coefficient (the cosine similarity score) is
0.9753, which implies that the location embedding is able to
learn the underlying POI information. Second, their individual
entropy is given by H(V1622) = 4.5544, H(V20) = 4.6295
bits, respectively, very close to one another, both much less than
5.0844 bits, the entropy of the POI count mean distribution
of all the map-tile images in M2. For their KL divergence,
D(V1622‖V20) = 0.3724 bits and D(V20‖V1622) = 0.3706 bits
only, respectively. In Table VII, due to the space limitation
we only show 25 highest counts for D1, their POI names,
and the corresponding count values for RP̄ . It highlights the
importance of those 25 POI names, where the first 5 POI names
with counts higher than 2.8, and especially restaurant has count
as high as 11.9018, which indicates those POI names tend to

Input Data Accuracy F1 score AUC-ROC MCC
Statistical Baseline 0.5712 0.5712 0.5712 0

512-d Emb 0.6224 0.5254 0.6065 0.1873
Combined∗ 0.6548 0.5923 0.6471 0.2723

TABLE VIII: Bike share service port user flow prediction
(Combined∗ denotes the concatenated use of 512-d Embedding,
POI, and Metadata)

be the key attributes based on our model and could be used
for seeking new ports.

C. How to Seek Ports with Relatively High User Flow?

In the prior two tasks, we use the location of the existing
service ports only. In this section, we take a step forward to
investigate whether the operation data of the existing service
ports and their location embedding vectors have dependencies.
Obviously, the existing 1,622 bike share service ports do
not bring the same business value, as they were deployed
to meet varying demands at different places. For example, the
service ports deployed in the urban downtown areas and the
suburban area would see rather different bike usages and bike
borrowed/returned patterns. Intuitively, the ports with higher
usages, i.e., the bike-user flow, would probably have greater
business values. Note that the location embedding vectors
carry semantic information and some geospatial endowment
information, which is somewhat associated with the service
usage or demand information. Thus, an interesting question
naturally arises: Whether location embedding vectors of the
service ports imply the bike-user flow with certain extent?

1) The Problem Formulation: We use the dataset D2,
introduced at the beginning of this section. Borrowing the
idea of data pre-processing used in [27], we define a service
port to be “high flow” if more than 24 bikes are borrowed and
returned in average per hour, and to be “low flow” for otherwise.
This definition splits the 828 ports as 473 “higher flow” ports
and 365 “low flow” ports, labeled with 1 and 0, respectively.
Then the question becomes how much we can tell the labels
of the service ports based on their location embedding vectors
only. Clearly, this is a binary classification problem. Again,
although there are many other approaches of machine-learning
problem formulation, we formulate this binary classification
problem for simplicity, as our main purpose is to shed light
on the application of location embedding.

2) The Approaches and Evaluation Results: To keep the
model as simple as possible, we again use logistic regression
as the classifier. For each port, besides using its location
embedding vector only, we can also consider the combined
use with its POI vector and meta label vector for performance
comparison. Similar as in the prior two sections, we split the
data into the training set and the test set based on 70%/30%
splitting. Then we train the classifier on the training set and
evaluate the classifier on the test set. As shown in Table VIII,
the performance evaluation results are performed based on
using using ”E = 512-dimensional embedding vectors” only
and all of location embedding vector, “POI”, “Meta Label”
as the input to the classifier. Compared to the the statistical
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baseline where the predication is made with with distribution-
based random guess, the location embedding demonstrates
its effectiveness. Although the statistical baseline is better in
F1-score, it does not learn any underlying structure behind
the data, as its MCC = 0. In addition, even the metric values
corresponding to the location embedding as the input are way
below 1, we never expect them to be close to 1, because this
is only an attempt to study whether the dependencies between
location embedding vectors and the port usage exist.

Once the dependencies exist, as shown in Table VIII, it
would be worthy of exploring other smarter methods to better
formulate the problem, pre-process the data, and characterize
the underlying structure of the data. For example, when the
“POI” and “Meta Label” vectors come into play as well,
the three performance metrics in Table VIII significantly
outperform that using location embedding only.

VI. CONCLUSION

We develop a universal location embedding model – ESLE
– to encode an map-tile image of a given location into a
numerical vector with much lower dimensions. ESLE is built
by using a ResNet-based multi-label classification CNN model
with the metadata as the output label, and trained in the
supervised-learning manner. The experiments indicate ESLE
is relatively effective in general and outperforms several
baseline approaches. Also, based on a systematic approach,
we demonstrate that the resulting location embedding vectors
carry both spatial geometry and semantic information. Finally,
We apply the trained ESLE to a business problem for NTT
DOCOMO’s bike share services. Particularly, we attempt to
show its values in understanding the underlying features of the
existing service ports and thus in recommending new service
ports for expanding the services in new areas. The initial results
shown in this paper indicate our ESLE model could be a very
promising and efficient tool for a wider range of location-based
applications. The future work would include leveraging more
operation data of bike share services to further examine ESLE
and to make ESLE more powerful. Moreover, exploring other
clever methods to create more efficient and interpretable ESLE
is another important and interesting direction.
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