
node2hash: Graph Aware Deep Semantic Text Hashing

Suthee Chaidaroon1

Santa Clara University, USA

Dae Hoon Park

Huawei Research America, USA

Yi Chang

Jilin University, China

Yi Fang

Santa Clara University, USA

Abstract

Semantic hashing is an effective method for fast similarity search which maps

high-dimensional data to a compact binary code that preserves the semantic

information of the original data. Most existing text hashing approaches treat

each document separately and only learn the hash codes from the content of

the documents. However, in reality, documents are related to each other either

explicitly through an observed linkage such as citations or implicitly through

unobserved connections such as adjacency in the original space. The document

relationships are pervasive in the real world while they are largely ignored in

the prior semantic hashing work. In this paper, we propose node2hash, an un-

supervised deep generative model for semantic text hashing by utilizing graph

context. It is designed to incorporate both document content and connection

information through a probabilistic formulation. Based on the deep generative

modeling framework, node2hash employs deep neural networks to learn complex

mappings from the original space to the hash space. Moreover, the probabilistic

1This work was conducted when the first author did internship at Huawei Research Amer-
ican.

Preprint submitted to Journal of Information Processing and Management October 23, 2019

formulation enables a principled way to generate hash codes for unseen docu-

ments that do not have any connections with the existing documents. Besides,

node2hash can go beyond one-hop connections about directed linked documents

by considering more global graph information. We conduct comprehensive ex-

periments on seven datasets with explicit and implicit connections. The results

have demonstrated the effectiveness of node2hash over competitive baselines.

Keywords: Semantic hashing, Variational autoencoder, Deep learning

1. Introduction

The task of similarity search, also called nearest-neighbor search, proximity

search, or close item search, consists of finding documents from a large collec-

tion of documents, or corpus, which are most similar to a query document of

interest. Fast and accurate similarity search is at the core of many information5

retrieval applications such as document clustering, collaborative filtering, and

plagiarism analysis [1, 2]. Semantic hashing [3] is an effective solution to fast

similarity search by representing every document in the corpus as a compact bi-

nary hashing code so that semantically similar documents are mapped to similar

codes. Consequently, the similarity between two documents can be evaluated10

by simply calculating pairwise Hamming distances between hashing codes, i.e.,

the number of bits that are different between the two codes which significantly

accelerates similarity search because an ordinary personal computer today can

execute millions of Hamming distance computations in just a few milliseconds

[1].15

A spectrum of machine learning methods have been proposed in text seman-

tic hashing [2]. Recent research has shown that leveraging supervised informa-

tion can lead to high-quality hashing, but the cost of annotating data is often too

prohibitive to apply supervised hashing. Deep learning based approaches have

also been explored and demonstrated promising results [4, 5]. While consider-20

able research has been devoted to semantic hashing, most existing approaches

only learn the hash codes from the content of the documents and treat each

2

document separately and independently. However, in many applications, docu-

ments are often related to each other. For example, a research paper may cite

another publication as a reference; a webpage may have a hyperlink pointing to25

another page; two documents may have the same author or be originated from

the same source, or the authors may come from the same community. These

explicit relationships between documents are pervasive in the text corpora, but

they are largely ignored in the prior semantic hashing work. Even in the absence

of such explicit connections, implicit relationships can be inferred such as the30

adjacency and proximity of documents in the original space. Therefore, we can

view a text corpus as a graph with nodes representing documents and edges

capturing relationships between documents. With the graph, we can go beyond

“one hop” information about directed linked entities and utilize more global

information, such as multiple-step paths and K-degree neighbors of a given ver-35

tex. We call this different structural information as graph context inspired by

textual context utilized in learning a word representation [6].

In this paper, we propose a novel unsupervised probabilistic model for text

semantic hashing by utilizing graph context, called node2hash. The proposed

model is based on the deep generative modeling framework (DGM) [7, 8] which40

is the marriage of deep learning and probabilistic generative models. Conse-

quently, node2hash enjoys the useful properties of both learning paradigms and

provides three key advantages for our task in particular. First of all, the prob-

abilistic formulation of node2hash provides a natural principle to incorporate

graph context into the hash modeling by assuming a generative process for the45

neighborhood of the document of interest. Secondly, many existing hashing

techniques need to learn hash codes in batch mode, which requires observ-

ing all the documents during training. The generative modeling formulation of

node2hash allows a principled way to generate hash codes for unseen documents

that have no connection to any training document. Thirdly, node2hash employs50

deep neural networks to be able to learn complex and subtle mappings from the

original documents to their compact hash codes. This allows individual codes

to be fairly general and concise but their intersection to be much more pre-

3

cise. For example, nonlinear distributed representations allow the topics/codes

“government”, “real estate” and “entertainment” to combine to give very high55

probability to the word “Trump”, which is not predicted nearly as strongly by

each topic/code alone. The contributions of our work can be summarized as

follows.

1. We propose a graph-aware deep text hashing model, called node2hash2.

To the best of our knowledge, this is the first work that explicitly models60

documents and their connections for semantic hashing.

2. node2hash is an unsupervised hashing method that combines the advan-

tages of generative modeling and deep learning. Different from much

existing work, it can generate binary codes in online mode for unseen

documents that have no connection to any training documents.65

3. node2hash is applicable to a wide range of applications and datasets where

explicit connections are observed or implicit ones can be inferred. More-

over, it goes beyond one-hop connections and utilizes more global graph

information.

4. Our comprehensive experimental results on five datasets with explicit70

connections and two with implicit ones demonstrate the effectiveness of

node2hash over the competitive baselines.

2. Related Work

2.1. Semantic Hashing

Semantic hashing methods can be categorized into supervised or unsuper-75

vised learning models. In the supervised learning setting, document categories

or tags are given and treated as the true semantic label of the document. There

exist different approaches to incorporate the supervisory information, and the

general idea is to penalize the models when they do not map documents from

2The datasets and our source code publicly available at https://github.com/unsuthee/

node2hash

4

https://github.com/unsuthee/node2hash
https://github.com/unsuthee/node2hash

the same category to the nearby locations in the hash space. Pointwise learning80

formulates the hash function learning as classification problems and uses stan-

dard classification losses [9]. Some work models semantic hashing as a retrieval

problem and optimizes the ordering of the retrieved instances [10, 11]. Pairwise

loss functions become more common in recent years [12, 13, 14, 15, 16, 17, 18].

On the other hand, to learn an effective hash function, unsupervised learning85

approaches require sophisticated assumptions about the original feature space.

An early work of unsupervised hashing is locality sensitive hashing (LSH) [19].

Based on a random partition on the document space, the similar documents have

a higher chance to stay within the same partition, resulting in the similar binary

codes. The spectral method [20] is related to feature space partitioning because90

it computes a hyperplane according to the minimum-cut of the graph criteria.

The semantic hashing models based on the spectral method learns binary codes

from the affinity matrix. This matrix is a similarity matrix where each entry is a

distance between two documents. The choice of distance functions could lead to

different hashing models [21, 22, 23, 24, 25]. Notably, Spectral Hashing (SpH)95

[21] uses an RBF kernel to construct a dense affinity matrix while Self-Taught

hashing (STH) [22] uses a cosine distance to create a sparse affinity matrix.

However, these models only learn hash codes from implicit connections, which

are artificially constructed based on the distance metric. In contrast, node2hash

can leverage both implicit and explicit connections and consider higher-order100

connections which are often ignored by the spectral method.

Deep learning has recently been applied to semantic hashing on both image

and text data. A convolutional neural network is a popular deep architecture for

mapping a raw image [14, 11, 16, 17] or text sequence [26] to a Hamming space.

An autoencoder architecture and its variant are also proposed for text hashing105

[3, 4, 27]. The recent surveys [1, 2] contain more comprehensive literature

reviews on learning to hash. The prior work on semantic hashing does not

explicitly model the connections between documents which are widely observed

in many applications and text datasets.

5

2.2. Graph Embedding110

Learning hash codes from both content and connections is closely related to

the task of graph embedding [28]. There exists extensive research in learning

a representation that encodes structural information of the graphs. The first

line of work aims to map vertices in the graph to low-dimensional continuous

representations based on the local graph context. The context information is115

typically sampled according to the pre-defined graph traversal methods such as

a random walk [29], Breath-first search [30], Depth-first search, or a combination

of both [28]. Inspired by the Skip-gram model [6], vertices that appear within

the same local context have similar embedding. However, the key difference

from our model is that these models are transductive and cannot encode an120

unseen vertex.

An inductive formulation aims to learn a representation of an unseen vertex.

The general approach to inductive learning is to learn an embedding function

that maps both input vertex and graph context to a low-dimensional space.

In an autoencoder approach, an encoder function is designed for compressing125

a node’s neighborhood into a low-dimension vector, and a decoder function

is designed for reconstructing the input neighborhood. Various neighborhood

representations are proposed; for example, Wang et al. [31] represent the neigh-

borhood as an adjacency matrix while Cao et al. [32] formulates a neighborhood

context as point-wise mutual information (PMI) matrix. However, these men-130

tioned works do not utilize any content or attribute of a vertex.

The neighborhood aggregation approach generates an embedding for a ver-

tex by iteratively gathering information from immediate vertices in the graph to

improve the vertex’s representation. The main idea is to train the model with

many iterations so that the vertex’s attributes from a faraway vertex is eventu-135

ally collected. The choices of the aggregation functions and how to merge the

current vertex’s embedding with its neighborhood information leads to differ-

ent embedding models. For instance, GraphSage [33] uses mean, max-pooling,

and LSTM to aggregate neighborhood information and concatenate the output

with a vertex’s embedding. A graph convolutional networks (GCNs) [34] uses a140

6

weighted-sum as an aggregator and performs an element-wise mean to generate

an embedding for each vertex. The recent unsupervised learning models that

extend GCNs [8] employ a different variation of the reconstruction loss: firstly,

VGAE [35] calculates the reconstruction for a vertex’s attribution; Graphite [36]

computes the reconstruction for an adjacency matrix as a factorized Bernoulli145

distribution. However, these models are unable to generate an embedding for

an unseen vertex without knowing its connections in advance. Yang et al. [37]

propose a neural network architecture to a vertex embedding by jointly training

on a vertex classification and graph context prediction tasks. We mentioned

this work here because Planetoid-I is the only vertex embedding model that150

learns a vertex representation from the attribute directly without the need for

knowing a connection to the existing vertices. However, Planetoid-I is a semi-

supervised learning model which depends on labeled data, but node2hash is an

unsupervised learning model.

3. Methodology155

3.1. Problem Description

This section describes a document similarity search problem. We use graph

terminology to describe a text corpus and the relationship between documents.

The corpus is defined as an undirected graph G = (Dtrain, E) where Dtrain is a

set of documents in the training set, node d is a document represented as a bag-160

of-words vector (we use the TFIDF weighting scheme [38] in the experiments).

and E is a set of edges which stands for a relationship between two documents.

Nbr(d) is a neighbor of d which is a set of visited nodes traversed by a traversal

function T (m) starting at node d and visits up to m unique nodes.

We are interested in learning a hash function h(d; Θ) from G. The hash165

function parameterized by Θ that maps a bag-of-word vector d to a compact

binary vector b. Specifically, h : RV → ′,∞L where V is the vocabulary size

and L is the dimensionality of the semantic space. A user has query document

dq and would like to retrieve the K most similar documents from Dtrain. Since

7

Notation Description

Dtrain a set of training documents

d a bag-of-words document vector

Nbr(d) a set of neighbors of d

h(d; Θ) a hash function h : RV → RL

b a binary vector generated by h(d; Θ)

Θ parameters of function h

dq a query document

bq a query document as a binary vector

V vocabulary size

L dimension of the semantic space

s semantic vector of d

wi one-hot vector of ith word

aj one-hot vector of jth neighbor document

Table 1: Notations in node2hash model

query document dq could be an unseen document whose connection with the170

training documents is not observed, only the content of dq is used. The hash

function h(d; Θ) generates a binary code bq for the train and query documents.

Finally, we use the hamming distance which is the number of bit difference

between two binary codes to retrieve the Kth nearest documents. All notations

are summarized in Table 1.175

3.2. node2hash

In this section, we present node2hash, a deep generative model that lever-

ages both document content and graph connectivity. Inspired by textual context

utilized in learning a word representation such as word2vec where surround-

ing words define each word, we utilize graph context where its neighbors in the180

graph can define each document. Specifically, we assume there exists a low-

dimensional semantic representation s ∈ RL underlying each document that

8

selects its neighbors. Meanwhile, this semantic representation may also deter-

mine the choice of the words observed in the given document. In other words,

each word wi in the document and the ID of its neighbor document aj are as-185

sumed to be governed by the shared semantic vector s. Here wi ∈ {0, 1}V is the

one-hot vector representation of the ith word of the document where V is the vo-

cabulary size. Similarly, aj ∈ {0, 1}N is the one-hot vector representation of the

jth neighbor of the document where N is the total number of documents in the

training corpus. The generative process of the document and its neighborhood190

can be described as follows:

• For each document in the corpus, draw a latent semantic vector s from

the standard Gaussian distribution P (s) = N (0,diag(1))

– For each word in the document,

∗ Draw the ith word wi from P (wi|s)195

– For each neighbor of the document,

∗ Draw the ID of the jth neighbor document, aj , from neighbor

distribution P (aj |s)

The generative process couples document content and neighborhood through

a shared semantic vector s which can be viewed as capturing the topics of the200

documents (unlike traditional topic models, the semantic vector is not nor-

malized). In the existing literature, the topics are typically learned from co-

occurrence of the words in the document. Here we also attempt to learn them

from the co-occurrence of the documents (i.e., neighbors) in the graph context.

The document content and neighborhood information can reinforce each other205

to learn a better semantic vector/topics jointly. We set the prior distribution

to be the standard Gaussian distribution, which essentially assumes that all

dimensions of a semantic vector are uncorrelated, centered at zero with a stan-

dard deviation of one. This prior distribution would simplify the derivation of

the posterior distribution. Moreover, it encourages the bits in the hash code210

9

are uncorrelated so that the next bit cannot be predicted based on the previous

bits, which is a desirable property in semantic hashing [21].

3.2.1. Word Generation Distribution P (wi|s)

Inspired by the Skip-gram model in word2vec [6], we model the word gener-

ation probability P (wi|s) as follows

P (wi|s) =
exp(uTi s+ bi)∑V
j=1 exp(uTj s+ bj)

(1)

where ui is the word embedding of the ith word wi and bj is a bias term

that represents the word importance. In word2vec, similar word vectors are

assigned to those words that are more likely to appear in the same context. The

probability of word wi given its context is proportional to the similarity between

the word embedding ui and its context vector. In our case, the semantic vector s

can be viewed as the context. Eqn.(1) defines a discrete probability distribution

that couples the semantic vector s with the word embedding by encouraging s

to stay closer to the observed words in the document. The Softmax function

would force the distribution to be sparse [20]. This choice of normalization

is appropriate for document modeling because there is only a small portion of

words in the vocabulary that are seen in a given document. The probability mass

should concentrate more on these observed words. It is worth noting that more

complex function can be used to model P (wi|s) in node2hash, while we choose

Eqn.(1) in the experiments for its simplicity and effectiveness demonstrated in

word2vec. By assuming the words in a document being independent with each

other, the conditional probability of the document given its semantic vector can

be factored as:

P (d|s) =

M∏
i=1

P (wi|s) (2)

where M is the number of words in the document d.

3.2.2. Neighborhood Generation Distribution P (aj |s)215

A relationship between documents can help infer the semantics of the docu-

ments. For example, a research paper that cites another publication may imply

10

the semantic relatedness between these two documents. It is reasonable to as-

sume that the semantic vectors of the related documents should be closer than

those of unrelated ones. It has been shown that the node co-occurrence sampled

by random walk behaves similarly with the word co-occurrence [29]. Hence, sim-

ilar to the word generation probability in Eqn.(1), the conditional probability

of a neighbor document ai given the semantic vector s of the target document

can be defined as:

P (ai|s) =
exp(qTi s+ ci)∑N
j=1 exp(qTj s+ cj)

(3)

where qi can be viewed as the neighbor embedding vector of ai. N is the total

number of documents in the training data. Again, the Softmax function forces

P (aj |s) to be sparse, which is desirable since the number of neighbors is often

much smaller than the total number of nodes in the graph. It is worth nothing

that calculating Eqn.1 and 3 could be computational expensive. There are some220

works that employ noise-contrastive estimation to sample negative instances [39]

or approximate the softmax function [40] that we will explore this direction in

the future work.

Based on the conditional independence assumption of neighbors, the proba-

bility of all the neighbor documents Nbr(d) given the semantic vector s of the225

target document can be factorized as:

P (Nbr(d)|s) =

K∏
i=1

P (ai|s) (4)

where Nbr(d) = {a1,a2, · · · ,aK} is a set of one-hot encoded vectors for K

neighbors.

The proposed model requires neighbor documents for learning a useful binary

code. Given the fact that a set of documents can be viewed as a graph, each230

node is a document, and each edge is a relationship. Given a pivot document

d, any node that directly connects to d is an intermediate neighbor which is

one hop away from d. In addition, a neighbor document could be a node that

is multiple hops away from d. Hence, we define a set of neighbor documents as

11

any document that is only a few hops away d. However, this set could be large235

for a dense graph.

Therefore, we need a good neighborhood sampling method to sample nearby

documents so that the model can capture both local and global structures of the

network. The local structure refers to the interconnection between documents.

It assumes that the documents that belong to the same community should have240

similar embeddings. The global structure concerns the structural role of the

document in the network [28]. For example, a highly cited research paper has

many connections which could be viewed as a hub. An interdisciplinary research

paper bridges two groups of research papers. These roles of documents such

as a hub or bridge should be considered when learning a document vector. In245

particular, the documents that are far apart but have similar roles in the network

usually have similar embeddings. Without this knowledge, these documents

could have different embeddings.

There are three common sampling methods used in graph embedding: Depth-

first Sampling (DFS) [28], Breadth-first Sampling (BFS) [28, 30], and Random250

walk [32]. BFS explores its intermediate documents first as it captures a global

structure of the graph while DFS tends to aggressively explore faraway docu-

ments to capture a local structure of the graph [28]. The Random walk sampling

attempts to balance between DFS and BFS samplings. Section 5.4 investigates

different types of sampling methods in detail. Due to the neighbor sampling,255

node2hash can go beyond the immediate neighbors and one-hop connections

about directed linked entities. It can utilize more global information, such as

multiple-step paths and K-degree neighbors of a given vertex.

3.3. Parameter Estimation and Inference

In this section, we present the parameter estimation and inference of node2hash.260

We perform the maximum likelihood estimation on the following joint likelihood

of document d and its neighbors Nbr(d).

12

logP (d,Nbr(d)) = log

∫
s

P (d|s)P (Nbr(d)|s)P (s)ds (5)

However, computing Eqn.(5) is intractable due to the integration over all pos-

sible semantic vectors. Based on the variational principle [8, 7], we introduce a

proxy distribution Q(s|d) and apply the Jensen’s inequality [20] to obtain the265

variational lowerbound of Eqn.(5):

logP (d,Nbr(d)) ≥
∫
s

Q(s|d) log

(
P (d|s)P (Nbr(d)|s)P (s)

Q(s|d)

)
ds

=

∫
s

Q(s|d) logP (d|s)ds+

∫
s

Q(s|d) logP (Nbr(d)|s)ds (6)

−
∫
s

Q(s|d) log
Q(s|d)

P (s)
ds (7)

= EQ(s|d)
[

logP (d|s)
]

+ EQ(s|d)
[

logP (Nbr(d)|s)
]

−DKL(Q(s|d)||P (s)) (8)

Eqn.(8) is the objective function that has three competitive terms: 1) the expec-

tation of negative document reconstruction error; 2) the expectation of negative

neighborhood reconstruction error; 3) the Kullback-Leibler (KL) divergence [20]

from proxy distribution Q to prior distribution P . The first two terms measure270

how well the model reconstructs the input document and neighborhood respec-

tively from the learned semantic vector s. The last term can be seen as a

regularizer that penalizes the model when the proxy distribution deviates too

far away from the prior distribution.

Similar to variational autoencoder [8], we further define the proxy distribu-

tion Q(s|d) as the multivariate normal distribution with a diagonal covariance

matrix as below:

Q(s|d) = N (s; fµ(d), fσ(d)) (9)

where fµ(d) and fσ(d) are nonlinear functions that compute distribution pa-275

rameters µ and σ from the input document d. They are deep neural networks

13

in node2hash and hence highly flexible function approximators. They are ca-

pable of learning complex nonlinear distributed representations of the original

documents. Because both Q and P are Gaussian distributions, we can obtain

the closed form of the KL term in Eqn.(8). To avoid a clutter of notations,280

firstly we define µ and σ as the mean and standard deviation of Q computed

by fµ(d) and fσ(d) respectively. The subscript l denotes the lth dimension of

the vector. The analytic form for the KL divergence is given by:

DKL(Q(s|d)||P (s)) = EQ(s|d)
[

log
Q(s|d)

P (s)

]
= EQ(s|d)

[
logN (µ,diag(σ2))− logN (0,diag(1))

]
= EQ(s|d)

[L∑
l=1

(
logN (µl, σ

2
l)− logN (0, 1)

)]
= −1

2

L∑
l=1

(
1 + log σ2

l − µ2
l − σ2

l

)
(10)

For the first expectation term in Eqn. (8), we cannot derive an analytic

form. Similar to VAE [8], we can use the Monte Carlo sampling method [20] as285

follows:

EQ(s|d)
[

logP (d|s)
]
≈ 1

T

T∑
i=1

logP (d|s(i)) (11)

where s(i) ∼ Q(s|d) and T is the total number of samples. This approxima-

tion requires us to draw s from Q(s|d) which makes it difficult to apply the

backpropagation due to a stochastic or sampling layers in Eqn.(11). The effec-

tive strategy for removing a stochastic layer is to use a reparameterization trick290

[8, 7], which converts Eqn.(11) into a deterministic function. Thus, s(i) can be

computed as follows:

s(i) = e(i) � fσ(d) + fµ(d) = fenc(d, e
(i)) (12)

14

where � is an element-wise multiplication. e(i) is the ith sample from the

standard normal distribution: e(i) ∼ N (0,diag(1)). This method scales and

shifts e(i) by fσ(d) and fµ(d) so that it can deterministically create sample s(i)295

from e(i). Hence, this is a deterministic function that generates a sample of

semantic vector s from d and e(i).

With s from Eqn.(12), the objective function becomes:

L(d,Nbr(d), {e1, e2, · · · , eM}; Θ)

=
1

T

T∑
i=1

(
logP (d|fenc(d, e(i))) + logP (Nbr(d)|fenc(d, e(i)))

−DKL(Q(fenc(d, e
(i))|d)||P (fenc(d, e

(i)))

)
(13)

=
1

T

T∑
i=1

(
logP (d|fenc(d, e(i))) + logP (Nbr(d)|fenc(d, e(i)))

+
1

2

L∑
l=1

(
1 + log σ2

l − µ2
l − σ2

l

))
(14)

This objective function can be optimized via backpropagation [20]. Typically,

one sample (T = 1) is sufficient to learn a good representation [8].300

Based on Eqn.(8), we can interpret node2hash as an encoder-decoder ar-

chitecture with two types of discrete outputs. A feedforward neural network

encoder Q(s|d) compresses document representation into a continuous seman-

tic vector, i.e., d → s; a softmax decoder P (wi|s) reconstructs the docu-

ment by independently generating the words s → {wi}Mi=1; another decoder305

P (aj |s) independently generates the IDs of the neighbors of the given docu-

ment s→ {aj}Kj=1. Figure 1 illustrates the architecture of node2hash.

15

W1

b1

W2

b2

W3

b3

W4

b4

x

+

u, b

q, c

Q(s|d)Encoder

, ,⋯ ,w1 w2 wV

, ,⋯ ,a1 a2 aN

Decoder P(w|s)

Decoder P(a|s)

e

Reparameterization

Document

d

μ

σ

Figure 1: Architecture of node2hash. The encoder Q(s|d) maps document d to the distri-

bution parameters µ,σ of Q(s|d). The reparameterization trick applies scaling and shifting

transformation on Gaussian noise e to obtain semantic vector s. There are 2 decoders: the

top decoder generates word distribution while the bottom decoder generates neighborhood

distribution of the input document d.

Encoder

Q(s|fµ(d), fσ(d)) :

t1 = ReLU(W 1d+ b1)

t2 = ReLU(W 2t1 + b2)

µ = W 3t2 + b3

logσ = W 4t2 + b4

s ∼ N (µ,diag(σ2))

Decoder

P (wi|s) :

gi = exp(uTi s+ bi)

P (wi|s) =
gi∑V
j=1 gj

P (d|s) =
M∏
i=1

P (wi|s)

Decoder

P (ai|s) :

ri = exp(qTi s+ ci)

P (ai|s) =
ri∑N
j=1 rj

P (Nbr(d)|s) =
K∏
i=1

P (ai|s)

3.4. Binarization

A non-deterministic encoder fenc is useful for learning the model’s parame-

ters because it injects noise that prevents the model from overfitting. However,310

during a deployment, it is more appropriate to have a fixed representation for

each document. Thus, instead of sampling semantic vector s from fenc, we take

the mean of the encoder which is E
[
fenc

]
= fµ(d) as the document representa-

tion.

16

The next step is to convert semantic vector s to binary code b. We follow315

the same binarization method from [21, 13]. First, we compute semantic vectors

for all train documents. We denote matrix S ∈ RN×L as semantic matrix

where the ith row is semantic vector si of di. We compute a threshold vector

t by computing the median for each column (dimension) of S. Finally, the

ith bit of b is set to one if the ith dimension of s is greater than ti else zero.320

This thresholding method follows the maximum entropy principle which yields

a balanced partition of the dataset [21].

3.5. Discussions

In addition, we could model Eqn.4 by adding a weight (importance) for each

neighbor document. First, we assume that a set of neighbor documents Nbr(d)325

is generated by both semantic vector s and input document d. Then, we define

the conditional probability, P (Nbr(d)|s,d) =
∏K
i=1 P (ai|s)P (ai|d). The log-

likelihood becomes logP (Nbr(d)|s,d) =
∑K
i=1 P (ai|d) · logP (ai|s). The term

P (ai|d) is a weight or importance of neighbor document ai to document d.

We could estimate this probability distribution by using a standard document330

distance such as a TFIDF vector with a cosine distance. By modeling the

importance of neighbor documents, the model could be more robust on the

dataset with implicit connections. We plan to explore this approach in the

future work.

4. Experimental Settings335

4.1. Experiment Design

To evaluate the generated binary codes, manually evaluating a large number

of retrieval results is time-consuming and expensive. We opt for using the

datasets whose document labels indicate the main theme of the document and

evaluate the semantic similarity between a query document and the K-nearest340

documents by comparing their labels. Following the same evaluation protocol

from [12, 13], for a single-label dataset, a retrieved document is relevant when

17

Dataset #Train #Test #Validation #Features #Classes #Edges Avg.Degree Connection

Cora 1,559 420 419 1,433 7 4,578 2.94 citations

Citeseer 1,983 335 335 3,703 6 4,560 2.30 citations

Pubmed 17,260 970 970 500 3 75,301 4.13 citations

Reddit 151,741 26,868 26,867 602 41 43,159,206 284.43 user community

DBLP 316,002 21,802 21,801 10,000 12 1,877,008 5.94 citations

NG20 9,551 3,151 3,150 13,300 20 191,020 20.0 implicit

AgNews 118,002 3,728 3,727 23,411 4 2,360,040 20.0 implicit

Table 2: Statistics of the datasets.

it has the same label as its query document. For a multi-label dataset, we

measure the number of similar labels between a query document and retrieved

documents as a relevant score. We use precision and normalized discounted345

accumulate gain (NDCG) at 100 [38] as evaluation metrics which are commonly

used in the prior work on semantic hashing [13].

4.2. Data Collections

We conduct the experiments on four citation networks and one user com-

munity network with explicit connections. The datasets are a directed graph350

because each publication only has a list of cited papers (references). We convert

the datasets to an undirected graph by adding a reverse edge from the cited

paper to the citing one. For the datasets without explicit connections, we ar-

tificially construct the connections for each node by using the cosine distance

between the two documents represented by a TFIDF vector and take the nearest355

20 nodes as an adjacent node. We tried to set a threshold value of cosine dis-

tance to obtain adjacent nodes, but the performance difference was negligible.

One can also try to dynamically construct connections according to the current

model, similar to the idea in [41], but it is not within the scope of this work.

Table 2 summarizes the statistics of all the data collections. The details of360

the datasets are as follows. 1) Cora3: this citation network contains machine

learning research papers classified into one of seven machine learning topics.

3https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgz

18

https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgz

2) Citeseer: a citation network provided by the Citeseer database and pre-

processed by LINQS4. 3) Pubmed5: a large-scale citation network consists of

research papers from the Pubmed database classified into one of three Diabetes365

types. 4) Reddit6: the online discussion forum collected and pre-processed by

Stanford Network Analysis Project (SNAP) which contains Reddit posts made

in September 2014. This large-scale network dataset represents a user commu-

nity whose node’s label is subreddit [33]. 5) DBLP[42]: a large-scale citation net-

work extracted from the DBLP database 7. There are 12 conference categories370

which are categorized by the Guide2Research database8. Each publication is

described by a TFIDF vector of its abstract. All the papers published before the

year 2015 were used as the training set. 6) 20Newsgroups (NG20): a popular

text classification dataset consisting of 18K forum posts on 20 topics. We use

the BYDATE version that splits training and test sets according to the posted375

dates 9. 7) AgNews: a collection of news articles 10 gathered from more than

2,000 news sources by ComeToMyHead, an academic news search engine. We

used the pre-processed version11 which selected the four largest categories and

used a TFIDF vector to represent title and descriptions. We split the original

test set equally into the validation and test tests.380

4.3. Baselines

We compared node2hash against the following five competitive baseline meth-

ods which have been extensively used for text hashing in the prior work.

• Locality Sensitive Hashing (LSH) [19] is a standard hashing baseline based

on a random projection. We used the implementation from NearPy12.385

4https://linqs-data.soe.ucsc.edu/public/lbc/citeseer.tgz
5https://linqs-data.soe.ucsc.edu/public/Pubmed-Diabetes.tgz
6http://snap.stanford.edu/graphsage/#datasets
7“DBLP-Citation-Network V10” can be downloaded at https://aminer.org/citation
8http://www.guide2research.com/topconf/
9http://scikit-learn.org/stable/datasets/twenty_newsgroups.html

10http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
11https://drive.google.com/open?id=0Bz8a_Dbh9QhbQ2Vic1kxMmZZQ1k
12http://pixelogik.github.io/NearPy

19

https://linqs-data.soe.ucsc.edu/public/lbc/citeseer.tgz
https://linqs-data.soe.ucsc.edu/public/Pubmed-Diabetes.tgz
http://snap.stanford.edu/graphsage/#datasets
https://aminer.org/citation
http://www.guide2research.com/topconf/
http://scikit-learn.org/stable/datasets/twenty_newsgroups.html
http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
https://drive.google.com/open?id=0Bz8a_Dbh9QhbQ2Vic1kxMmZZQ1k
http://pixelogik.github.io/NearPy

• Spectral Hashing (SpH) [21] is a competitive hashing method based on

graph partition. The implementation13 provided by the author was used.

Since the original code did not work on large-scale datasets, we used the

Python version of SpH14 on the Reddit and DBLP datasets.

• Self-taught Hashing (STH) [22] is based on spectral graph. The original390

implementation15 used the distance between documents as a document

relationship. We used a grid search to find the best number of neighbors

ranging from 5 to 50 documents with a step size of 5.

• STH+Graph is the variant of the above STH model by considering explicit

connections between documents. Specifically, we use an explicit relation-395

ship such as citations instead of the nearest documents to construct the

affinity matrix where each entry is the cosine distance. We used the same

grid search strategy described in the STH model to select the best number

of neighbors.

• Variational Deep Semantic Hashing (VDSH) [4] is the state-of-the-art deep400

text hashing model based on variational autoencoder. We use the imple-

mentation16 provided by the authors. The KL annealing rate is 1/5000

per mini-batch which contains 100 document samples.

• node2hash is our proposed model. We use Adam Optimizer with a learn-

ing rate of 0.001 and the default momentum. We use the KL annealing405

technique [43, 44] with the annealing rating of 1/5000 per mini-batch to

prevent a component collapsing. The mini-batch size is 100 samples. We

choose the optimal neighborhood sampling strategy for different datasets.

13http://www.cs.huji.ac.il/~yweiss/SpectralHashing/sh.zip
14https://github.com/wanji/sh
15http://www.dcs.bbk.ac.uk/~dell/publications/dellzhang_sigir2010/sth_v1.zip
16https://github.com/unsuthee/VariationalDeepSemanticHashing

20

http://www.cs.huji.ac.il/~yweiss/SpectralHashing/sh.zip
https://github.com/wanji/sh
http://www.dcs.bbk.ac.uk/~dell/publications/dellzhang_sigir2010/sth_v1.zip
https://github.com/unsuthee/VariationalDeepSemanticHashing

Prec@100 NDCG@100

8 bits 16 bits 32 bits 64 bits 128 bits 8 bits 16 bits 32 bits 64 bits 128 bits

Cora

LSH [19] 0.1909 0.1973 0.2122 0.2232 0.2500 0.5278 0.5357 0.5635 0.5872 0.6217

SpH [21] 0.2964 0.2846 0.2617 0.2459 0.2363 0.6371 0.6545 0.6430 0.6293 0.6278

STH [22] 0.3945 0.3724 0.3351 0.3001 0.2719 0.6775 0.6998 0.7037 0.6946 0.6825

STH+Graph 0.3219 0.3382 0.3461 0.3986 0.4015 0.6039 0.6361 0.6485 0.7034 0.7101

VDSH [4] 0.3329 0.3203 0.3144 0.3229 0.3864 0.6686 0.6824 0.6837 0.6950 0.7325

node2hash 0.4203† 0.4704† 0.4990† 0.5005† 0.5247† 0.6794 0.7502† 0.7728† 0.7763† 0.7895†

Citeseer

LSH [19] 0.1949 0.1977 0.2011 0.2215 0.2467 0.5400 0.5505 0.5601 0.5912 0.6322

SpH [21] 0.3640 0.3219 0.2987 0.2776 0.2677 0.6923 0.6835 0.6756 0.6707 0.6751

STH [22] 0.4441 0.4200 0.3710 0.3355 0.3026 0.7281 0.7329 0.7293 0.7309 0.7296

STH+Graph 0.3050 0.3244 0.3583 0.3730 0.3940 0.6190 0.6420 0.6743 0.7030 0.7290

VDSH [4] 0.4123 0.3673 0.3529 0.4150 0.4868 0.7285 0.7194 0.7136 0.7516 0.7729

node2hash 0.4481 0.4322 0.4570† 0.5020† 0.5420† 0.7414 0.7503† 0.7730† 0.7930† 0.8080†

Pubmed

LSH [19] 0.3973 0.4124 0.4874 0.5149 0.5870 0.7171 0.7330 0.7844 0.8089 0.8435

SpH [21] 0.4734 0.4978 0.5164 0.5289 0.5192 0.7555 0.7776 0.8008 0.8125 0.8166

STH [22] 0.5736 0.6132 0.6205 0.6274 0.6274 0.8061 0.8246 0.8346 0.8377 0.8380

STH+Graph 0.5514 0.6686 0.6863 0.7090 0.7043 0.7696 0.8427 0.8511 0.8595 0.8529

VDSH [4] 0.6335 0.6520 0.6893 0.7073 0.7182 0.8381 0.8553 0.8724 0.8838 0.8874

node2hash 0.7057† 0.7362† 0.7484† 0.7676† 0.7650† 0.8600† 0.8810† 0.8892 0.8978 0.8992

Reddit

LSH [19] 0.0600 0.0620 0.0740 0.0860 0.1090 0.2800 0.2780 0.3040 0.3190 0.3570

SpH [21] 0.0388 0.0429 0.0437 0.0479 0.0543 0.2253 0.2402 0.2420 0.2486 0.3134

STH [22] 0.0663 0.0761 0.0990 0.1286 0.1435 0.2708 0.2855 0.3107 0.3513 0.3671

STH+Graph 0.1956 0.3376 0.4045 0.4449 0.4634 0.3821 0.4622 0.5030 0.5215 0.5337

VDSH [4] 0.1550 0.1887 0.2080 0.2228 0.2344 0.4006 0.4475 0.4705 0.4832 0.5001

node2hash 0.3284† 0.4177† 0.4559† 0.4744† 0.4779 0.5475† 0.6257† 0.6594† 0.6704† 0.6740†

DBLP

LSH [19] 0.2990 0.2970 0.3000 0.3190 0.3440 0.5810 0.5830 0.5890 0.6080 0.6370

SpH [21] 0.5139 0.5660 0.5856 0.5903 0.5752 0.6991 0.7531 0.7681 0.7773 0.7764

STH [22] 0.5396 0.6015 0.6486 0.6698 0.6701 0.7259 0.7676 0.7940 0.8052 0.8060

STH+Graph 0.4747 0.5957 0.6504 0.6626 0.6767 0.6820 0.7597 0.7815 0.7904 0.7982

VDSH [4] 0.5687 0.6100 0.6322 0.6693 0.6867 0.7453 0.7798 0.7963 0.8153 0.8243

node2hash 0.6432† 0.6834† 0.7118† 0.7222† 0.7269† 0.7859† 0.8137† 0.8307† 0.8366† 0.8408

Table 3: Precision and NDCG of the top 100 retrieved documents with different numbers of

hashing bits on datasets with explicit connections. The bold font denotes the best result at

that number of bits. The superscript † denotes the improvement over the best result of the

baselines is statistically significant based on the paired t-test (p-value < 0.05).

21

Prec@100 NDCG@100

8 bits 16 bits 32 bits 64 bits 128 bits 8 bits 16 bits 32 bits 64 bits 128 bits

20Newsgroups

LSH [19] 0.0535 0.0554 0.0581 0.0643 0.0738 0.3072 0.3156 0.3246 0.3462 0.3766

SpH [21] 0.0548 0.0567 0.0896 0.1286 0.1218 0.3066 0.3149 0.3667 0.4435 0.4512

STH [22] 0.2531 0.3360 0.3885 0.4070 0.3743 0.5238 0.6044 0.6511 0.6782 0.6868

VDSH [4] 0.2841 0.3166 0.3389 0.3262 0.3943 0.5868 0.6341 0.6581 0.6461 0.6800

node2hash 0.3335† 0.4422† 0.4804† 0.4884† 0.5003† 0.6051† 0.6858† 0.7145† 0.7215† 0.7225†

AgNews

LSH [19] 0.2579 0.2611 0.2725 0.2940 0.3315 0.6133 0.6197 0.6376 0.6680 0.7181

SpH [21] 0.3687 0.4082 0.4359 0.4671 0.5011 0.6772 0.6909 0.7200 0.7658 0.7983

STH [22] 0.5065 0.6515 0.7197 0.7769 0.8039 0.7400 0.8233 0.8648 0.8948 0.9080

VDSH [4] 0.6637 0.7209 0.7633 0.7869 0.8083 0.8347 0.8759 0.9010 0.9121 0.9212

node2hash 0.7177† 0.7941† 0.8210† 0.8335† 0.8371† 0.8618† 0.9008† 0.9166 0.9216 0.9236

Table 4: Precision and NDCG of the top 100 retrieved documents with different numbers of

hashing bits on the datasets whose connections are constructed by the cosine similarity on the

TFIDF vectors. The bold font denotes the best result at that number of bits. The superscript

† denotes the improvement over the best result of the baselines is statistically significant based

on the paired t-test (p-value < 0.05).

5. Experimental Results

5.1. Datasets with Explicit Connections410

In this experiment, we evaluate our model on the five datasets with explicit

connections. Table 3 reports the experimental results. In general, node2hash

achieves the best performance across all the datasets and numbers of bits. This

shows that incorporating both document content and connections are useful for

learning an effective binary code. On the other hand, content information is415

also useful to learn the semantic meaning of the documents. This is evidenced

by the performance of VDSH, which is slightly better than STH+Graph. It

means combining both contents and connections is not trivial and the careless

combination may degrade the over performance. This shows that our model can

effectively leverage this information, resulting in superior performance.420

The performance of node2hash is more significant when the number of bits is

less than 128, and the gap becomes smaller on 128 bits. One possible reason is

that node2hash may experience the so-called “component collapsing problem”

[44] that is also present in variational autoencoder when the number of latent

22

8 16 32 64 128
Number of bits

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ec
@
10

0

20Newsgroups

8 16 32 64 128
Number of bits

0.0

0.2

0.4

0.6

0.8

Pr
ec
@
10

0

AgNews

tfidf
BM25
LM

Figure 2: Precision at 100 for different distance functions on 20Newsgroups and AgNews

evaluated on node2hash. For a fair comparison, we use all immediate nodes as a neighbor

document.

dimensions is small. The KL term starts to incur more loss which often forces the425

model to stop learning or “turn off” some of the latent dimensions to minimize

the total loss. We notice that for most datasets, node2hash’s performance peaks

around 32 or 64 bits and there is no further improvement when increasing the

number of bits. This implies that node2hash might not use all the dimensions

for the large binary codes.430

5.2. Datasets with Implicit Connections

The experiment in this section investigates if node2hash can leverage arti-

ficially constructed relationships. We compare our model against four unsu-

pervised semantic hashing models. We note that STH and STH+Graph are

equivalent when the cosine distance constructs document relationships.435

Table 4 shows that node2hash has the best performance on both implicit

connection datasets in both evaluations metrics. Overall, the results suggest

that node2hash can leverage distance information as an additional data source.

The performance is more prominent when the number of bits is low. It is possible

that when the embedding space is limited, the model needs to be very careful440

to encode only relevant information. By adding the distance information as the

relationship signals, the model can focus more on the common words among the

documents within the same proximity in the bag-of-words vector space.

23

We found that even the distance relationship is beneficial for a small dataset

such as 20Newsgroups. The performance of VDSH on this dataset is not as445

good as STH. One explanation is that STH model learns a binary code from

the similarity matrix generated by the cosine distance. Thus, STH effectively

utilizes the implicit connections while VDSH does not. However, we notice that

the distance information seems to be less relevant as the dataset is larger such

as the Ag News corpus.450

5.3. Effect of Distance Functions on Implicit Connections

In this section, we examine the effect of the distance functions used for con-

structing document relationships for the datasets with implicit connections. In

particular, we would like to know if our model is sensitive to particular distance

functions. We use the well-known distance functions such as the cosine simi-455

larity on TFIDF and BM25 vectors, and Language model (LM) with Dirichlet

smoothing [38] to generate the edges between the documents on 20Newsgroups

and AgNews datasets. For BM25, we set k = 1.2 and b = 0.75. For LM, we set

µ to 2000. We use a standard TFIDF17 with a sublinear TF scaling [38]. We

limit the number of edges per documents to 20. The results in Figure 2 show460

that all three distance functions have similar performances on both small and

large datasets. The results demonstrate that node2hash is not sensitive to the

choice of distance functions.

5.4. Effect of Neighborhood Sampling Methods

In this experiment, we study how neighborhood sampling methods affect the465

performance of node2hash. Specifically, we evaluate node2hash on four datasets

including Cora, Citeseer, Pubmed, and 20Newsgroups and employ Depth-first

Sampling (DFS), Breadth-first Sampling (BFS), and Random walk to generate

the neighborhood of the training documents. We vary the neighborhood size

from 1 to 100 and report the average precision at 100 in Figure 3.470

17http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.

text.TfidfTransformer.html

24

http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfTransformer.html
http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfTransformer.html

0 50 100
Number of neighbors

0.35

0.40

0.45

0.50

Pr
ec

@
10

0

Cora

0 50 100
Number of neighbors

0.40

0.45

Pr
ec

@
10

0

Citeseer

DFS
BFS
Rnd

0 50 100
Number of neighbors

0.70

0.72

0.74

Pr
ec

@
10

0

Pubmed

0 50 100
Number of neighbors

0.35

0.40

Pr
ec

@
10

0

20Newsgroups

Figure 3: Precision at 100 for different neighborhood sampling methods on Cora, Citeseer,

Pubmed, and 20Newsgroups with the 32-bit hash code generated by node2hash.

When the number of the neighborhood is small, DFS performs slightly bet-

ter than BFS and Random Walk on the datasets with explicit connections. The

reason might lie in the fact that DFS can reach more nodes that are multiple

hops away from the source node. As a result, it can capture the more global

structure of the network than BFS and Random Walk especially when the neigh-475

borhood size is small. However, DFS’s performance degrades quickly when it

moves too far away from the source node. The results in Figure 3 consistently

show that the DFS method is not effective when the neighborhood size is too

large.

On the other hand, BFS gives a higher priority to the nearby nodes. When480

the neighborhood size is small, it cannot capture the global structure because

it has to sample the next nodes first. However, when the neighborhood size is

large enough, BFS can effectively approximate both local and global structures

of the graph. Although BFS performs exceptionally well on 20Newsgroups, its

main drawback is that it requires more neighbor documents to be effective which485

may cause more memory consumption during training.

The Random Walk method is a compromise between DFS and BFS. Its per-

25

1 5 10 15 20
Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

@
10

0

Cora

1 5 10 15 20
Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

@
10

0

Citeseer

1 5 10 15 20
Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

@
10

0

Pubmed

1 5 10 15 20
Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

@
10

0

Dblp

8 bits
16 bits
32 bits
64 bits
128 bits

1 5 10 15 20
Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

@
10

0

ng20

1 5 10 15 20
Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

@
10

0

agnews

Figure 4: Precision at 100 for different sampling sizes used by Monte Carlo Sampling Method

in Eqn.(11) on Cora, Citeseer, Pubmed, and Dblp, 20Newsgroups, and Agnews with the hash

code generated by node2hash.

formance is more stable than DFS when the neighborhood size is large while

it has a similar performance to BFS in the small neighborhood. The main ad-

vantage of this method is its efficiency. There is no need to maintain additional490

data structures such as queues in BFS or stacks in DFS during the training.

5.5. Effect of Monte Carlo Sampling Size

In this experiment, we investigate the effect of Monte Carlo sampling method

on the performance of node2hash. In particular, we vary the number of samples

T from 1, 5, 10, 15, and 20 when computing the reconstruction error terms as495

described in Eqn. (11). We report the precision at 100 in Fig. 4. Overall,

there are no performance differences among different sampling sizes. However,

we observe a performance instability for the 8-bit hash code on Pubmed and

Cora datasets. One possible explanation is that the number of bits and the size

of the test set of Cora and Pubmed datasets is small. Hence, the evaluation500

result on these small test set may have a high variance.

26

8 16 32 64 128
Number of bits

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

@
10

0

Cora

8 16 32 64 128
Number of bits

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

@
10

0

Citeseer

8 16 32 64 128
Number of bits

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

@
10

0

Pubmed

8 16 32 64 128
Number of bits

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

@
10

0

Dblp

Binary vector
Semantic vector

8 16 32 64 128
Number of bits

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

@
10

0

ng20

8 16 32 64 128
Number of bits

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

@
10

0

agnews

Figure 5: Precision at 100 of binary and semantic vectors generated by node2hash and evalu-

ated on Cora, Citeseer, Pubmed, and Dblp, 20Newsgroups, and Agnews for a various number

of dimensions (hashing bits).

5.6. Effect of Binarization

In this experiment, we investigate the effect of binarization on the perfor-

mance of node2hash. We perform a nearest neighbor search on semantic and

binary vectors. We use a cosine distance as a distance metric in a continu-505

ous semantic space and use a hamming distance in a binary vector. Fig. 5

shows the precision at 100 with a different number of hashing bits on various

datasets. From these experimental results, we have the following observations.

First, there is an information loss in binarizing a semantic vector to a binary

vector. We have found that a semantic vector has a higher precision at 100 than510

a binary vector. The simple binarization method used in our work is unable to

preserve all semantic information in a semantic vector. We may need to employ

a better binarization method to improve precision. Second, the performance

gap between binary and semantic vectors decreases as we increase the number

of hashing bits. One explanation for this result is that as the number of bits515

increases, a binary vector can preserve more information from a semantic vector.

27

8 16 32 64 128
Number of bits

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

@
10

0

Cora

8 16 32 64 128
Number of bits

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

@
10

0

Citeseer

8 16 32 64 128
Number of bits

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

@
10

0

Pubmed

8 16 32 64 128
Number of bits

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

@
10

0

Dblp

Text-Only
Connection-Only
Both

8 16 32 64 128
Number of bits

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

@
10

0

ng20

8 16 32 64 128
Number of bits

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

@
10

0

agnews

Figure 6: Precision at 100 of all components in node2hash on Cora, Citeseer, Pubmed, and

Dblp, 20Newsgroups, and Agnews for various the hash code.

Finally, the number of dimensions of the semantic vector does not significantly

affect the performance of the model. One reason is that each dimension of the

semantic vector can preserve more information than a single bit.

5.7. Effect of Text and Connection Information520

This experiment studies the effect of text and connection information. We

compare the performance of 3 variants of node2hash: (1) text-only (2) connec-

tion only, and (3) node2hash. Specifically, the text-only model has only the

document decoder, while the connection-only model has only the neighborhood

decoder. Fig. 6 shows the precision at 100 for all models. We found that525

for the datasets with explicit connections such as Cora, Citeseer, Pubmed, and

Dblp, the connection-only model has better precision at 100 than the text-only

model. On the other hand, the connection-only model has less precision than

the text-only model on the datasets with implicit connections.

An explicit connection such as a citation has less noise than an implicit con-530

nection because each connection is manually annotated. Since the connection-

28

(a) STH+Graph (b) VDSH (c) node2hash

Figure 7: Visualization of the 32-bit binary codes by STH+Graph, VDSH, and node2hash

on the Pubmed dataset using t-SNE. Each point represents a document and different colors

denote different categories based on the ground truth.

Doc ID Connections Doc ID Connections

D800 D4798, D2766 D5064 D9333, D16550, D16756

Table 5: The document IDs of two sample documents and their neighbors in the Pubmed

dataset

only model learns a document representation from more reliable information

(explicit connection), it should have a better performance than the text-only

model. However, an artificially created connection used in ng20 and agnews

datasets introduces noise to the model. As a result, the connection-only model535

could learn from wrong information because it strongly assumes that all nearby

documents based on an implicit connection have the same semantic meaning.

We found that text information is more reliable when the input dataset has

no explicit connections. For agnews dataset, the text-only model has much bet-

ter performance than the connection-only model. However, for ng20 dataset,540

the text-only model has better performance on 32, 64, and 128 bits hash code.

Since agnews is a much larger dataset, its text information is more reliable than

ng20 dataset. The text-only model produces a consistent performance across

on hashing bits. Finally, node2hash has the best performances because it cou-

ples both text and connections via a generative model. These empirical results545

demonstrate that text and connection information complement each other.

29

5.8. Qualitative Analysis

In this experiment, we visualize the binary codes to see if the semantics of

the documents are preserved. In particular, we use t-SNE [45] to project the 32-

bit binary codes to a two-dimensional space. We assign a unique color to each550

category and color each point according to the ground truth labeling. Figure

7 illustrates the visualization of the binary codes generated by STH+Graph,

VDSH, and node2hash respectively on the Pubmed dataset.

We can see from the results that node2hash and STH+Graph generally gen-

erate more well-separated clusters than VDSH. The embedding space generated555

by VDSH has more green regions mix with the red regions compared to the

other two models. This is because VDSH tends to generate binary codes that

sitting insides a Gaussian sphere due to its prior distribution [4]. This shows

that the connectivity information guides the two graph-aware models to map

the related documents to the nearby location.560

Figure 7(a) shows that STH+Graph generates many small clusters and its

binary codes are not as spread out as the binary codes generated by VDSH

and node2hash. This result shows that STH+Graph does not effectively utilize

the embedding space because the binary codes tend to concentrate in a small

cluster. This may cause problems in practice because multiple documents may565

be mapped to the same hash code. However, both VDSH and node2hash can

interpolate between multiple observed data points because their binary codes

are more stretched.

We sampled two documents and their immediate neighbors from Pubmed

dataset to see where these documents are mapped in the semantic space. Table570

5 contains the IDs of the sampled documents and their neighbors. Figure 7(c)

shows that node2hash maps sampled documents and their neighbors to the

nearby locations while VDSH and STH+Graph are unable to map the neighbor

documents to the same location. STH+Graph has a slightly better mapping

than VDSH because it utilizes connectivity information. VDSH only relies on575

the content information which may not be sufficient to learn a useful embedding

space.

30

6. Conclusions and Future Work

In this paper, we proposed node2hash, a deep semantic text hashing model

by seamlessly integrating both document content and connections, which allows580

these two sources of information to reinforce each other. node2hash enjoys both

advantages of deep learning and probabilistic models. There exists an under-

lying generative process in node2hash, which yields a natural way to encode

unseen documents that have no connection with any existing training docu-

ments. The deep neural networks are embedded in the model so that nonlinear585

complex hash functions can be learned. The significant performance improve-

ments over the competitive baselines suggest that incorporating both document

content and graph context is an effective strategy to learn binary codes. We

also demonstrate that node2hash is applicable to various datasets with the con-

nections either explicitly observed or artificially constructed.590

This work is the first step towards a promising research direction. In the

future work, we plan to explore different deep learning architectures such as

Generative Adversarial Networks [20] for utilizing the graph context. We will

extend the proposed model to the supervised setting where labeled data may

be available. Last but not the least, we would like to develop deep generative595

models that can directly learn hash functions without the need of binarization.

References

[1] J. Wang, T. Zhang, J. Song, N. Sebe, H. T. Shen, A survey on learning to

hash, PAMI.

[2] J. Wang, W. Liu, S. Kumar, S.-F. Chang, Learning to hash for indexing600

big data - a survey, Proceedings of the IEEE 104 (1) (2016) 34–57.

[3] R. Salakhutdinov, G. Hinton, Semantic hashing, International Journal of

Approximate Reasoning 50 (7) (2009) 969–978.

[4] S. Chaidaroon, Y. Fang, Variational deep semantic hashing for text docu-

ments, in: SIGIR, 2017.605

31

[5] Z. Qiu, Y. Pan, T. Yao, T. Mei, Deep semantic hashing with generative

adversarial networks, in: Proceedings of the 40th International ACM SIGIR

Conference on Research and Development in Information Retrieval, ACM,

2017, pp. 225–234.

[6] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, J. Dean, Distributed rep-610

resentations of words and phrases and their compositionality, in: Advances

in neural information processing systems, 2013, pp. 3111–3119.

[7] D. J. Rezende, S. Mohamed, D. Wierstra, Stochastic backpropagation

and approximate inference in deep generative models, arXiv preprint

arXiv:1401.4082.615

[8] D. Kingma, M. Welling, Auto-encoding variational bayes, ICLR.

[9] F. Shen, C. Shen, W. Liu, H. T. Shen, Supervised discrete hashing.

[10] J. Wang, W. Liu, A. X. Sun, Y.-G. Jiang, Learning hash codes with listwise

supervision, in: ICCV, 2013, pp. 3032–3039.

[11] H. Lai, Y. Pan, Y. Liu, S. Yan, Simultaneous feature learning and hash620

coding with deep neural networks, arXiv preprint arXiv:1504.03410.

[12] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, S.-F. Chang, Supervised hashing with

kernels, in: CVPR, 2012.

[13] Q. Wang, D. Zhang, L. Si, Semantic hashing using tags and topic modeling,

in: SIGIR, 2013.625

[14] R. Xia, Y. Pan, H. Lai, C. Liu, S. Yan, Supervised hashing for image

retrieval via image representation learning., in: AAAI, Vol. 1, 2014, p. 2.

[15] W.-C. Kang, W.-J. Li, Z.-H. Zhou, Column sampling based discrete super-

vised hashing., in: AAAI, 2016, pp. 1230–1236.

[16] H. Liu, R. Wang, S. Shan, X. Chen, Deep supervised hashing for fast image630

retrieval, in: Proceedings of the IEEE conference on computer vision and

pattern recognition, 2016, pp. 2064–2072.

32

[17] Z. Cao, M. Long, J. Wang, P. S. Yu, Hashnet: Deep learning to hash by

continuation, arXiv preprint arXiv:1702.00758.

[18] L. Jin, K. Li, H. Hu, G.-J. Qi, J. Tang, Semantic neighbor graph hashing635

for multimodal retrieval, IEEE Transactions on Image Processing 27 (3)

(2018) 1405–1417.

[19] M. Datar, N. Immorlica, P. Indyk, V. S. Mirrokni, Locality-sensitive hash-

ing scheme based on p-stable distributions, in: SoCG, 2004.

[20] I. Goodfellow, Y. Bengio, A. Courville, Y. Bengio, Deep learning, Vol. 1,640

MIT press Cambridge, 2016.

[21] Y. Weiss, A. Torralba, R. Fergus, Spectral hashing, in: NIPS, 2009.

[22] D. Zhang, J. Wang, D. Cai, J. Lu, Self-taught hashing for fast similarity

search, in: SIGIR, 2010.

[23] W. Liu, J. Wang, S. Kumar, S.-F. Chang, Hashing with graphs, in: Pro-645

ceedings of the 28th international conference on machine learning (ICML-

11), Citeseer, 2011, pp. 1–8.

[24] W. Liu, C. Mu, S. Kumar, S.-F. Chang, Discrete graph hashing, in: Ad-

vances in Neural Information Processing Systems, 2014, pp. 3419–3427.

[25] Q.-Y. Jiang, W.-J. Li, Scalable graph hashing with feature transformation.,650

in: IJCAI, 2015, pp. 2248–2254.

[26] J. Xu, P. Wang, G. Tian, B. Xu, J. Zhao, F. Wang, H. Hao, Convolutional

neural networks for text hashing., in: IJCAI, 2015, pp. 1369–1375.

[27] S. Chaidaroon, T. Ebesu, Y. Fang, Deep semantic text hashing with weak

supervision, in: SIGIR, 2018.655

[28] A. Grover, J. Leskovec, node2vec: Scalable feature learning for networks,

in: Proceedings of the 22nd ACM SIGKDD international conference on

Knowledge discovery and data mining, ACM, 2016, pp. 855–864.

33

[29] B. Perozzi, R. Al-Rfou, S. Skiena, Deepwalk: Online learning of social

representations, in: Proceedings of the 20th ACM SIGKDD international660

conference on Knowledge discovery and data mining, ACM, 2014, pp. 701–

710.

[30] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, Q. Mei, Line: Large-scale

information network embedding, in: Proceedings of the 24th International

Conference on World Wide Web, International World Wide Web Confer-665

ences Steering Committee, 2015, pp. 1067–1077.

[31] D. Wang, P. Cui, W. Zhu, Structural deep network embedding, in: Pro-

ceedings of the 22nd ACM SIGKDD international conference on Knowledge

discovery and data mining, ACM, 2016, pp. 1225–1234.

[32] S. Cao, W. Lu, Q. Xu, Deep neural networks for learning graph represen-670

tations., in: AAAI, 2016, pp. 1145–1152.

[33] W. Hamilton, Z. Ying, J. Leskovec, Inductive representation learning on

large graphs, in: Advances in Neural Information Processing Systems, 2017,

pp. 1025–1035.

[34] T. N. Kipf, M. Welling, Semi-supervised classification with graph convolu-675

tional networks, arXiv preprint arXiv:1609.02907.

[35] T. N. Kipf, M. Welling, Variational graph auto-encoders, arXiv preprint

arXiv:1611.07308.

[36] A. Grover, A. Zweig, S. Ermon, Graphite: Iterative generative modeling of

graphs, arXiv preprint arXiv:1803.10459.680

[37] Z. Yang, W. W. Cohen, R. Salakhutdinov, Revisiting semi-supervised learn-

ing with graph embeddings, arXiv preprint arXiv:1603.08861.

[38] C. D. Manning, P. Raghavan, H. Schütze, et al., Introduction to information

retrieval, Vol. 1, Cambridge university press Cambridge, 2008.

34

[39] C. Van Gysel, M. de Rijke, E. Kanoulas, Learning latent vector spaces685

for product search, in: Proceedings of the 25th ACM International on

Conference on Information and Knowledge Management, ACM, 2016, pp.

165–174.

[40] F. Morin, Y. Bengio, Hierarchical probabilistic neural network language

model., in: Aistats, Vol. 5, Citeseer, 2005, pp. 246–252.690

[41] D. H. Park, Y. Chang, Adversarial sampling and training for semi-

supervised information retrieval, arXiv preprint arXiv:1811.04155.

[42] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, Z. Su, Arnetminer: Extraction

and mining of academic social networks, in: KDD’08, 2008, pp. 990–998.

[43] S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Jozefowicz,695

S. Bengio, Generating sentences from a continuous space, arXiv preprint

arXiv:1511.06349.

[44] C. K. Sønderby, T. Raiko, L. Maaløe, S. K. Sønderby, O. Winther, Ladder

variational autoencoders, in: Advances in neural information processing

systems, 2016, pp. 3738–3746.700

[45] L. v. d. Maaten, G. Hinton, Visualizing data using t-sne, Journal of machine

learning research 9 (Nov) (2008) 2579–2605.

35

	Introduction
	Related Work
	Semantic Hashing
	Graph Embedding

	Methodology
	Problem Description
	node2hash
	Word Generation Distribution P(bold0mu mumu ww2005/06/28 ver: 1.3 subfig packagewwwwi|bold0mu mumu ss2005/06/28 ver: 1.3 subfig packagessss)
	Neighborhood Generation Distribution P(bold0mu mumu aa2005/06/28 ver: 1.3 subfig packageaaaaj|bold0mu mumu ss2005/06/28 ver: 1.3 subfig packagessss)

	Parameter Estimation and Inference
	Binarization
	Discussions

	Experimental Settings
	Experiment Design
	Data Collections
	Baselines

	Experimental Results
	Datasets with Explicit Connections
	Datasets with Implicit Connections
	Effect of Distance Functions on Implicit Connections
	Effect of Neighborhood Sampling Methods
	Effect of Monte Carlo Sampling Size
	Effect of Binarization
	Effect of Text and Connection Information
	Qualitative Analysis

	Conclusions and Future Work

