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Abstract
Dialogue systems are becoming an increasingly common part of many users’ daily rou-
tines. Natural language serves as a convenient interface to express our preferences with 
the underlying systems. In this paper, we aim to learn user preferences through online con-
versations. Compared to the traditional collaborative filtering setting where feedback is 
provided quantitatively, conversational users may only indicate their preferences at a high 
level with inexact item mentions. To tackle the ambiguities in natural language conversa-
tions, we propose Personalized Memory Transfer which learns a personalized model in an 
online manner by leveraging a key-value memory structure to distill user feedback directly 
from conversations. This memory structure enables the integration of prior knowledge to 
transfer existing item representations/preferences and natural language representations. 
The experiments were conducted on two public datasets and the results demonstrate the 
effectiveness of the proposed approach.
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1 Introduction

Virtual assistants such as Amazon Alexa, Apple Siri, Google Assistant, and Microsoft Cor-
tana are becoming an increasingly common part of many users’ daily routines. Conversa-
tional agents are being quickly adopted in industry to handle customer service requests at 
banks, set up travel accommodations, and make product recommendations at online retail-
ers. Natural language serves as a convenient interface to computing systems and is a natu-
ral form to express our preferences with others. Consequently, conversational recommen-
dation systems have emerged to elicit the dynamic preferences of users through multi-turn 
interactions in natural language.

In the setting of conversational recommendations, two parties are interacting with 
one another centered around discussing items, e.g., movies (Li et  al., 2018). The first 
party (seeker) expresses his/her preferences and asks for relevant movie suggestions 
from the second party who acts as the recommender. This recommender’s goal is to 
understand the seeker and provide personalized movie recommendations based on the 
conversation. An example dialogue is shown in Fig. 1. The conversational recommenda-
tions setting poses ambiguity where the user expresses feedback in the form of natural 
language, in contrast to the traditional collaborative filtering setting where feedback is 
typically provided in explicit (ratings) or implicit (clicks/views) form. The seeker may 
not specify which item(s) he or she likes but rather describes it at a high level such as 
“I would like to watch a suspenseful, but clean family friendly movie” in Fig. 1. Even 
when the user makes specific references, items or movies mentioned in the dialogue may 
not be exactly accurate. For example, A Space Odyssey and Star Wars: The Last Jedi are 
not the full names of the movies (which should be 2001: A Space Odyssey (1968) and 
Star Wars: Episode VIII - The Last Jedi (2017) respectively based on the IMDB data-
base). Also, the Star Wars that the seeker mentioned is a movie franchise and cannot be 
mapped to a specific movie. Some prior work on conversational recommendations used 

Fig. 1  Example dialogue between the Seeker asking for recommendations and the Recommender providing 
suggestions. Movie mentions are in bold
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synthetic data (Dodge et al., 2016; Suglia et al., 2017; Lei et al., 2020) or assumed an 
entity tagger was present mapping movie mentions in the dialogue to unique identifiers 
(Li et al., 2018) which may not be available in practice.

An ideal conversational recommendation system would learn to adapt to user’s pref-
erences as the conversation progresses. Inspired by key-value memory networks (Miller 
et al., 2016) originally proposed for question answering and the successful application 
of memory networks to the recommender domain (Ebesu et al., 2018; Hu et al., 2018), 
we propose Personalized Memory Transfer (PMT) to learn user preferences in a natural 
chit-chat conversational setting. To tackle the ambiguity in natural language, we treat 
each conversation as a virtual item by combining the known item representations. As 
the conversation progresses, PMT updates the user representation based on the observed 
virtual items. Since collecting large amounts of conversational data with labels may be 
cost prohibitive or infeasible due to privacy concerns, we propose to leverage two forms 
of transfer learning to address data sparsity.

First, we learn an interaction function measuring the user’s level of interest in a 
given item from a large-scale collaborative filtering dataset (e.g. MovieLens (Harper 
& Konstan, 2015)) and transfer the learned movie representations to the conversa-
tional recommendation domain. Next, each movie is represented by a memory slot 
with a corresponding pair of key and value memory in the key-value memory struc-
ture. This memory structure is tailored such that the model uses the keys to address 
relevant memories with respect to the current user’s utterance (query) followed by a 
reading phase which returns the final output memory using the value memory which 
serves as a virtual item. A pre-trained natural language encoder maps each movie’s plot 
to a low-dimensional representation and the learned item preferences act as the basis 
for the key and value memories, respectively. During the conversation the user’s utter-
ance is mapped to a low-dimensional semantic vector with the natural language encoder 
which addresses the key memories by identifying relevant movies for the user. For each 
conversation we learn a new user representation in an online manner by leveraging the 
virtual item as a positive instance along with considering user’s satisfaction to evalu-
ate the pairwise objective. As the conversation progresses PMT updates the user repre-
sentation with standard backpropagation via stochastic gradient descent guided by the 
virtual item extracted and sentiment from the user’s utterance permitting personalized 
movie recommendations.

It is worth noting that a full-fledged conversational recommendation system should 
include a response generation component, which is to generate human-understandable 
responses for communicating with users and making recommendations. There exist multi-
ple strategies and active research on how to generate readable, fluent, and consistent natural 
language responses (Gao et al., 2021). In this paper, we only focus on the task of learning 
user preferences over conversations, which is a challenging problem in itself. The proposed 
approach can be used in combination with the existing response generation methods. Our 
contributions can be summarized as follows:

– To the best of our knowledge, this is the first work that learns user preferences in an 
online fashion from conversations where there may only exist high level user feedback 
or inexact item mentions.

– We propose a novel memory network named Personalized Memory Transfer (PMT) 
to distill user feedback directly from user’s utterances by integrating prior knowledge 
of existing item representations/preferences and pre-trained language models, which 
allows the learning of a new user representation over conversations.
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– Experimental results on two public conversational datasets demonstrate the effective-
ness of PMT to learn a personalized user representations with two interaction functions 
and natural language encoders in an online setting.

The remainder of the paper is organized as follows: Section 2 introduces the research status 
and related work. Section 3 presents the proposed approach. Section 4 demonstrates and 
analyzes our experimental results. Finally, Sect. 5 concludes the paper with a discussion on 
future work.

2  Related work

2.1  Conversational recommendation systems

Recommendation systems are vital to keeping users engaged and satisfied with personal-
ized recommendations in the age of information explosion. Modern E-commerce, enter-
tainment and social media platforms provide personalized content by analyzing user prefer-
ences based on explicit and/or implicit feedback and infer their potentially preferred items. 
Based on the type of input data, the recommender systems can be summarized into collab-
orative filtering systems, content-based recommender systems, and hybrid recommender 
systems (Zhang et al., 2019). Early researches in collaborative filtering formulated the rec-
ommendation task as predicting the user rating score on the candidate items (Sarwar et al., 
2001). The rating-based recommendation models did not perform well in top-n recommen-
dation, which motivated the ranking-based recommendation by learning a model based on 
the relative preference of a user over pairs of items (Rendle et al., 2009b). Content-based 
recommendation utilizes item or user features (such as item description, user profiles, and 
attributes) to find similar items or users for recommendations (Lops et al., 2011).

Most conventional recommender systems highly rely on users’ historical trajectories to 
generate personalized recommendation. It lacks the capability of capturing users’ dynamic 
intentions/demands. This intrinsic limitation motivates online recommendation with its 
goal to adapt the recommendation results with the user’s online actions (Li & Karahanna, 
2015). Much existing work models it as a multi-arm bandit problem (Wang et al., 2017; 
Wu et al., 2018). While achieving remarkable progress, the bandit-based solutions are still 
insufficient especially in the warm start scenarios (Lei et  al., 2020). In the recent years, 
conversational recommender systems have attracted an increased attention in the research 
community as they enable a system to interact with users using natural language. The gen-
eral idea of such systems is to support a task-oriented, multi-turn dialogue with their users.

Sun and Zhang (2018) represented a dialogue vector as a set of facet-value pairs and 
fuses the vector with user and item ratings via a factorization machine. Li et  al. (2018) 
assumed that movies mentioned in the conversation are known in advance. The model 
encodes the incoming utterances and progressively constructs the input vector to the user-
based autoencoder to predict ratings. Our work differs from the existing works as our 
model does not need any prior knowledge of users. Unlike (Li et al., 2018), our work does 
not need to tag a movie directly in the conversation. A similar but related approach is inter-
active recommendation which elicits specific questions to the user regarding their prefer-
ences but may diminish user experience (Christakopoulou et  al., 2016, 2018; Zhu et  al., 
2019). For a comprehensive literature review on conversational recommendation systems, 
readers can refer to two recent survey articles (Jannach et al., 2021; Gao et al., 2021).
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2.2  Task‑oriented dialog system

A task-oriented dialog system’s intent is to assist users with a given task through natural 
language such as hotel booking, travel or online shopping. Task-oriented dialogue systems 
are one important branch in dialogue system research. Though conversational recommen-
dation is an emerging research topic, many of the basic concepts and model designs were 
originated from task-oriented dialogue systems. Pioneering work by (Yan et  al., 2017) 
leveraged natural language processing and crowdsourcing to build a dialog system for 
E-commerce. Bordes et  al. (2017) used a memory network to store user utterances and 
predicts the response for a restaurant reservation task. Wen et al. (2017) modeled a task-
oriented conversation as a sequence-to-sequence mapping problem while augmenting the 
model with the dialogue history. Mo et al. (2018) learned a personalized dialogue agent by 
transferring relevant knowledge from conversations via reinforcement learning framework. 
For non-textual utterance such as images, Cui et al. (2019) proposed a multimodal encoder 
which is a combination of image and text encoders to jointly transform an utterance into a 
dialog vector. Zhang et al. (2018) proposed the “systems ask, users respond” paradigm for 
conversational recommendation in e-commerce. A system agent is designed to ask users 
different questions to obtain clarified demands continuously, and a multi-memory network 
is utilized to analyze the user utterances for recommendation.

Understanding user preferences and intentions from dialogues is the key requirement 
for conversational recommendation or dialog systems in general, since subsequent tasks 
such as response generation heavily rely on this information. Much existing work focused 
on the multi-turn strategy and core recommendation logic (Gao et al., 2021), while they 
circumvented the extraction of user preferences from raw natural language utterances and 
often required the preprocessed input such as rating scores (Zou et al., 2020b) and YES/
NO answers (Zou et  al., 2020a), which is unnatural in real-world human conversations. 
Some recent work extracted semantic information in users’ raw utterance by utilizing deep 
learning, e.g., Li et al. (2018) based on recurrent neural network (RNN), Liu et al. (2020) 
based on convolutional neural network (CNN), and Penha and Hauff (2020) based on the 
bidirectional encoder representations from transformers (BERT) (Devlin et al., 2019).

2.3  Cross‑domain recommendation

Cross-domain recommendation seeks to transfer knowledge from a data-rich source domain 
and utilize it in a new target domain (Ricci et al., 2015). This may help alleviate the cold-
start problem or lack of sufficient data for personalized recommendations in the new target 
domain. Typical cross-domain recommendation models are extended from single-domain 
recommendation models (Li et al., 2020). Hu et al. (2018) introduced a memory compo-
nent jointly with a transfer network to selectively transfer source content information to the 
target domain for a given user. These approaches assume that different patterns character-
ize the way that users interact with items of a certain domain. However, our approach dif-
fers that it does not require users to be overlapped in the two domains and can address the 
user cold-start problem. Gao et al. (2019) proposed two levels of attention mechanisms to 
transform the interaction history of a user in the source domain as an additional user latent 
factor in the target domain. Their approach exploits the transferable information from the 
set of overlapped items which may not be feasible to apply to the conversational domain 
where the source and target domains are often multimodal. Another recent approach by 
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(Kanagawa et al., 2019) uses domain separation networks (Bousmalis et al., 2016) to train 
a multi-class classifier from the source domain to predict the preferred item in the target 
domain, but the idea may not be applicable to natural language conversations.

3  Methodology

In this section, we describe our proposed model Personalized Memory Transfer (PMT) 
to learn user preferences in an online conversational chit-chat setting. We use movie rec-
ommendations as a motivating example, but the proposed method is generic and can be 
applied to other domains as well. In this setting, there exist two types of ambiguities: (1) 
the user expresses preference in the form of natural language instead of explicit (ratings) or 
implicit (clicks/views) feedback; (2) movie mentions within the conversation may not be 
able to be mapped to unique item identifiers, e.g., users might simply just ask for animation 
movie recommendation. We tackle the aforementioned challenges by treating each conver-
sation as a virtual item with a combination of the (pre-trained) known item representations 
based on their content semantic similarity obtained from a key-value structured memory 
(Miller et al., 2016). This virtual item can then be used as a positive instance in the pair-
wise training of the model.

More specifically, PMT performs online updates to a user representation throughout 
the conversations by consulting the stored semantic movie representation in the memory. 
The key-value memory structure is tailored such that the model uses the keys to address 
relevant memories with respect to the current user’s utterance (query) followed by a read-
ing phase which returns the output memory using the value memory. This memory struc-
ture enables the model to transfer prior knowledge of item representations/preferences and 
natural language to bridge two different forms of transfer learning. The output memory 
returned by the key-value memory structure acts as a mixture of item preferences extracted 
from user’s natural language conversation, and it will guide the updates to the user repre-
sentation with standard backpropagation via stochastic gradient descent. An overview of 
the process can be seen in Fig. 2. The subsections below describe the architecture in detail.

3.1  Key‑value memory

One of the major components of PMT is the key-value memory. Each movie j is repre-
sented by a memory slot with a corresponding pair of key memory �j and value memory 

Fig. 2  Illustration of PMT encoding the user’s utterance through the key-value memory structure producing 
the final output memory to estimate the interaction function for a new user
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�j . Intuitively, the key memory represents each movie in a low-dimensional semantic space 
to identify similar movies according to the current user’s utterance which in turn produces 
a relevance score weighting the appropriate value memories according to similarity. This 
weighted value memory or output memory acts as a weighted combination of item prefer-
ences represented in a low-dimensional latent space.

Formally, we define the key memory for the j th movie via embedding a sequence of 
words wl corresponding to a movie’s plot (or summary) Dj = {w1,… ,w|Dj|} with an 
encoder:

where �(⋅) is a natural language encoder or feature extractor which maps a variable length 
textual document to a single fixed de dimensional semantic vector. The encoding function 
could be a pre-trained language model such as Universal Sentence Encoder (Cer et  al., 
2018), Transformer (Vaswani et al., 2017), ELMo (Peters et al., 2018), and BERT (Dev-
lin et al., 2019). Note that this can also be used to encode the user’s utterances as well. In 
Sect. 4.5, we investigate the effect of the natural language encoder on the recommenda-
tion performance by experimenting with different pre-trained sentence encoders. Once the 
encoder is pre-trained on a large corpus the parameters remain frozen during our training 
process. This is the first form of transfer learning in PMT. We would like to point out that 
the definition of the keys is not restricted to a language model representation, alternative 
representations such as knowledge bases (Miller et al., 2016) or additional meta informa-
tion such as actors, genres, or directors may also be incorporated to achieve more objective 
recommendations (Kang et al., 2017).

Each value memory �j is a low-dimensional latent representation of each movie j. We 
use the learned item representations from a pre-trained interaction function as the value 
memories. The pre-training can be done on a traditional large-scale collaborative filter-
ing dataset such as MovieLens. This is the second form of transfer learning in PMT. Sec-
tion 3.4 includes the details about the interaction function. Similar to the key memory, we 
are not restricted to setting the value memory to a specific representation from the interac-
tion function. In addition, the flexibility of the key-value memory structure allows the key 
memory and value memory to be of different dimensionality.

We would like to point out that the entire memory structure is fixed and not learn-
able throughout the conversation. Although this work focuses on the movie domain, 
the representation of the keys can be easily extended to other application domains such 
as using product descriptions for product recommendation or paper abstracts for paper 
recommendation.

3.2  Key addressing

To identify movies the user may be interested in, we query the key memory by encoding 
the user’s utterance to a low-dimensional representation producing a relevance score for 
each movie. Specifically, an utterance consisting of a variable length sequence of words 
Xt = {w1,… ,w|Xt|} at a given turn t is encoded as:

where �t represents the low-dimensional query embedding encoding the current user’s 
utterance. Using the same natural language encoder as the key memory in the previous 

(1)�j = �(Dj)

(2)�t = �(Xt)
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subsection allows the movie’s plot and each utterance to be mapped into the same space 
permitting semantic comparison in vector space (Cer et  al., 2017). The model uses this 
query vector to identify relevant movies in the key memory the user may be interested in 
based on past utterances. Each memory slot is addressed by computing the similarity of the 
given utterance and each movie with:

where st
j
 expresses the user’s level of interest in the jth movie based on the encoded mov-

ie’s summary and the tth utterance qt as measured by the inner product. I  is the set of all 
movies. For example, if a user expresses interest in animated children movies, the encoded 
query should produce higher relevance scores to semantically related children movies in 
the key memory.

3.3  Key‑value reading

Reading the key-value memory structure bridges the two forms of transfer learning (natural 
language encoder and item representations/preferences) in separate semantic spaces. At a 
high level, the similarity computed between the query and key memories weighs the rele-
vant value memories. In other words, the user’s utterance determines the amount of weight 
allocated to each movie’s value memory yielding a mixture of item representations.

Including the entire set of all movies can be computationally expensive and may intro-
duce noise to the final memory output representation. Similar to the key-hashing performed 
in (Miller et al., 2016), we select a subset of top-k movies with the highest similarity score 
according to Eq. (3) which we denote as Sk . To obtain the final output memory we first 
normalize the similarity with the softmax function:

obtaining a distribution of the current user’s preference over each movie j ∈ S
k from the 

utterance at turn t. Alternatively, we can also interpret this as an attention mechanism 
where the attention places higher weights on movies similar to the utterance.

Finally, the output memory representation is weighted by the probability each movie is 
relevant to the current user’s utterance in the conversation via:

where vj is the latent representation of movie j. This weighted value memory increases the 
impact of corresponding movies whose query and keys have high similarity in the seman-
tic space while decreasing the influence of movies which may be irrelevant. Each value 
memory may represent concrete variations such as the genre of a movie or more subjective 
aspects such as visual aesthetics or a completely hidden and uninterpretable latent struc-
ture. By weighting each of the value memory according to its relevance we construct a 
weighted combination of preferences representing multiple degrees of each variation.

We now have the final memory output representation extracted from the user’s utterance 
Xt at turn t. As discussed before, we assume that it may not be possible to map user’s natu-
ral language conversation to particular movies, the memory output representation �t which 

(3)st
j
= (qt)Tkj ∀ j ∈ I

(4)pt
j
=

exp (st
j
)

∑

l∈Sk

exp (st
l
)

∀ j ∈ S
k

(5)ot =
∑

j∈Sk

pt
j
vj
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is a combination from the known item representations based on their content semantic sim-
ilarity obtained by the key-value memory structure serves as a good virtual “positive” item 
representation for the user.

3.4  Interaction function

In this section, we first present the interaction function in the classic collaborative filtering 
setting and then show how we can utilize it in our proposed model via pre-training.

In collaborative filtering, the interaction function measures a user’s level of interest in a 
given item. This interaction function can estimate the scores of unobserved entries with M 
users and N items in the M × N ratings matrix R , which are used to rank each item. The set 
of all users and items are denoted as U and I  , respectively. Formally, we assume the inter-
action function takes the following form which produces a ranking score for a given user 
i ∈ U and item j ∈ I  as:

where ui and vj are generally learnable parameters in a shared d dimensional space.
We can define multiple forms of the interaction function f (⋅) . The parameters of all 

interaction functions can be learned by optimizing the pairwise ranking BPR loss (Rendle 
et al., 2009a) via stochastic gradient descent (SGD). The most basic interaction function is 
just a linear version via the inner product:

which can yield one of the early influential algorithms in collaborative filtering: Singular 
Value Decomposition (SVD) (Salakhutdinov & Mnih, 2008), and other related matrix fac-
torization (MF) based methods.

A linear function may lack the flexibility to disentangle complex item preferences and 
generalize to another dataset. Hence we can use a nonlinear variant generalized matrix fac-
torization (GMF) (He et al., 2017):

where ⊙ is the elementwise product; � ∈ ℝ
d is an additional parameter to be learned and 

�(⋅) is a nonlinear activation function. We can adopt the rectified linear unit (ReLU) func-
tion �(x) = max(0, x) as the nonlinear function due to its nonsaturating behavior (Nair & 
Hinton, 2010). GMF degenerates to matrix factorization if we set the nonlinear activation 
function �(⋅) to the identity function and constrain the vector � to the 1 vector with all val-
ues as 1.

In our work, we use the interaction function introduced above (either MF or GMF) as 
the last layer of the proposed architecture, as illustrated in Fig. 2. We can estimate the rank-
ing score of the output �t in Eq.(5) for the user i using the interaction function as below

where �̃i is the user representation for the utterance at turn t. As discussed in Sect. 3.3, �t 
is a combination from the known movie representations vj and can be viewed as a virtual 
movie representation of the utterance Xt at turn t.

(6)r̂ij = f (ui, vj)

(7)f (ui, vj) = u�
i
vj

(8)f (ui, vj) = ��𝜙(ui ⊙ vj)

(9)r̂t
i
= f (�̃i, �

t)
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Inspired by the recent success of pre-trained models in many domains, we noticed that 
both latent representation of movie vj and interaction function f (⋅) can be pre-trained on 
the existing large-scale movie rating datasets such as MovieLens. Thus, we do not have 
to estimate vj and �t , if there is no fine tuning. The only parameter that needs to learn is 
the user representation �̃i . During the conversation, user representation �̃i is dynamically 
updated based on each new utterance represented by a combination of the known mov-
ies. The next section explains the loss function and the optimization procedure in model 
training.

3.5  Learning the user preference vector

Since the nature of the data resembles the implicit feedback setting, we take the pairwise 
assumption that a given user i prefers the observed item j+ over the unobserved item j− . 
However, without previous user interactions we cannot use standard techniques to per-
form the sampling. Instead, the positive item is inferred from the conversation via reading 
the key-value memory structure which produces a virtual item representation as �t from 
the utterance Xt . Since users may express positive or negative preferences towards par-
ticular recommendations throughout the conversation, we integrate a sentiment classifier 
y = g(Xt) ∈ [0, 1] which handles the uncertainty associated with the negative sampling 
procedure. For each turn in the conversation, our training data consists of a tuple for each 
user utterance Xt ∈ X  and sampled negative item j− which are used to minimize the cross-
entropy objective:

where �(x) = 1∕(1 + exp (−x)) is the logistic sigmoid function and ŷ = r̂t
i
− r̂ij−.

The intuition is as follows, we want to maximize the relevance score r̂t
i
 of the weighted 

combination of movie preferences extracted by the current utterance Xt over the relevance 
score r̂ij− from the sampled negative movie j− assuming the sentiment is positive i.e. y = 1 . 
Conversely, if the sentiment is negative the update to the user preference vector is per-
formed in the opposite direction. In reality, utterances have varying levels of sentiment 
with some recommendations being favored over others, allowing y to act as a gate deter-
mining the level of satisfaction the user has with the recommendation. The only parameter 
learned is the new user’s latent factor �̃i while all other parameters are held fixed. The 
loss function is optimized in an online fashion using stochastic gradient descent (SGD) 
which allows updating the user representation as the conversation progresses. Parameter 
updates are performed after each seeker’s utterance. Note only the utterances require the 
encoder function �(⋅) during the online setting and the movie summaries can be encoded 
and cached ahead of time.

3.6  Recommendation

Since the final output memory representation acts as a virtual item extracted from the natu-
ral language conversation, it does not directly correspond to a single item and therefore 
cannot be used to recommend items. The final output memory is only used to evaluate 
the loss function with respect to the interaction function. To perform recommendations, 
the newly learned user representation is plugged into the interaction function. The ranking 
score for the new user i and item j is:

(10)L(Xt, j−) = −y log(𝜎(ŷ)) − (1 − y) log(1 − 𝜎(ŷ))
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Note that here we use the newly learned user representation �̃i and the true item represen-
tation �j (not the estimated output memory). The top-n movies with the highest ranking 
scores can be presented to the user. Algorithm 1 shows the procedure on performing the 
recommendations in PMT. In the experiments, we evaluate these top-n recommendations 
against the item that the Seeker actually liked at turn t. As pointed out in Sect. 1, the focus 
of this paper is on learning user preferences from conversations. In future work, we will 
explore to generate natural language responses for communicating with Seeker and making 
recommendations.

4  Experiments

4.1  Datasets

We validate our proposed methodology on two public conversational datasets. The first 
one is called Recommendations through Dialogue (ReDial)1 dataset (Li et al., 2018) which 
consists of 206,102 utterances in 11,348 dialogues. The dialogues were crowd sourced and 
collected from Amazon Mechanical Turk where two users are paired up to converse around 
the topic of movies. Each user plays a specific role. The first user known as the seeker 
tries to explain their movie preferences and asks for appropriate movie suggestions. The 
second user known as the recommender tries to understand the seeker and provide appro-
priate movie recommendations. There are a total of 956 users and 51,699 movie mentions. 
The second dataset is called Goal-driven Recommendation Dialogue (GoRecDial) which 
includes 9,125 dialogues and 170,904 utterances between pairs of human workers recom-
mending movies to each other. It was collected through the task specifically designed as a 

(11)r̂ij = f (�̃i, vj)

1 https:// redia ldata. github. io/ websi te/

https://redialdata.github.io/website/
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cooperative game between two players working toward a quantifiable common goal. We 
refer the readers to (Kang et al., 2019) for full details.

Movie plots are collected from IMDB2 and the interaction function is pre-trained using 
the latest version of MovieLens (Harper & Konstan, 2015) consisting of 27M ratings from 
283K users over 53K items. We split 80% of the ratings for training, 10% for cross-valida-
tion and the remaining 10% for hold-out purposes. Following (Li et al., 2018) we match up 
the movies between the MovieLens dataset and each testbed with string matching using the 
authors’ provided implementation3. After preprocessing and removing invalid entries we 
obtain 5,045 movies on the ReDial dataset and 2,065 movies on GoRecDial. We only keep 
movie suggestions by the recommender which was not marked as dislike by the seeker. We 
perform 5-fold cross-validation and report the mean. Hyperparameters are tuned on a sin-
gle fold then held fixed for the remaining folds.

4.2  Evaluation metrics

We use standard recommendation system evaluation metrics for top-n ranking, Normal-
ized discounted cumulative gain (NDCG), Precision (P), Recall (R) and Mean reciprocal 
rank (MRR) (Manning et al., 2008). Users are generally interested in only a few top-ranked 
movies, Precision@n, NDCG@n and MRR@n are used to compare the top-n recommen-
dation performance. As the data resembles an implicit feedback setting where the level of 
user feedback is extracted from the conversation, rank aware metrics such as NDCG and 
MRR alone may be insufficient since a negative entry could adversely impact the metric 
but in reality the user may not be aware of the item’s existence. We have Recall as one met-
ric for this consideration. Specifically, we treat the movies mentioned by the recommender 
in utterance Xt at turn t as the ground truth where the seeker did not give the recommenda-
tion ‘dislike’. Note the recommendation is performed prior to observing the utterance with 
the ground truth and the model has only seen the utterances prior to turn t.

In the experiments, all the movies are treated as the candidates for ranking including 
those the user had previously talked about. In the real conversations, a user may only refer 
to a movie by an inexact or vague mention and thus it would be difficult to automatically 
identify and exclude the mentioned movies. While both ReDial and GoRecDial datasets 
have annotated movie mentions, the real-world conversations may not have such informa-
tion. It is worth noting that all the baseline methods also used the same set of candidate 
movies as our methods for a fair comparison.

4.3  Baselines and settings

We validate the effectiveness of our model against a few baseline methods.
Random: The top-n recommendations are randomly selected from all the candidate 

movies in a uniform distribution.
Popularity: The movies with the highest popularity that occur in the MovieLens train-

ing set are presented to the user. While simple, this baseline could sometimes yield com-
petitive performance in the benchmark recommendation tasks (Dacrema et al., 2019).

3 https:// github. com/ Raymo ndLi0/ conve rsati onal- recom menda tions

2 https:// www. imdb. com

https://github.com/RaymondLi0/conversational-recommendations
https://www.imdb.com


318 Information Retrieval Journal (2022) 25:306–328

1 3

TF-IDF (Term frequency inverse document frequency): The movies are ranked accord-
ing to the TF-IDF vector space similarity between the user’s utterance and each movie’s 
plot via the inner product.

Semantic Retrieval: This method uses Eq. (3) to rank the movies according to the inner 
product similarity where the encoder is the Universal Sentence Encoder. Movies with the 
highest similarity to the utterance are presented to the user.

SVD (Singular Value Decomposition) (Salakhutdinov & Mnih, 2008) and NMF (Non-
negative Matrix Factorization) (Févotte & Idier, 2011): These two baselines are classic 
collaborative filtering methods based on matrix factorization. We used movie preferences 
from the conversations to form user rating matrices (binary: like vs dislike) and then learn 
latent user and item factors for rating predictions. These methods require movie mentions 
identifiers annotated in each utterance.

ConvAE: This Conversational Autoencoder (ConvAE) approach was proposed in 
(Li et  al., 2018) (together with the ReDial dataset). It consists of a dialogue generation 
model based on hierarchical recurrent encoder-decoder, a sentiment prediction model, and 
an auto-encoder recommender. Similar to SVD and NMF, this approach requires explicit 
movie annotations in the conversations.

DropoutNet (Volkovs et  al., 2017): A deep learning based approach which adapts 
a deep neural network to handle the user cold-start problem on top of weighted matrix 
factorization (WMF), which demonstrated the state-of-the-art performance on public 
benchmarks.

For PMT, we first pre-train the two interaction functions Matrix Factorization (MF) and 
Generalized Matrix Factorization (GMF) with movie representations on the MovieLens 
dataset. All hyperparameters are obtained from a grid search by performance on the held 
out cross-validation set. We searched for the best latent dimension or embedding size from 
{10, 20, 30, 40, 50}, L2 between 0.1 to 1e − 7 , and the model was optimized with the SGD 
variant Adam (Kingma & Ba, 2015) using a standard learning rate of 0.001. We applied the 
pre-trained Universal Sentence Encoder with Transformer (USE-Transformer) (Cer et al., 
2018) to encoder natural language texts in all the experiments (unless specified otherwise). 
Section 4.5 studies the effect of the sentence encoder on the recommendation performance.

In the experiments, the sentiment classifier was a logistic regression model with the 
USE-Transformer encoding of a given utterance as input. To train a sentiment classifier 
for each dataset, we used the labeled sentiment data from each dataset together with the 
labeled data from the Movie Review dataset4, which resulted in 218,809 training instances 
for Redial and 75,005 for Goredcdial. The movie review dataset is in the same domain 
of movie discussions and shares some similar characteristics with the two testbeds. It has 
limited but high-quality binary sentiment labels (25,000 training examples). The majority 
of training data for sentiment classifiers still came from ReDial and GoRecDial themselves.

It is worth noting that several parts of the proposed model is pre-trained including 
sentence encoder/embeddings and sentiment classifier (pre-trained on sentiment labels), 
as well as the interaction function f (⋅) in Eq.(9) and the latent representation of movie vj 
(pre-trained on MovieLens). Once they are pre-trained, the parameters are held fixed and 
not fined tuned to the downstream recommendation task as we considered the fact that 
the labeled domain data is limited. As demonstrated Sect.  4.4, even without fine-tuning 
of the pre-trained models, the proposed approach demonstrated good improvement over 

4 https:// ai. stanf ord. edu/ ~amaas/ data/ senti ment/

https://ai.stanford.edu/%7eamaas/data/sentiment/
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the baseline methods. As shown in Algorithm 1, each new user latent factor �̃i is the only 
learnable parameter during training. It is randomly initialized from a uniform distribution 
with the range computed from the variance of the pre-trained user representations main-
taining the relative scale with respect to other parameters. During the conversation we use 
SGD with a learning rate of 0.1 to optimize the new user representation. At each turn t 
we update the parameters �̃i and randomly sample negative items from the k least similar 
movies. All the experiments were conducted on a server with 2 Intel E5-2630 CPUs and 4 
GeForce GTX TITAN X GPUs. The proposed models were implemented in PyTorch with 
the source code publicly available at GitHub5.

4.4  Baseline comparison

In this section, we present the results of our proposed Personalized Memory Trans-
fer (PMT) approach against the baseline methods on the two testbeds. Table 1 shows the 

Table 1  Experimental results on the ReDial dataset for different methods reporting Precision (P), Recall 
(R), normalized discounted cumulative gain (NDCG) and mean reciprocal rank (MRR) for different cut offs

The best results are highlighted in bold. †denotes the improvement over the best result of the baselines is 
statistically significant based on the paired t-test (p-value < 0.05)

P@1 P@3 R@10 R@25 MRR@3

Random 0.0001 0.0002 0.0019 0.0048 0.0003
Popularity 0.0035 0.0020 0.0112 0.0220 0.0048
TF-IDF 0.0000 0.0000 0.0000 0.0080 0.0000
Semantic 0.0048 0.0036 0.0214 0.0411 0.0068
SVD 0.0000 0.0022 0.0116 0.0317 0.0006
NMF 0.0000 0.0002 0.0095 0.0274 0.0002
ConvAE 0.0014 0.0024 0.0408 0.1013 0.0034
DropoutNet 0.0039 0.0056 0.0346 0.0577 0.0074
PMT-MF 0.0017 0.0019 0.0153 0.0336 0.0034
PMT-GMF 0.0060† 0.0061 0.0414† 0.0798 0.0091†

NDCG@3 NDCG@10 NDCG@25 MRR@10 MRR@25

Random 0.0003 0.0009 0.0016 0.0006 0.0009
Popularity 0.0042 0.0065 0.0092 0.0058 0.0067
TF-IDF 0.0000 0.0000 0.0018 0.0000 0.0003
Semantic 0.0069 0.0117 0.0166 0.0098 0.0113
SVD 0.0014 0.0046 0.0094 0.0024 0.0036
NMF 0.0008 0.0036 0.0079 0.0018 0.0029
ConvAE 0.0043 0.0157 0.0302 0.0084 0.0118
DropoutNet 0.0096 0.0173 0.0232 0.0131 0.0151
PMT-MF 0.0042 0.0077 0.0123 0.0058 0.0072
PMT-GMF 0.0108† 0.0208† 0.0306 0.0160† 0.0192†

5 https:// github. com/ agoda varthy/ PMT

https://github.com/agodavarthy/PMT


320 Information Retrieval Journal (2022) 25:306–328

1 3

results on the ReDial dataset. As we can see, the Random baseline yielded very small val-
ues in all the metrics, indicating the difficulty of this recommendation task. The Popular-
ity baseline performs much better than Random but generally worse than the other more 
competitive methods due to its lack of any form of personalization. The Semantic Retrieval 
method yielded much better results than TF-IDF, which is likely due to the fact that the 
user conversations often do not contain the keywords in the movie plots. There often exist 
some vocabulary gap between utterances and movie plots. For example, in the example 
dialogue shown in Fig. 1, the seeker was looking for a “suspenseful" movie. The plot of a 
relevant movie A Space Odyssey does not includes “suspenseful" but it contains a closely 
related word “mysterious". The much improved results of the Semantic baseline over TF-
IDF demonstrated the advantages of the semantic sentence encoder in relating user utter-
ances with movie plots.

The matrix factorization methods SVD and NMF performed better than Random, Popu-
larity, and TF-IDF but worse than Semantic Retrieval, which indicates the importance of 
utilizing natural language information for conversational recommendations as SVD and 
NMF only looked at annotated movie preferences. ConvAE did not perform well on the 
very top ranked results as evidenced by the metrics of P@1, P@3, and NDCG@3, while 
obtaining the best result in R@25. It is worth noting that ConvAE replies on annotated 
movie mentions in the utterances, which may not be available in the real world scenar-
ios. Nonetheless, the proposed PMT-GMF model yielded the best results in all the met-
rics except R@25, without utilizing the information of annotated movies. The majority of 
the improvements of PMT-GMF over the best baseline results were statistically significant 
based on the paired t-test (p-value < 0.05 ). DropoutNet generated the second best results in 
most metrics, which indicated the effectiveness of nonlinearity modeling on ReDial. This 
nonlinearity effect can also be seen via the comparison between the results of PMT-MF 
and PMT-GMF. PMT-GMF obtains better performance than the linear counterpart PMT-
MF which suggests the presence of more complex nonlinear interactions may be required 
to disentangle user preferences and transfer the knowledge to another dataset.

On the GoRecDial dataset as shown in Table 2, the results show a similar pattern with 
the ones in Table 1 on ReDial, but with larger improvements observed on PMT-MF and 
PMT-GMF over the baseline methods. PMT-MF yielded the second best in the majority 
of the metrics after PMT-GMF. The PMT-GMF model obtained better results than all the 
baselines across all the metrics except R@25, which reaffirms the effectiveness of the pro-
posed model. Similar to the results on ReDial, PMT-GMF outperforms PMT-MF, which 
demonstrates the advantage of modeling nonlinearity via the interaction function.

4.5  Effect of sentence encoder

In this section, we investigate the effect of the underlying sentence encoder on the rec-
ommendation performance of the proposed model. Specifically, We experiment with four 
popular deep contextualized pre-trained sentence encoders to transform the utterances in 
the conversations into sentence embeddings. The encoders are as follows:
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Table 2  Experimental results on the GoRecDial dataset for different methods reporting Precision (P), 
Recall (R), normalized discounted cumulative gain (NDCG) and mean reciprocal rank (MRR) for different 
cut offs

The best results are highlighted in bold. †denotes the improvement over the best result of the baselines is 
statistically significant based on the paired t-test (p-value < 0.05)

P@1 P@3 R@10 R@25 MRR@3

Random 0.0005 0.0003 0.0042 0.0110 0.0007
Popularity 0.0039 0.0014 0.0110 0.0368 0.0041
TF-IDF 0.0028 0.0021 0.0126 0.0217 0.0036
Semantic 0.0089 0.0068 0.0461 0.0792 0.0117
SVD 0.0000 0.0028 0.0488 0.1432 0.0020
NMF 0.0000 0.0004 0.0238 0.0680 0.0004
ConvAE 0.0068 0.0081 0.1220 0.2434 0.0210
DropoutNet 0.0064 0.0087 0.0650 0.1380 0.0118
PMT-MF 0.0169 0.0145 0.1007 0.1825 0.0248
PMT-GMF 0.0202† 0.0176† 0.1231 0.2169 0.0286†

NDCG@3 NDCG@10 NDCG@25 MRR@10 MRR@25

Random 0.0009 0.0019 0.0036 0.0012 0.0017
Popularity 0.0042 0.0063 0.0126 0.0048 0.0066
TF-IDF 0.0047 0.0070 0.0092 0.0052 0.0058
Semantic 0.0154 0.0225 0.0325 0.0176 0.0198
SVD 0.0047 0.0186 0.0412 0.0093 0.0151
NMF 0.0017 0.0087 0.0194 0.0040 0.0069
ConvAE 0.0239 0.0552 0.0849 0.0354 0.0431
DropoutNet 0.0177 0.0314 0.0489 0.0206 0.0254
PMT-MF 0.0324 0.0523 0.0720 0.0370 0.0425
PMT-GMF 0.0387† 0.0634† 0.0861 0.0445† 0.0509†

Table 3  Experimental results of PMT-GMF on the ReDial dataset with different sentence encoders

The best results are highlighted in bold

P@1 P@3 R@10 R@25 MRR@3

ELMo 0.0039 0.0040 0.0266 0.0528 0.0060
BERT 0.0056 0.0057 0.0368 0.0709 0.0087
USE-DAN 0.0035 0.0037 0.0254 0.0509 0.0056
USE-Transformer 0.0060 0.0061 0.0414 0.0798 0.0091

NDCG@3 NDCG@10 NDCG@25 MRR@10 MRR@25

ELMo 0.0070 0.0134 0.0201 0.0104 0.0125
BERT 0.0103 0.0189 0.0275 0.0147 0.0174
USE-DAN 0.0066 0.0127 0.0192 0.0097 0.0117
USE-Transformer 0.0108 0.0208 0.0307 0.0161 0.0192
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– ELMo (Peters et al., 2018). It uses a bi-directional LSTM to compute contextualized 
character-based word representations. We used TensorFlow Hub implementation of 
ELMo6, trained on the 1 Billion Word Benchmark.

– BERT (Devlin et al., 2019). It is is a deep embedding model that learns vector represen-
tations of words and sentences by training a deep bidirectional Transformer network. 
We used the uncased BERT-Base model7 trained on English Wikipedia and BooksCor-
pus.

– Universal Sentence Encoder (USE) (Cer et al., 2018). It has two variants: one is trained 
with a Deep Averaging Network (USE-DAN) and another with a Transformer network 
(USE-Transformer). We used TensorFlow Hub implementation of USE8, trained on a 
variety of data sources including Wikipedia, web news, web question-answer pages, 
and supervised data from the Stanford Natural Language Inference (SNLI) corpus.

Table 4  Experimental results of PMT-GMF on the GoRecDial dataset with different sentence encoders

The best results are highlighted in bold

P@1 P@3 R@10 R@25 MRR@3

ELMo 0.0146 0.0127 0.0900 0.1617 0.0206
BERT 0.0169 0.0145 0.1007 0.1825 0.0248
USE-DAN 0.0189 0.0167 0.1181 0.2093 0.0271
USE-Transformer 0.0202 0.0176 0.1231 0.2169 0.0286

NDCG@3 NDCG@10 NDCG@25 MRR@10 MRR@25

ELMo 0.0279 0.0461 0.0634 0.0322 0.0371
BERT 0.0324 0.0523 0.0720 0.0370 0.0425
USE-DAN 0.0367 0.0605 0.0826 0.0424 0.0486
USE-Transformer 0.0387 0.0634 0.0861 0.0445 0.0509

(a) ReDial (b) GoRecDial

Fig. 3  Effect of embedding size on the proposed PMT-GMF model on the two datasets in different metrics

7 https:// github. com/ google- resea rch/ bert
8 https:// tfhub. dev/ google/ unive rsal- sente nce- encod er/4

6 https:// tfhub. dev/ google/ elmo/2

https://github.com/google-research/bert
https://tfhub.dev/google/universal-sentence-encoder/4
https://tfhub.dev/google/elmo/2
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Tables 3 and 4 contain the experimental results of the proposed PMT-GMF model with 
different sentence encoders on the two datasets respectively. We can see the USE-Trans-
former encoder achieved the best results in all the metrics on both datasets. The BERT 
encoder yielded very similar results with USE-Transformer on ReDial across all the met-
rics. On GoRecDial, both variants of USE obtained slightly better results than BERT. The 
minor improvement of USE-Transformer over BERT could come from the fact that USE-
Transformer used more diverse sources of data (which include some informal texts) for 
pre-training than BERT did. The results were consistent with some existing work in other 
recommendation domains which showed USE could generate marginally better recommen-
dation results than BERT as a sentence encoder (Hassan et  al., 2019). Overall, the four 
state-of-the-art pre-trained text encoders yielded results in a comparable range.

4.6  Effect of embedding size

In this section, we analyze the effect of embedding size of key embedding �j (Eq.(1)), 
query embedding �t (Eq.(2)), movie embedding �j (Eq.(5)), and user embedding �i (Eq.
(8)), on the performance of our model. Figure 3 presents the performance comparison with 
respect to the length of embedding varied from 10 to 40 on the two datasets in different 
metrics. As we can see, on the GoRecDial dataset the metrics in Recall and NDCG first 
increase and then decrease, while on the ReDial dataset the performance in all the metrics 
improves when the embedding size increases. This may be due to the fact that the GoRec-
Dial dataset has less dialogues and utterances and thus the model is more likely to overfit 
when the embedding size (or model complexity) increases. In general, the results across 
different metrics have a consistent pattern over the embedding size.

4.7  Effect of conversation length

In this section, we examine the effect of the length of the conversation to determine whether 
updates to the user representation leads to improved performance. We bin the results of 
each recommendation based on the number of turns in a conversation. For example, if the 

(a) ReDial (b) GoRecDial

Fig. 4  Recall at 25 (R@25) of different methods over the number of turns in the conversations



324 Information Retrieval Journal (2022) 25:306–328

1 3

model has seen 3 turns of conversation before a recommendation, the result of that recom-
mendation will be categorized into the 3-turn bin. Figure 4 plots recall at 25 (R@25) vary-
ing the number of turns from 1 to 5. We do not report the other metrics since they show 
similar trends.

As we can see, the Random and Popularity baselines seem insensitive to the number of 
turns in a conversation, which is expected since they do not update the recommendations 
based on the conversations. The performance of TF-IDF seems to peak around 4 turns on 
both datasets potentially due to the dependency on keywords and the increasing complexity 
of the user’s utterances as the conversation progresses. The Semantic baseline shows com-
parable results with TF-IDF on ReDial and noticeably better performance on GoRecDial. 
On the other hand, PMT-GMF and PMT-MF demonstrate a steady increase and upward 
trend in performance as the number of turns increase on both datasets. The pattern is more 
visible on the GoRecDial dataset for the two proposed models. These results illustrate the 
effectiveness of the proposed models in updating the user representation over time and 
learning better user preferences. For all the different numbers of turns, PMT-GMF yields 
much better results than the other methods. In general, PMT-MF delivers the second best 
performance on the two testbeds and is followed by the Semantic baseline. The pattern in 
different number of turns is generally consistent with the overall results shown in Tables 1 
and 2.

4.8  Efficiency analysis

In this section, we empirically study the efficiency of the proposed PMT-GMF model. Spe-
cifically, we tested how fast on average the model can make recommendations at run time 
given an utterance in the conversation. We recorded the response time for each instance in 
the test set. The response time can be further decomposed into two parts: time for encoding 
an utterance and time for generating a ranked list of recommended movies. The experi-
ments were conducted on one GeForce GTX TITAN X GPU. Table 5 contains the average 
response time (in seconds) of PMT-GMT with two different sentence encoders on the two 
datasets. As we can see, the encoding process constitutes a large fraction of the response 
time on both datasets, since BERT and USE-Transformer are large language models with 
many parameters. The encoding took slightly longer time on GoRecDial than on Redial 
probably because the average length of utterances on Redial is a bit larger. On the other 
hand, the ranking time on GoRecDial was slightly longer than that on GoRecDial, which 
is likely due to the fact that Redial contains more candidates movies than GoRecDial does. 
Overall, the total response times on both datasets with different encoders were in a simi-
lar range and less than 0.8 second. It is worth noting that there is abundant room to fur-
ther improve the efficiency by using Knowledge distillation, e.g., DistilBERT (Sanh et al., 

Table 5  Average response time (in seconds) of PMT-GMT with two different sentence encoders on the two 
datasets: BERT and USE-Transformer

PMT-GMF Redial GoRecDial

Encoding Ranking Total Encoding Ranking Total

BERT 0.6490 0.1106 0.7596 0.6973 0.0960 0.7935
USE-Transformer 0.6040 0.1012 0.7163 0.6189 0.0898 0.7087
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2019), to compress large sentence encoders. We will further investigate this in the future 
work.

4.9  Qualitative study

In this section, we conduct a qualitative study on a specific conversation instance and 
see how PMT-GMF learns user preferences as the dialogue progresses. Figure  5 shows 
an example conversation from the GoRecDial dataset between recommendation seeker 
(Seeker) and recommender (Rec). Marked in blue in the figure are the top 10 movie recom-
mendations by PMT-GMF up to the conversation at that turn (based on the ranking score in 
Eq.(11)). The positive recommendation based on the ground truth is marked in bold.

At the beginning of the conversation, the Seeker expressed his/her interest in “com-
puter animate comedies", “fantasy movies", and “Harry Potter". As we can see from the 
first top 10 recommendations by the proposed model, two movies belong to Harry Pot-
ter series. The “computer animate comedies" type of movies include Shrek, Monsters, 
Inc, Finding Nemo, American Beauty, Chicken Run, and Up. These results demonstrate 

Fig. 5  an example conversation from the GoRecDial dataset between recommendation seeker (Seeker) and 
recommender (Rec). Marked in blue in the figure are the top 10 movie recommendations by PMT-GMF. 
The positive recommendation is marked in bold based on the ground truth (Color figure online)
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that the proposed approach can learn user preferences even when they are expressed at 
a high level (e.g., “computer animate comedies") with inexact movie mentions (e.g., 
“Harry Potter"). Only 2 out of the 10 recommendations seemed to be what the Seeker 
was looking for. Forrest Gump showed up as the top result probably because it is a 
comedy and a very popular movie. Groundhog Day is a fantasy comedy film but not 
computer animated.

The recommender (Rec) in the dataset recommended Shrek which was accepted by 
Seeker. It is worth noting that only Shrek is considered as a positive instance for this 
recommendation in the evaluation while some other top ranked movies by our model 
could also be relevant in the real world if they are presented to the Seeker. This offline 
evaluation methodology may explain why all the experimental results have relatively 
low values.

After the Seeker accepted the first recommendation, he or she further indicated “I 
like computer animated movies". As we can see, all the top three movies ranked by 
our model belong to “computer animated movies". The positive instance Finding Nemo 
appeared at the 3rd position. Forrest Gump was pushed down and Groundhog Day did 
not appear in the top 10 results any more. Up was moved up from the previous position. 
A new movie Ratatouille emerged in the top recommendations, which is a computer-
animated comedy and released by Walt Disney as what was wanted by the Seeker. These 
results demonstrate that our model could effectively update preferences and recommen-
dations based on the new utterances.

5  Conclusion and future work

In this work, we propose PMT to learn representation for a new user in an online fash-
ion in a conversation setting. On the one hand, our work does not depend on histori-
cal interaction log from users so that it can handle cold start user. On the other hand, 
our work does not depend on mapping item mentions in user utterances to unique item 
identifiers which means we are able to extract user preferences directly from natural lan-
guage conversation. The key idea of PMT is to leverage a key-value memory structure 
to transfer prior knowledge of natural language and item representations/preferences to 
the conversational domain. The experimental results on two public conversational test-
beds reveal the advantages of PMT to learn an effective user representation in an online 
setting as the conversation progresses leading to better recommendations.

This work is just an initial step towards a promising new direction. As pointed out 
in Introduction, in this paper we have focused on learning user preferences from dia-
logues. As the proposed approach demonstrates its effectiveness, we plan to combine 
the proposed PMT model with a response generation component to produce human-
understandable responses for communicating with users. Based on the predicted user 
preferences, we can use an existing response generation method such as retrieval based 
or generation based techniques (Gao et al., 2021). Moreover, we will explore an end-to-
end learning framework to understand user sentiment and preferences from raw natural 
language, and to generate meaningful responses in a joint fashion. In addition, as shown 
in the experiments, the interaction function has a significant impact on the model per-
formance. We plan to design more sophisticated interaction functions which explicitly 
integrates item preferences, content information and the natural language encoder.
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